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Density of states of the one-dimensional electron gas: Impurity levels, impurity bands,
and the band tail
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The density of states of cylindrical quantum wires is calculated in the presence of charged impurities
located in the center of the wire. A multiple-scattering approach IKlauder s fifth approximation), which
represents a self-consistent t-matrix approximation, is used. For small impurity densities and in the
weak screening limit the ground-state impurity band and four excited-state impurity bands are obtained
within our approach. We find good agreement between the numerically obtained spectral densities with
the corresponding analytical spectral densities calculated with the single-impurity wave functions. The
merging of impurity bands is studied. For large impurity densities we obtain a band tail. We present an
analytical expression for the disorder-induced renormalized band-edge energy in the band-tail regime.

I. INTRODUCTION

The density of states of doped semiconductors is of
considerable theoretical and experimental importance. '

Using the multiple-scattering approach of Klauder, the
density of states for disordered three- and two-
dimensional systems, as realized in silicon —metal-oxide
semiconductor structures and quantum wells, has been
calculated. The transition from an impurity band to a
band-tail regime has been discussed. It was shown that
within the fifth Klauder approximation excited impurity
bands can be described. In this paper we study the den-
sity of states of the disordered quasi-one-dimensional
electron gas confined in a cylindrical wire of radius Ro.

The behavior of electrons in quasi-one-dimensional
quantum wires has been studied extensively in theory
and experiments during the last years. Analytical results
for the subband structure in cylindrical quantum wires
appeared in a classical textbook on quantum mechanics.
Analytical results for the electron-electron interaction
potential and the electron-impurity interaction potential
have been derived recently' for cylindrical wires. We
use the analytical results of that paper.

Bound-state energies in quasi-one-dimensional struc-
tures have been studied in wires with rectangular cross
section and with circular cross sections. ' In these
calculations a single impurity is considered. The most in-
teresting result of these calculations is the observation
that the bound-state energies are strongly enhanced due
to the reduced dimension. The ground-state energy for
ideally two-dimensional systems ' is known to be al-
ready strongly lowered to —4 Ry compared to —1 Ry for
three dimensions. Finite width effects reduce the binding
energy in two dimensions. While analytical results for
the hydrogen atom in ideally two-dimensional systems
are available, we remark that analytical results for im-
purity levels in quasi-one-dimensional systems have not
been published in the literature.

The effect of overlapping bound states due to a finite
impurity density and the formation of impurity bands in
one-dimensional systems has been considered in Refs.
29—31. However, within these calculations the transition
from an impurity band to a band tail cannot be described.
In addition, in these calculations excited impurity bands
are not obtained.

In the limit of large impurity density a band-tail
description for the density of states is appropriate.
Theoretically, such a band tail in one-dimensional sys-
tems can also be obtained within the Born approxima-
tion ' and the coherent potential approximation
(CPA). The self-consistent Born approximation corre-
sponds to the third Klauder approximation. Our calcula-
tions, which are performed within the fifth Klauder ap-
proximation, are even more precise than calculations
within the self-consistent Born approximation. Let us
mention that some analytical results have been obtained
within the Born approximation. Within the commonly
used CPA, only the 6-function random potential can be
treated. In fact, neglecting multiple occupancy correc-
tions, the fifth Klauder approximation is equivalent to
the CPA. However, unlike the latter, it may include the
spatial dependence of the random potential.

The purpose of this paper is twofold. First, we present
a systematic analytical approach for the ground state,
and for the excited states of a single hydrogenic donor lo-
cated on the axis of a cylindrical wire. We study wave
functions, symmetry, energy levels, and the conduction
subbands involved. Our results enable us to clarify and
complete an earlier work. ' Second, it is clear that these
calculations' are no longer valid at finite impurity con-
centrations, where the overlapping of wave functions can-
not be neglected. To describe this situation we use a
multiple-scattering approach which allows us to study
numerically the impurity band in its ground state and its
excited states. In the limit of low concentration, by
analyzing the spectral density and the density of states,
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we determine the symmetry of the excited states and the
energy ordering. For large impurity concentrations a
band tail is found as a result of the overlapping of con-
duction and impurity bands.

The paper is organized as follows. The model and the
theory are described in Sec. II. Analytical results for im-

purity levels are presented in Sec. III. In Sec. IV we
present our numerical results for impurity bands. The
band-tail regime is described in Sec. V. We discuss our
theory and results in Sec. VI, and conclude in Sec. VII.

II. MODEL AND THEORY

In this section we briefly discuss the model, as formu-
lated in Ref. 10, and the theory, as formulated in Refs. 2,
3, and 5. For details we refer the reader to the original
papers. Actually, the parameter space of the problem
studied is large. In this paper we present results in a cer-
tain region of this space. If some experimental results ap-
pear in future publications, we shall provide additional
results adapted to these experiments. The present paper
provides information about general trends in quantum-
wire structures, and should be useful for experimenters.

A. Model

We consider a cylindrical quantum wire' with the wire
axis in the z direction. For a wire with radius Ro the
confining potential is given by U, ( r ~ R 0 ) =0 and U,
(r )Rc }~oo. The electron gas in the wire is character-
ized by the electron density N. The charged impurities
are assumed to be distributed randomly on the surface of
a cylinder of radius R around the wire axis, and are
specified by the (one-dimensional) impurity density N;.
In this paper we study impurities located on the wire axis
with R=O. Impurities located outside the wire with
R & Ro could also be studied. The electron-impurity in-

teraction is given by Vt'i (q, R) for electrons in the lowest
subband. '

Wave numbers along the wire axis are expressed in
units of I/a', and a'=sr /m'e is the effective Bohr ra-
dius with the Planck constant h =2~. m * is the effective
mass, and c.L is the dielectric constant of the background.
The energy is expressed in units of the effective Rydberg
Ry given by Ry =m*e /2eL. Our numerical results
are given for GaAs with m*=0.067m, and c.l =13
(a'=103 A, Ry'=5. 4 meV). m, is the electron mass in
vacuum.

Many-body effects as studied in Ref. 38 are neglected.
However, we study the effect of screening where the
dielectric function e (q, RO, N) is calculated within the
random-phase approximation (RPA): V, ,(q)
= V, (q, R }/e(q, RO, N) In fac.t, we always use the
screened potential, and we discuss two cases. The weak
screening limit (N ((N; ) is characterized by a small elec-
tron density in the dielectric function (N-1 cm '). This
limit is used to study impurity levels and impurity bands.
The physical idea behind this approach is the fact that in
the low-density limit the charged. carriers are bound to
impurities and cannot contribute to the screening. For
the strong screening limit we use N =N,-. This is the lim-

it of quasifree electrons in which we study the band-gap
renormalization.

The parameter space is given by N and R 0 for the elec-
tron gas, and by N, and R for the impurities. In this pa-
per we present results for Ro=a and R=O. A sys-
tematic study is performed for the variables N and N,-.

G(k, E)= 1

E —k /2m' —X(k,E)
We note that —(x) & ka* & Oo. The self-energy has a real
part X'(k, E) and an imaginary part X"(k,E},and is ex-
pressed in terms of the vertex function U(k, k, E) as

X(k,E)=X'(k, E)+iX"(k,E)
= lim [U(k, q, E) N, V, , (k ——q)] .

q~k
(2)

U(k, q, E) is calculated in Klauder's fifth approximation
as

U(k, q, E)=N, V, , (k —q)

+ f dq'V, , (q' q)G(q', E)U(k—,q', E) .

(3)

For the quasi-one-dimensional electron gas only a one-
dimensional integration appears in the nonlinear integral
equation (3). This equation corresponds to Klauder's
fifth approximation for multiple scattering. Impurity
bands and band tails can be described within this ap-
proach. Recently, it was demonstrated that excited im-
purity bands can be obtained within this approach. For
a two-dimensional electron gas, it was shown that the
spectral density is described by the squared Fourier trans-
form of the wave function of the ground and excited im-
purity states.

The spectral density A (k, E) is given by the imaginary
part of the Green function as

—2 (k,E)=+1m[6(k,E+i0]/m .

A (k, E) defines the density of states (DOS) as

(4a)

B. Theory

We present numerical results within the multiple-
scattering approach for the density of states of quasi-
one-dimensional systems in the presence of charged im-
purities. Klauder's 6fth approximation is used for the
calculation of the Green function in order to determine
the density of states. The input functions in this theory
are a trial Green function (e.g., the free-electron Green
function), the (screened) electron-impurity interaction po-
tential, and the electron dispersion law, which we assume
to be parabolic e(k) =k /2m" within a single subband.
For N,.~O we use the weak screening approximation
N «N;, and for large impurity density we use the full
screening properties with N =N;. Disorder effects on the
screening function are neglected.

The perturbed Green function G(k, E) for wave vector
k and energy E is given in terms of the self-energy X(k,E)
as
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p(E)= —g 3 (k, E) .
1

(4b) V, (z)= —Ry* [[I+(z/Ro) ]'~ ——", ~z/Ro~
0

I. is the length of the wire. The subscript o. in Eq. (4b)
represents the summation over the spin states, and the
DOS is given as the k integral over the spectral density.
The DOS is given in units of 1/Ry*a *.

III. IMPURITY LEVELS

In this section we present some analytical results for a
single impurity located in the center of the wire. It
should be stressed that our analytical calculations
presented here are not intended to give exact values for
the bound-state energies. Our motivation is to obtain
simple, but yet accurate, analytical expressions for the
wave functions which can be Fourier transformed. In
fact, as will be shown below, the Fourier-transformed
wave functions can be compared with the spectral density
obtained numerically within the Klauder approach, and
help to identify the symmetry and the energy ordering of
the bound states and to understand level mixing in the
multiple-scattering approach due to a finite impurity den-
sity. We also use these analytical expressions to argue
that our numerical calculations are correct, because a
good agreement is found with the numerically computed
spectral density in the limit of low impurity density.

A. Schrodinger equation
for a single impurity

For r &Ro the Schrodinger equation of a single elec-
tron in the presence of a charged impurity located at
r = (0,0,0) is written in cylindrical coordinates as

1 8 1 8 1+ — +— + 4(r, q, z)
2m Br r Br r By Bz

2

4(r, y, z)=E@(r,y, z) . (5a)
[„2+ 2 ]1/2

(6b)

We obtain the following asymptotic behaviors:
V, (z~O)= —32 Ry'a'[1 —15~z~/8Ro]/5Ro and V, (z
~+ca)= —2 Ry"a'/~z~. Equation (6a) represents a
one-dimensional Schrodinger equation for the impurity
levels attached to the lowest subband. The potential is
symmetric with respect to z (see Fig. 1). Corresponding-
ly, the eigenfunctions are either even or odd.

The second subband (2SB) is characterized by m =+1
and Pz(r)=(12/nR o)' [rlRo r IR—o] and the sub-

band energy is E2s~ = 16Ry*a ' /R 0. The one-
dimensional Schrodinger equation for the wave function
in the z direction, by averaging over P (2r)e px(+ip), is

written as Eq. (6a) with

Vz(z)= —24 Ry" [ —,",[1+(z/Ro) ]
~ [1—6(z/Ro) ]

0

+ ~z/RD~ [—', + —",, (z/R )

+ —,",(z/Ro) ]} .

The asymptotic behaviors are given as Vz(z~O)= —128
Ry'a'[1 —7z /2Ro]/35Ro and Vz(z~+~ )= —2

Ry'a'/~z~. Vz(z) versus z is shown in Fig. 1. We men-

tion that the first derivative of V, (z) is discontinuous at
z=0 (see Fig. 1). The cusp in V, (z) is due to the fact that
the wave function P, (r) at the charged center at r=O is

finite. For the second subband the wave function Pz(r) at
r=O is zero, and the first derivative of V2(z) is continu-
ous.

Due to m=0 the first subband has a degeneracy of 1.
The second (m =+1) and third (m =+2) subbands have
a degeneracy of 2. The fourth subband has m=0, and
the degeneracy is again 1. The fifth, sixth, seventh, and

The solutions of this equation are found within the ansatz

4(r, qr, z) =P(r)P(z)exp(im y) . (5b)

Without the charged impurity the first subband (1SB) is
characterized by m=0, and plane waves in the z direc-
tion: i(t(z) 0- exp(ikz). The exact solution for Eq. (5a)
without impurities (e =0) was given in Ref. 9 in terms of
Bessel functions. We used a simpler approach in order to
calculate the averaged Coulomb interaction potential and
the electron-impurity interaction potential in analytical
form. ' Therefore, in this paper we do not use the exact
form for P(r) but the approximate functions chosen in
Ref. 10. The first subband is characterized by m =0, and
P(r) is given as P&(r)=(3/mR&)' [1—r /Ro], and the
subband energy is E&s&=6 Ry*a* /Ro. Averaging Eq.
(5a) over r and y with P, (r) results in

y((z)(RyY/Ro)

2--

y2(z)(Ry'ch'RO)

z /RO
i

2 z/RO
1

(6a)
Q2

, y(z)+ V, (z)q(z)=(E E, )ff'r(z), —
2fn Bz FIG. 1. V&(z) for the first subband, and V2(z) for the second

subband vs z according to Eqs. (6b) and (7), respective1y.
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eighth subbands have again a degeneracy of 2 (m =+3,
+4, +5, and +6}. The degeneracy of the subbands is re-
lated to the zeros of Bessel functions (see Ref. 9).

B. Variational approach for the ground state

Due to the symmetry of V, (z), we argue that the
bound-state levels of each subband can be characterized
by their principal quantum number and their parity. It
follows that the ground state has even parity (+ ), and the
quantum number 1. The two lowest excited states are
characterized by the quantum number 2 with even (+)

f,+(z)=a' exp( —a~z~ ) =P, +( —z}, (8)

with the variational parameter a. We find for the aver-
aged potential, defined as ( V, ),+,+=(Q, +~ V, (z)~f, +),
the analytical expression

and odd ( —) symmetries, respectively. As usual, the odd
state has a lower energy than the even state. Therefore,
the energy ordering of the bound states is 1+,2, 2+, 3
3+

~ ~ ~ ~

For the ground-state energy level we use the wave
function

a~ 2 1 Rpa
( V, ),+,+ =12 Ry' + + +n [ Y3(2Roa) —H3(2Roa)]

RpQ RpQ Rpa 2 (9)

Y3(x) is a Bessel function, and H3(x} is a Struve func-
tion. For the kinetic energy ( T, ),+,+

=&y, +I —a'/2m'az'ly, &, we obtain

(T& ),+,+=Ry'a' a . ( V, ),+,+ versus 2Roa is shown

in Fig. 2, and decreases with increasing 2Rpa. In order
to determine a for a given Rp, one has to find the
minimum ao of E„„(a)—E,sB=( T, ),+,~+ ( V, ),+,+.
With Eq. (9) we find ao =0.82/a ' and

E„„(ao)—E,sa ——2.73 Ry' for Ro=a'. This means
that the bound state is located at —2.73 Ry' below the
first conduction subband. Numerically, we find within
the Klauder approach and for small impurity density
a = 1.12/a *, and 5E ( 1+ ) =E ( 1+ }—E

& su
——2.65 Ry'

for Ro =a' (see Sec. IV). Numerical results for a single
donor have been given in Ref. 13 as 5E(1+)-—3.2 Ry'
for Rp=a*. We note that in the following we take

E»z =0 and the subband edge of the free-electron gas is
given by E=O. We conclude that the variational ap-
proach is in good agreement with the results obtained
within the Klauder approach.

For Roa« —,
' with Eq. (9} we obtain ( V, ),+,+=4

Ry'a 'a ln(R oa ) and E„„(a) =Ry "a"[a'a
+4a ln(Roc)]. We conclude that the variational param-
eter ao is given by Re =exp[ —1 —a'ac/2]/ao, and the
binding energy is expressed as E„„(ao)= —4
Ry'a 'ac[1+a *ac/4]. These formulas become exact for
Ro/a —+0 and show that the binding energy of the
ground-state impurity level becomes logarithmically
divergent for a small wire radius. ' From the numerical
results for ( V& ),+,+, shown in Fig. 2, we conclude that

the condition R pap «
&

is fulfilled in the limit
Ro/a*~0. For aoa'=3 we find Ro/a'=0. 027 and
E„„(ac)=—21 Ry'. With Eq. (9} we obtain aoa'=3. 7
and E„„(ao)= —26.6 Ry' for Ro/a *=0.027. This indi-
cates the small range of validity of the asymptotic expres-
sion for Rpap« 2.

In Fig. 3 we show E„„(ao)and ac for the ground-state
impurity level versus the wire radius. Our variational re-
sults are in good agreement with results obtained in the
separable potential approximation, ' and with the numer-
ical results of Ref. 13. With decreasing wire radius the

0
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FIG. 2. ( V~ ) + + and ( V, ) vs 2Roa and 2ROPaccord-

ing to Eqs. (9) and (11),respectively. The dotted lines represent
the analytical results for Roa & z and ROP & —'.

0.&

Q.()5 Q.l 0.5 5

Rp/a
FIG. 3. Ground-state energy E„„(solid line) and variational

parameter ao (dashed line) for the 1+ state of the first subband
vs wire radius Ro according to Eq. (9). The solid dots are nu-
merical results of Ref. 13.
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binding energy increases, as has been found before. "
Note that the numerical results' show a somewhat larger
binding energy than our analytical results within the vari-
ational approach.

We conclude that the variational wave function un-

derestimates the binding energy if compared with the nu-

merical results of Ref. 13. For 6-doped GaAs, where the
confining potential is similar to V, (z), a wave function as
in Eq. (8) for the envelope wave function in the z direc-
tion was used. '

C. Impurity levels: excitedbound states

(10)

Clearly, due to the z symmetry, ($2—(z)~g, +(z)) =0.
For the kinetic energy we derive (T~ )2 =Ry*a* P .

For the potential energy ( Vi )i- ~
—= ( p2 —

l Vi (z ) I p~- )

we find

For the first excited bound state we suggest the varia-

tional form
(z) =(2P )'~ z exp( —P~z~ ) = —P (

—z) .

( V, ) =Ry~ —'(2Rop) f dx x exp[ —2Ropx](x +5x /2+15x/8 [1+x ]
0

The x integral in Eq. (11)can be calculated analytically in
terms of Struve and Bessel functions. However, we found
it more convenient to work with the integral form.
( V, ) versus 2ROP is shown in Fig. 2.

For ROP« —,
' we find ( V, ) = —2 Ry'a*P and

E„„(P)=Ry"a"P[a'P—2]. The minimum of E„„(P)is
found for Po= 1/a". We conclude that for Ro/a*~0
for the first excited bound state f (z) we obtain the en-

ergy E„,(P )o/ Ry'= —1. This result is in agreement
with the numerical calculation in Ref. 13.

With Eq. (11) and for Ro=a', we find /30=0. 72/a'
and E„„(Po)= —0.73 Ry'. Within the Klauder ap-
proach and for small impurity density, we find

P=0.72/a " and E (2 )
——0.53 Ry' for Ro =a * (see

Sec. IV). E„„(Po)and Po versus Ro is shown in Fig. 4, to-

gether with numerical results of Ref. 13. Very good
agreement is found between our variational approach and

1+4y/ao+6y /ao
(T, ),+,+=Ry*a"'y'

1+y /ao
(12a)

and for the potential energy we find

the numerical work. ' The variation of E„„(PO)with Ro
follows the variation of poa with Ro. This is a conse-
quence of ( V, ) = —2 Ry'a 'P[1—0 (ROP) ]. We

mention that, contrary to the ground-state impurity level,
the first-excited-state impurity level has a finite binding
energy even for Ro/a "~0.

For the second excited state P +(z) we suggest

P +(z) =g +( —z) [(z~+ A]exp( —
y ~z~ ). The condition

(P +(z)~g, +(z)) =0 implies that A = —1/(a+y), and

the condition (g (z) it +(z)) =0 is fulfilled due to the

symmetry. The corresponding expression for the kinetic
energy is

(1+y/ao)
( V ) =Ry* —"(2Roy) dx exp[ —2Royx]

Ro 1+y /iz 0

X[x —1/(Roao+Roy)] (x +5x l2+15x/8 —[1+x ] ) . (12b)

( V, ) + + versus 2Roy is shown in Fig. 5 for Roao=0.82 This value for ao corresponds to Ro=a'. Note that

( V, ) + + is more negative than ( V,);however, the binding energy for the 2 state is smaller than for the 2
2+2+

state, as can be seen in Fig. 6.
For the 2 bound state, E„„(yo)and yo according to Eq. (12) versus Ro is shown in Fig. 6. For Ro=a' we find

E (2+ ) ——0.326 Ry* and y =0.31/a *. Within the multiple-scattering approach (see Sec. IV), we obtain

E (2+ ) ——0.24 Ry* and y =0.48/a '.
For the third excited bound state we use the odd wave function P (z) ~z[~z~ —B]exp( —5~z~) with the variational

parameter 5. The condition (g (z)~P (z)) =0 implies that B =3/(@+5). We find

1 —5/$0+75 /po
T, ) =

—,'Ry'a* 5
1 —5/go+5 /Po

and for the potential energy we find

(13a)
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TABLE I. Wave functions in the z direction f +(z) and their squared Fourier transforms
~ P +(k) ~

for n=1, 2, and 3.

g +(z)

1(,+(z) ~exp( —a~z~)

(z) ~ z exp( —
p~z~ )

k
(k) '

[P'+ k 2]

1(,+(z) ~ [(a+y))z~ —1]exp( —y ~z()

(z) ~z [(P+5)(z( —3]exp( —5)z()

@,+(z) ~ [C+D/IzlI+z']exP( rilzl )—

y2+k2 4

k2[k2 —k2 ]2

[52+k']'

[k4—2k2„k2+k4 ]2

+k'1

I2
* (1+5/PII)

( VI )3 =Ry'
—,', (2Rp5)' f dx x exp[ —2Rp5x]

Rp '
1 —5/Pp+5 /Pp

X [x —3/(R pap+ R p y ) ] (x +5x /2+ 15x /8 —[1+x ]

(13b)

( VI ) versus 2Rp5 is shown in Fig. 5 for RpPp=0. 72.
For the 3 bound state E„„(5p)and 5p, which minimizes

E„„(5),versus Rp are shown in Fig. 6. For Rp =a" we

find E(3 )-—0.156 Ry' and 5p=0. 25/a'. Within the
multiple-scattering approach we obtain (see Sec. IV),
E(3 )-—0.08 Ry' and 5=0.34/a'.

The fourth excited bound state is characterized by
$34.(z) ~ [z +C~z~+D]exp( —

2I~z~) with the variational

parameter 2). With the conditions ( g +(z)
~ 1(,+(z) )

= ( 1( +(z)
~ lt +(z) ) =0, the coefficients C and D are deter-

rnined. The results for the wave function g +(z) for

n =1—3 are summarized in Table I.

D. Impurity levels: second subband

The preceding results for the binding energy have been
derived for the first subband. Similar calculations can be
made for the second subband by using V2(z) instead of
V, (z). We do not give the explicit expressions for

(Vz)2+2+, (Vz)2 2-, (V2)2+2~, and (V2)3 3
in this

paper. However, we mention that ( T2 ),+,+

I I+I+ 2 2-2- I 2-2-' ( 2 2+2+

Numerical results for binding energies of the 1+ state,
the 2+— states, and the 3 state of the second subband
versus Ro are given in Fig. 7. The binding energies for
the second subband are somewhat lower ((10%%uo) than
for the first subband, as already noted in Refs. 10 and 13.
For the excited states with n & 3 and which are not very
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FIG. 4. Excited-state energy E„„(solid line) and variationa1
parameter Po (dashed line) for the 2 state of the first subband
vs wire radius Ro according to Eq. (11). The solid dots are nu-
merical results of Ref. 13.

FIG. 5. ( V, ) + + according to Eq. (12b) with a0=0.82/a
vs 2Roy and ( V, ) according to Eq. (13b) with

Pa=0. 72/a vs 2Ro5 for the first subband.
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Qg

K
0

~~ 0.2

pg Cf

0
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0-2

localized in the z direction, the binding energies for the
two subbands become numerically very similar. This
comes from the fact that V, (z »Rc)= V2(z »Rc)= —2
Ry"a'/(z/.

E. Fourier-transformed wave functions

An investigation of the squared Fourier transform of
the eigenfunctions is useful not only to analyze the spec-
tral density, but also to investigate the general behavior
of the hydrogen system is connection with our variational
approach.

The Fourier transform of f,+( )zis given as Pi+(k),
and we get

Q 3

fl( +(k)('=—
1 ~ [ 2+k 2]2

(14)

The half width of
~ f, +(k) ~

is given by
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FIG. 7. Second subband: binding energy E„„vswire radius

Ro for the ground-state impurity level 1+ [E„,„{ao)]aud the
excited-state impurity levels 2 [E {po)] 2 [E„{p)]l, and

3 [E„„{5O)].
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FIG. 6. Excited-state energies E„„for the 2+ state [E„„{yo) ]
and the 3 state [E„„(5o)](solid lines), and variational parame-
ters yo and 60 (dashed lines) vs wire radius Ro for the first sub-
band according to Eqs. (12) and {13),respectively.

k, &2=a[2'~ —I]'~ =0.643a. For large wave numbers
we find ~l(, +(k~ao)~ ~1/k for the ground state. For
the two- and three-dimensional hydrogen atom, for the
ground state one obtains ~it„(k)~ CC 1/[1+a* k /4]'
(Ei, = —4 Ry*) with ~it i, (k ~ ~ )

~

~ 1/k and

I gi, ( k) I' ~ I /[ I +a "k')' (E„=—1 Ry" ) with

~g„(k~ ~ ) ~

~ 1/k, respectively. For large wave
numbers, this suggests the following dependence on the
dimensiond ~g„(k~~)~ ~1/k "+ '.

For 1( (z) we obtain ~l( (k)~ =16p k /n[p +k ] .
We 6nd the following limiting behavior:
~ltt2-(k —+0)

~

~ k for small wave numbers and

~g2-(k~~)~ ~1/k for large wave numbers. The max-

imum of ~l( (k)~ is at k2 =p/3' =0.577p. For the

g +(z) bound state (see Table I) we find ~g +(k2c)~ =0 at

k2o=y/(I+2y/a)' and jl( ~(kazoo )~'~1/k . Simi-

lar results can be obtained for the excited bound states 3
and 3+; see Table I. We obtain ~g (k3c)( =0 at

k30=(3P5/[4(1+P/45)]}' . We mention that
1/2-(k~0)l ~k and ~$2 (k~ao)~ CC 1/k . The excit-

ed bound state 3+ is characterized by ~l(3+(ki~ )
~

=0 at

[k3i +(k3i k32 ) ) ~ k3i ail'd k32 are given, via

the orthogonality condition with the states 1+ and 2+, in
terms of a, y, and rl. We obtain ~g +(k~0)~ ~ k and

F. Wave functions: generalbehavior

The general expression for the bound-state wave func-
tions (see Table I) is f +(z) ~ P„ i +(z)exp( —~z~/a g),
where P„,+(z) is a polynomial of order n —1 in the
variable z, even for the (+) state and odd for the (

—)

state. a + is found to be of order na ' (see Sec. IV B). In

our system the number of nodes is determined by the
zeros of P„,+(z).

The general behavior for the excited states in the hy-

drogen atom in d dimensions is

ll(„i(k~~)l ~1/k + +" with l=0, 1, &2n —1.9 If
we identify t=0 (s states) with (+), namely 1+, 2+,
3+. . . , and I= 1 (p states) with ( —), namely 2

3, . . . , this behavior also holds for the quasi-one-
dimensional hydrogen atom (see Table I). From this di-
mensional analysis of the Fourier-transformed wave func-
tion we conclude that the variational form of the wave
function is a good approximation to the exact solution.
However, while the hydrogen atom in three and two di-

mensions can be solved analytically, this is not the case
for quasi-one-dimensional cylindrical wires. Therefore,
we believe that our simple variational approach is of in-
terest not only for the spectral density analysis, as will be
discussed in Sec. IV, but also for some general aspects of
the hydrogen atom in d dimensions.

IV. IMPURITY BANDS

In this section we present our results for the density of
states of the impurity bands in the weak screening limit
N &(¹and in the full screening limit X =N;. We study
the DOS, the spectral density, and screening effects.
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A. Weak screening: density of states

The DOS versus energy for ¹

= 1 X 10 cm
N=1X10 cm ', Ro=a', and R=O is shown in Fig. 8.
We found not only the ground-state impurity band (1+ )

(see inset in Fig. 8), but also the first four excited-state
impurity bands (2,2+,3,3+). The energy ordering for
(1+,2,2+,3,3+) is in perfect agreement with theoreti-
cal results of a variational calculation for a single impuri-
ty, ' and with our general discussion in Sec. III.

In our calculation the five bound states are character-
ized by their mean energies E (1+ ) = —2.65,
E(2 )= —053, E(2+)=—0 24, E(3 )= —008, and
E (3+ ) = —0.04 Ry', see Fig. 8. Within a variational cal-
culation for a single impurity, ' the values —3.2 Ry'
(1+) and —0.75 Ry' (2 ) have been reported. Our re-
sults for the binding energies within the Klauder ap-
proach are about 20% smaller than the variational results
reported in Ref. 13. This discrepancy is presumably due
to the use of a finite impurity density and a finite screen-
ing effect in our multiple-scattering calculations. Indeed,
both effects tend to lower the binding energy. However,
in two-dimensional systems we found very good agree-
ment between the impurity energy levels in the
multiple-scattering approach and the variational re-
sults. 4'

In two-dimensional systems we found numerically
three impurity bands in the weak screening limit. Five
impurity bands have been identified for the quasi-one-
dimensional system; see Fig. 8. The origin of this larger
resolution is presumably the fact that in one-dimensional
systems the distance between the energy levels is larger
than in two- and three-dimensional systems. In three di-
mensions the weak screening limit (N~O) has not yet

0.08

been studied, and no separate excited-state impurity band
has yet been identified.

B. Weak screening: spectral density

In the low-density limit the spectral density is given
b 6

A(kE) =zip;(k)l 5(z E;')1—.1

l

(15)

0.5
I

ka"

1.0
I

1.5

0.5 0.5

O
C

p5QJ ~

I 0
l

eg E=-0.24Ry
cj
C
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( ) represents the impurity configuration average,
and the sum over i runs over the eigenstates. L is the
length of the wire with L~co. We have studied the
spectral density A (k, E) vs the wave number. The results
for certain energies are shown in Fig. 9 for N; =1X10
cm ', Ro=a*, and R=O as solid dots. The energies
chosen correspond to the center of the various impurity
bands. The maximum of the spectral density has been
normalized to 1.

~ g +(k)
~

according to Table I versus k
is shown in Fig. 9 as the solid lines for n=1, 2, and 3.
Their absolute maximum has been normalized to 1 in or-
der to compare ~P y(k)~ with the spectral density. For
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FIG. 8. Density of states (DOS) vs energy for Ro =a *,R =0,
N;=1X10 cm ', and N=1X10 cm ' (weak screening) in the
regime of the impurity band with the ground state 1+ (inset) and
the excited impurity bands 2, 2+, 3, and 3+. The arrows in-
dicate the bound-state energies for N; ~0.

FIG. 9. Variational wave function ~g„y(k)~' according to
Table I vs wave number k as solid lines. Numerically calculated
spectral density A(k, E) vs wave number for Ro=a*, R=O,
N; =1X10 cm ', and N=1X10 cm ' (weak screening) for
the ground-state impurity band 1 and the excited-state impuri-
ty bands 2, 2+, 3, and 3+ as solid dots. The variational pa-
rameters are a= l. 12/a*, P=0.75/a, y=0.48/a
5=0.34/a, and g =0.32/a with k &/2 =0.72/a *,
k2 =0.43/a*, k~0=0. 35/a, k» =0.35/a*, k» =0.40/a
and k» =0.36/a*.
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two-dimensional systems such as analysis has already
been performed in the limit of low impurity density.

The parameters a, P, y, 5, and q for ~f +(k)~ in Fig. 9

are determined by a fit to the numerical results for the
spectral density for certain wave numbers. For the
ground-state impurity band 1+ we used the half-width of
the spectral density: k»za'=0. 72; see Fig. 9. With
k, &2

=0.64', we obtain o.'=1.12/a *. The spectral densi-

ty of the 2 impurity band has a (numerically deter-
mined) maximum at k2 a ' =0.43. Applying
k2 =0.58P we derive P=0.75/a'. For the 2+ impurity
band we find numerically kzoa

*=0.35. With
y=kzp[1+(I+a /k2p)' ]/a, we obtain y=0.48/a'.
The 3 impurity band has a vanishing spectral density
for k3pa* =0.35. With 5=2k 3p[1+(1+3@/
4k,„)' ]/3P, we derive 5=0.34/a'. For the 3 impuri-

ty band we get k&& =[(k +k + )/2]' and

k32=(2k3 k3+ )' . With k =0.12/a and

k + =0.55/a* from our numerical results for the spec-
tral density, we find with g=0.32/a' the best fit of
~g +(k)~ to the spectral density.

The coefficients I/a=0. 89a *, 1/P= 1.33a ',
1/y=2. 08a', 1/5=2. 94a', and 1/rj=3. 12a" describe
the extension of the wave function in the z direction. We
conclude that the extension increases with increasing
quantum number n. This is consistent with the energy
ordering of the impurity bands found numerically; see
Fig. 8.

The good agreement found between the spectral densi-
ty and the squared Fourier-transformed wave functions
(see Fig. 9) confirms the symmetry of the states and their
energy ordering. Our results for the ground-state impuri-
ty band agree quantitatively. For higher quantum num-
bers n & 2 small deviations are seen for larger wave num-
bers. This is expected because our analytical results for
the wave functions are not exact. Nevertheless, the good
agreement is very important because it gives strong evi-
dence that our computational routine is correct.

N, ya'= f (N, n ), (17)

with f(N=1X10 cm ', 1+)=0.1. This value is smaller
than the Mott density for three-dimensional systems
N, a*=0.25, if the N, " scaling law is used. For
quantum wells of width L =a* and 3a* with impurities
in the center of the well, we found N, ,' a*=0.28 and 0.1,
respectively. ' In fact, we expect that in general
N ~a'=f(Rp, R,N, n*), and that f(Rp, R, N, n+) de-

creases with increasing Ro and increasing R.
A systematic study of the band-edge energies versus

the impurity concentration is performed in Fig. 11 for
N =1X10 cm ', where excited impurity bands are also
investigated. The dashed lines in Fig. 11 indicated a
minimum in the DOS, while the solid lines indicate a
vanishing DOS. The impurity bands for the 3+—levels are
only shown in the upper part of Fig. 11, where an en-
larged energy scale is used. For the 1+-state impurity
band we find I,+(N= 1/cm)=20 Ry" [N, a*]' [see Eq.

with I p(N, 1+ )=15 Ry' and a* =103 A. In the general
case for arbitrary wire radius and impurity position, the
prefactor I p(N, n

—+
) in Eq. (16) has to be replaced by a

function I p(Rp, R, N, n —). We expect that
I p(R p R, N, n

+—
) decreases with increasing R p and in-

creasing R.
For N,. =1X10 cm ' we obtain according to Eq. (16),

I,+/Ry' = 1.5 X 10' =4.7, which is roughly the numer-

ical value; see Fig. 10. Note that the binding energy of
the center of the impurity band E,+ = —2.0 Ry' is small-

er than in Fig. 8, where E + = —2.65 Ry'. This shift is

due to the larger electron density N =1X10 cm ' used
for Fig. 10 (more screening). If NI -1X10 cm ' corre-
sponds to the critical density N;, of the merging between
the impurity band and the conduction band, we conclude
that

C. Weak screening: width of the impurity band

I +(N)=I p(N, n )[N,a*]'— (16)

The DOS for Ro =a * and R =0 versus energy is shown
in Fig. 10 for different values of the impurity concentra-
tion N, =1X10 cm ', N;=5X10 cm ', N, =1X10
cm ', and for weak screening N=1X10 cm '«N;.
At such impurity densities the excited impurity bands
have very small binding energies and(or) have already
merged with the conduction band. Let us mention that
at the lowest impurity densities the DOS for E)0 tends
to follow the 1/E' law for the free-electron gas.

With increasing impurity concentration the width of
the impurity band increases, and for N, =1X10 cm
the impurity band overlaps with the conduction subband.
The computed impurity band width I,+ is about 1.5 Ry*
for N; =1X10 cm ', and about 3.2 Ry' for N; =5X10
cm '. It follows approximately the N law for impuri-
ty bands expected from the CPA, namely

04
~o
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D
C)

N=lxl03c~ 1

N~~1x 105cm 1

'- "" Q~Sxl04crn~
———N~~1x104cm 1

-2 0
ENERGY (Ry )

FIG. 10. Density of states (DOS) vs energy for Ro=a*,
R =0, and different impurity densities N; = 1 X 10 cm
N; =5X10 cm ', and N;=1X10 cm '. The weak screening
approximation with N = 1 X 10 cm '

( N &(N; ) is used.
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FIG. 11. Band-edge energies of the impurity bands for the 1+

impurity level, the 2+ impurity levels, and the 3+ impurity lev-

els vs impurity density N; for Ro=a, R=O, and N=1X10o
cm '. The excited impurity bands are shown in the upper part
with an enlarged energy scale. The dashed lines indicate a
minimum in the DOS, and the dashed-dotted line a shoulder in
the DOS. The conduction band is indicated by CB. The
ground-state impurity band is shown in the lower part of the
figure.

(16)], and I,+(N =1/cm)/~E, + ~

=7.5[N;a "]'~z. For the

2 -state impurity band we obtain I (N=l/cm)=6. 5

Ry'[N;a ]' and I (N= 1/cm)/~E
~

=12.3
[N;a']'~~. This indicates that ratio I' y/~E y~ increases

with increasing quantum number n.
The merging of the 1+ impurity band with the 2 im-

purity band occurs (see Fig. 11) at N, + =5 X104, cm

f (N =1/cm, 1+ ) =0.05; see Eq. (17). The merging of the
2 impurity band with the 2+ impurity band occurs at
N =5X10 cm . ', f (N= 1/cm, 2 )=0.005. Due to
the increasing extension of the wave functions with in-
creasing quantum number n, the critical density N.
for the merging decreases with increasing quantum num-
ber; see Fig. 11. From our numerical results summarized
in Fig. 11 we conclude that f (Ro, R, N, n*)
/~E y(RO, R ) ~

also depends on the quantum number, and

decreases with increasing quantum number. Let us men-
tion that in two-dimensional systems for the ground-state
impurity band we found that the ratios N...(z; )/E, (z; )

are nearly independent of the impurity position z;.
We have also studied the spectral density versus the

impurity concentration, and the results obtained for
quasi-one-dimensional wires are similar to the results ob-
tained for two-dimensional systems. Therefore, we do
not report explicit results in this paper.

P I I I I I 1 I

O1 )Oo )O1 )OP )O3 )O& )O5 )O6

N(cm &)

FIG. 12. Ground-state impurity band energy vs density N for
Ra=a*, R=O, and N; =1X10' cm '. The solid lines corre-
spond to the band edges calculated in the fifth Klauder approxi-
mation. The hatched area describes the width of the impurity
band. The dashed and dotted lines are theoretical results for a
single impurity from Refs. 10 and 17, respectively.

D. Screening e8ect for the binding energy

We have calculated the impurity band for the ground
state versus electron density for N, = 1 X 10 cm
Ro=a*, and R=O. Our results are shown in Fig. 12.
With increasing density the energy of the impurity band
decreases due to screening. However, we notice that for
N ) 1 X 10 cm ' the energy increases again with increas-
ing density, and we find a well-pronounced minimum
around X-1X10 cm '. This effect is already known
for a single impurity, and the results of these calculations
are shown in Fig. 12 as dashed' and dotted' lines. We
mention that this behavior is a peculiar effect due to the
quasi-one-dimensional structure studied in this paper. In
three dimensions the binding energy of the ground state
decreases with increasing density and vanishes at a cer-
tain electron density (the Mott value ). In two dimen-
sions the binding energy depends on the well width and
becomes constant for large electron density. The in-
crease of the binding energy at large electron densities is
a consequence of the structure of the dielectric response
in one-dimensional systems, which reflects the effect of
the confinement.

It is interesting to note that for N &1X10 cm ' the
bandwidth decreases with decreasing binding energy (in-
creasing density), while for N ) 1 X 10 cm ' the band-
width is unchanged when the binding energy increases by
a factor 5 between 1 X 10 cm ' (N & 1 X 10 cm

V. BAND TAILS

In this section we present results for large impurity
densities. In this density range the various impurity
bands have already merged with the conduction band,
and the DOS is described as a band tail. However, the
study of the spectral density clearly indicates that disor-
der effects are still very important.
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A. Density of states and spectral density

For large impurity concentrations a band tail in the
DOS is obtained. A representative result for
X, =X=1X10 cm ', Rz=a*, and R=O is shown in

Fig. 13. The density of states of the one-dimensional
free-electron gas is written as p' '(E) =(I/Ry*a*)
(Ry*E)'~~/vr Th. e p' '(E) ~ I/E'~ singularity for energy
E~O is destroyed by disorder. States near E-0 are
shifted to negative energies, and this gives rise to states in
the band gap. The energy range c., of this disorder-
induced band-gap renormalization is shown in Fig. 13.
The Fermi energy cz is weakly shifted by disorder effects;
see Fig. 13. We note that the density of states at the Fer-
mi energy is slightly reduced by disorder,
p(eF ) (p '(eF '), but the slopes of the DOS around e~ and
c.~

' are very different.
The spectral density A (k, EF ) for N, =N = 1 X 10

cm ', R~=a*, and R=O is shown in Fig. 14. For the
electron gas without disorder the spectral density
A (k, E) ~5(E —k /2m*) is described by a 5 peak at
k =(2m "E)'~ . It is evident that disorder effects are very
strong, as seen in Fig. 14: they result in a broad spectral
density with a smooth peak shifted toward k =0.
Without disorder the 5 peak of the spectral density in
Fig. 14 is at kF=1.84/a*.

The real part X'(k, eF ) and the imaginary part
X"(k,EF) of the self-energy at the Fermi energy eF=3.4
Ry* versus the wave number are shown in Fig. 15 for the
same parameters as used in Fig. 14: X, =X=1X10
cm ', Rz=a*, and R=O. We note that for ka' &1 the
self-energy components at the Fermi energy are of the
same order as the Fermi energy; X'(k =O, eF)=2.3 Ry*
and 2"(k =0,e~) =2.0 Ry*. For large wave numbers the
self-energy becomes small. At the Fermi wave number
kF = l. 84/a *, we find 2'(kF, ez ) =0.29eF and
X"(kF,eF)=0.85eF. This indicates that disorder effects

"O

N 0.8
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0 2 3 4 5

are very important for an understanding of the spectral
density and the DOS in quasi-one-dimensional systems.
We note that both X'(k, ez) and X"(k,e„) are strongly
dependent on the wave number up to ka* =5. This result
reflects the long-range random potential (Coulomb poten-
tial). This contrasts with the tight-binding CPA, where
the self-energy is independent of k.

B. Band-gap renormalization

In Fig. 13 we have indicated the band-tail edge c, . The
energy c, measures the reduction of the band gap due to
the conduction-band lowering by disorder. A systematic
study of c, versus N =N, is shown in Fig. 16 for R z =a *

and R =0. Our numerical results are well described by

FIG. 14. Spectral density A (k, c+) at the Fermi energy cF vs
wave number k for Rp=a*, R=O, and N;=N=1X10 cm
(same values as in Fig. 13) as solid line. The dotted line is the 5
peak for the free-electron gas at k =(2m *c,z')'

e, = —8.0 Ry'[N/10 cm '] (18)

I I l 1 1
'. l l l l

Equation (18) is represented by the solid line in Fig. 16.
We mention that the prefactor in Eq. (18) will depend on
the position of the impurities R, and will decrease for im-
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FIG. 13. Density of states (DOS) vs energy E as solid line for
Rf}=a*,R=O, N, =1X10 cm ', and N=¹ (full screening).
The dotted line represents the DOS of the free-electron gas. c,
describes the band-tail energy edge induced by disorder. The
Fermi energy c,F of the disordered electron gas and the Fermi
energy c.'F ' of the free-electron gas are indicated.

ka
FIG. 15. Self-energy components X'(k, cF) and X"(k,cF) at

the Fermi energy c.F vs wave number k for R~) =a*, R =0, and

N, =N=1X10 cm
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FIG. 16. Renormalization energy c, of the conduction-band
edge for Ro=a, R=O, and N =¹vs electron density N as
solid dots. The solid line represents Eq. (18).

teracting electrons. Experimentally, the transport prop-
erties of quasi-one-dimensional systems are presently un-
der study, and it seems that the conductivity can be quite
large. Shubnikov —de Haas oscillations and a finite con-
ductivity have been observed in experiments with quasi-
one-dimensional systems. Therefore, we think that our
two approaches for the screening are justified.

Our calculations are performed in the fifth Klauder ap-
proximation which corresponds to a self-consistent t-
matrix approximation. Multiple-occupancy corrections,
which become important at large impurity density, are
neglected in this approach. It is estimated that these
corrections are still smail for densities where only the
lowest subband is occupied; see the Appendix in Ref. 3.

purities located outside the axis of the wire. For increas-
ing wire radius the prefactor in Eq. (18) will decrease.

We conclude that disorder produces a very large band
tail in quasi-one-dimensional systems when compared
with two-s or three-dimensional electron gases. For ex-
ample, for GaAs quantum wells of width I.=a ' with im-

purities in the center of the well, we found c.,= —1.3
Ry' [N/10" cm '] ' . For three-dimensional systems
the behavior c, ~ —N' was found. In general, one ex-
pects s, ~ N" with —v= 1/d. d is the dimension of the
system. Our value v=0.8 for wires [see Eq. (18)] is small-
er than expected due to the finite cross section.

VI. DISCUSSION

In this section we discuss our theory and results. Some
comparison with existing theories is made. It will be-
come clear that our theory is semiquantitative. However,
the qualitative aspects of the theory are correct. We shall
discuss some peculiar features of the quasi-one-
dimensional system studied in this paper.

A. Model and theory

In our calculation we used an infinite barrier
confinement. In real structures the barrier height is
finite, and the wave function will penetrate into the bar-
rier. This gives rise to a reduction of the bound-state en-

ergies, as has already been discussed in various publica-
tions. Our one-subband approximation implies that the
Fermi energy is smaller than the intersubband energy
E2sa —EisB=10 Ry'(a'/Ro) . With N a" =4ez/m.
Ry' and Ro =a ', the condition for the Fermi energy is

cz & 10 Ry', and for GaAs the electron density must be
smaller than N =2.0X10 cm

We used two approximations for the screening. For
small impurity density we applied the random-phase ap-
proximation (RPA) in the week screening limit where
N &(N;. Within this approach we considered the elec-
trons as localized. For large impurity density we applied
the RPA in the strong screening limit where N=N;.
Clearly, this approach corresponds to nonlocalized elec-
trons. Theoretically, it is well known that one-
dimensional systems are always localized in the limit of
vanishing temperature. However, the latter result was
derived for a short-range random potential and nonin-

B. Impurity levels and impurity bands

We have seen that binding energies decrease with in-
creasing wire radius. Clearly, for Ro~ ao one would ex-
pect to recover the energy levels of a three-dimensional
hydrogen atom. However, this limit is not included in
our approach, since the electron motion in the cross sec-
tion of the wire is solely described by the envelope wave
function for the confinement. Moreover, for the cross-
over to the three-dimensional hydrogen atom the energy
distances between the subbands of the wire become very
small, and all subbands must be taken into account.

However, from our notation of the states in the wire
(subband, n

+—} we can already identify the relation be-
tween the states in the quasi-one-dimensional and the
three-dimensional hydrogen atoms. The impurity levels
in the one-dimensional hydrogen atom transform into the
impurity levels of the three-dimensional hydrogen atom
when the wire radius becomes large: Ro~ ao. From the
symmetry and the degeneracy of the impurity levels in
the quasi-one-dimensional system, this transformation
can be studied, and the results are shown in Table II.
Our classification is in agreement with earlier results
given in Ref. 13, where the bound-state energies of the 1+
and 2 states of the first (ls and 2p, ) and second sub-
bands (2p„and 3d„,}have been discussed.

In our numerical calculations within the multiple-
scattering approach, we have only treated the impurity
bands of the lowest subband. The Klauder approach can
also be applied to the second subband since the electron-
impurity interaction potential is available in analytical
form. ' From Fig. 1 it is already clear that the impurity
levels for the second subband have a lower binding ener-

gy than the impurity levels for the first subband. Numer-
ically we confirmed this fact in Figs. 3, 4, 6, and 7.

No experimental data for impurity levels in quasi-one-
dimensional systems are available to date. However, we
expect that such data will emerge soon, and our results
presented in this paper should be useful in order to classi-
fy the states. In general, one can say that the binding en-
ergies in one-dimensional systems are much larger than
in three- and two-dimensional systems.

C. Impurity band and band tail

With Fig. 10 we have estimated the critical density
~ for the merging of the impurity band with the con-
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TABLE II. Notation for the wave functions of the hydrogen
atom in the wire and in three dimensions.

Subband State

1+

2
2+

3
3+
4

Wire
Degeneracy

Three dimensions

1$

2pz
2$

3pz
3$

4p

1
+

2
2+

3
3+

+1
+1
+1
+1
+1

2px~2py

3dxz p 3dyz

3px~3p'y

4d„,4dy,

4px, 4py

1+

2
2+

3
3+

+2
+2
+2
+2
+2

3dxx ) 3dyy

4dxxz ) 4dyyz

4dxzz ~ 4dyzz

5dxxz, 5dyyz

Sdx„,5dyzz

1+

2
2+

3

3d-
4dxyz

4d„
5dxyz

D. Band tail: single-particle relaxation time

In the Born approximation a simple relation can be de-
rived between the single-particle relaxation time
determined by the self-energy as

1/r, =2"(k =k, EF ) /2, (19)

and the transport relaxation time ~„determined by the

duction band. If the impurity band is completely filled,
this density would correspond to the metal-insulator
transition. However, we note that our theory for the
Green function and the density of states cannot give full
information for an Anderson transition which may occur
in a partially filled band due to strong disorder. More-
over, the spin degeneracy of the impurity band is not con-
sidered in our approach. Therefore, the position of the
Fermi energy in the weak screening limit was not dis-
cussed. In the strong screening limit we used a spin-
degeneracy factor of 2 for the band tail in order to deter-
mine the Fermi energy.

Our estimation for N +, as given in. Eq. (17), corre-
7

sponds to the merging of impurity and conduction bands.
The numerical value should not be taken too seriously.
However, our calculation indicates a transition from the
impurity-band regime to the band-tail regime for quasi-
one-dimensional systems with a finite concentration of
charged impurities. Note that within a multiple-
scattering approach applied to a 5-function random po-
tential, such a calculation has already been done by
Klauder and more recently in much more detail in Ref.
36.

mobility (or the resistivity). k is the wave number for
which A (k, eF ) exhibits a maximum. These two scatter-
ing times are not identical, because only backscattering
(large-angle scattering) contributes to the resistance
(determined by the transport relaxation time), while
small-angle scattering and large-angle scattering contrib-
ute equally to the single-particle relaxation time. These
have been studied in two-dimensional systems (for a re-
view, see Ref. 46) and they give information about the
kinds of disorder present in the system. In one-
dimensional systems the ratio ~, /~, & 1 has also been re-
cently discussed.

For Ro=a*, R=O, and N =1X10 cm ' for GaAs
wires, the ratio ~, /~, =6 was given. For the mobility
we derived @=5X 10 cm /Vs. ' We conclude that
1/r, =21 meV =3.7 Ry*. From Fig. 15 in the fifth

Klauder approximation, we obtain 1/r, =X"(k
=k, EF)/2=1. 45 Ry', and we conclude that the Born
approximation gives a rough estimate of disorder effects
in quasi-one-dimensional systems. A similar overestima-
tion was found for the single-particle relaxation time in
two-dimensional systems by comparing the Born approxi-
mation with the self-consistent Born approximation.

In Ref. 35 an analytical formula was derived for the
DOS in the presence of disorder. Using Eq. (15a) in Ref.
35 for eP', =1.7 (eIP'=2.4 Ry*; 1/r, =1.45 Ry*), we

find p(eF )/p' (e~') =0.967. From Fig. 13 we find

p(EF ) /p' '(eF ') =0.97. This result confirms that the
analytical results for the DOS, given in Ref. 35, can be
used to estimate disorder effects.

VII. CONCLUSION

The wave functions of a single Coulomb impurity in a
cylindrical quantum wire have been studied within a vari-
ational approach. Analytical results for the variational
equation have been obtained and implemented numerical-
ly. The squared Fourier-transformed electron wave func-
tions determine the spectral density of the particle.
Within our variational approach we calculated the wave
functions in k space, and found good agreement with a
numerical calculation based on the fifth Klauder approxi-
mation. The general behavior of impurity levels for
charged impurities in quasi-one-dimensional systems has
been presented.

The ground-state impurity band and the excited-state
impurity bands for a small impurity concentration, as
well as the band-gap renormalization for a large impurity
concentration for charged impurities located in the
center of the wire, have been studied within a multiple-
scattering approach. The width of the impurity bands
and the band-tail formation were interpreted as the result
of overlapping wave functions in a random medium of
charged centers. The conduction-band edge is found to
be strongly renormalized by disorder. We conclude that
the effects of disorder for the electron states are large and
possibly important for the interpretation of measure-
ments.

We have presented a systematic study of disorder
effects for quasi-one-dimensional structures. We expect
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that our results are important for a better understanding
of disorder effects in (artificial) semiconductor quantum
wires ' and also for (natural) organic one-dimensional
conductors. ' Both systems are presently studied with
very great intensity in theory and experiments. Some of
the results presented here have been briefly outlined in a
recent paper.

Finally, it is important to remember that information
about the density of states can be obtained by capacitance
measurements. Recent experiments with quantum
wires ' ' were focused to determine the subband-energy
distances. With present state-of-the-art technology it is
still diScult to reach the quantum limit with only one
subband occupied. However, we believe that capacitance

measurements could be a very useful tool to determine
the effects of disorder to the density of states.
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