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Wave instability in semiconductors without negative differential conductivity
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A traveling-wave instability at finite critical wave number is found in extrinsic semiconductors
at the onset of impact ionization. A condition for this instability is a strong increase of the carrier-
generation rate as a function of the electric field, e.g. , due to a sufficiently low ionization energy of
the impurities. The linear instability of the uniform steady state is discussed for a simple model, and
traveling waves are shown to exist by solving numerically the basic partial differential equations.

A model for extrinsic semiconductors at low temper-
atures is presented, and an instability of the uniform
state against perturbations of finite wavelengths and &e-
quencies is found. This instability is not associated with
negative differential conductivity (NDC), and it provides
an alternative explanation of recently observed current
instabilities at the onset of impact ionization at low
temperatures. ~

The complexity of charge transport in semiconductors
driven far &om equilibrium leads to a large number of
possible mechanisms causing instabilities of the uniform
stationary current-carrying state. Hence, current insta-
bilities represent important examples of a great variety
of typical nonlinear phenomena as self-sustained oscilla-
tions, chaotic dynamics, pattern formation, etc. Besides
being technically useful, nonlinearities in semiconductors
also provide simple experixnental illustrations of several
theoretical results in the Geld of nonlinear dynamics.

A widespread classification of current instabilities is
based on the shape of the current-field characteristic,
j (E), of the uniform state, j and E being the current-
density and the electric Geld, respectively. This is be-
cause many of the known cases are associated with
NDC, where the characteristic has a part with a negative
slope, o = dj (E)/dE ( 0. Usually, NDC is divided in the
two cases of N and S-shaped -characteristics (NNDC and
SNDC, respectively). NNDC arises from a zero of the
differential conductivity cr at instability and corresponds,
under current control, to a saddle-node bifurcation of the
electric field E; NNDC can give rise to spatially uniform
oscillations or to longitudinal space-time structures, e.g. ,
electric high-field domains. On the other hand, SNDC
is characterized by a pole of the differential conductiv-
ity and corresponds, in the voltage-controlled case, to
a saddle-node bifurcation of the current. At an SNDC
instability the magnetic-flux diffusion constant (goo')
where p,o is the magnetic permeability, has a zero; this
leads to the undamping of transverse Huctuations. ' It is
important to note that it is the kind of the connection to
the external circuit which determines the actual behav-
ior of the system. In current-controlled semiconductors
exhibiting SNDC, for example, stable current filaments
can exist; in the voltage-controlled case, on the other
hand, hysteresis of uniform states is expected.

Semiconductors dominated by ixnpact ionization often
show SNDC behavior caused by avalanche breakdown. '

Btrio + g 8~1 = f (alp, rig, E) = —Bing
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In contrast, in this paper an ixnpact-ionization current-
instability without NDC is investigated, where the uni-
form state turns out to be unstable against longitudinal
waves with finite wave numbers. Other types of current
instabilities without NDC can be found in, e.g. , Refs. 5
and 10. The model is constructed in the &amework of
generation-recombination (g r) kine-tics of hot carriers; it
is similar to some models in Refs. 2 and 9, where, how-
ever, traveling-wave instabilities at finite critical wave
numbers in semiconductors with single-level impurities
and without NDC have not been investigated.

Consider a bulk semiconductor doped with shallow
identical single-level impurities (donors or acceptors) of
density N. The sample is kept at low lattice temper-
atures in order that only carriers originating &om im-
purities contribute to the conduction (extrinsic conduc-
tion). The description of current transport is based on
Maxwell's equations for the electric field E and on a set of
transport equations for appropriate transport variables.
A hydrodynamic approach leads to four transport equa-
tions for the carrier density no, the density of occupied
impurities nd, , the mean drift velocity u and the mean
carrier energy W, respectively. Assuming fast momen-
tum and energy relaxation compared to carrier recombi-
nation, the carrier density no and the density of occupied
neutral impurities ng become the only relevant dynamic
transport variables, while u and TV are eliminated adi-
abatically. At low lattice temperatures elastic impurity
scattering is the relevant scattering process; hence, mo-
xnentum relaxes faster than energy giving rise to hot car-
riers. In the specific model given below, impact ioniza-
tion is assumed to increase as a function of the carrier en-
ergy being approximated by the relation W = q7. pE,
where q, p and w are the charge, the mobility and the
energy relaxation time of the carriers, respectively.

We prescribe a total dc current in x direction by
Jt &

——f dy dz j, and restrict ourselves to longitudinal
structures in this direction. Current control is achieved
by connecting the sample in series to a large load resistor
R and dc-bias voltage RJtot.

The basic equations are
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where the total current per area J serves as the control
parameter. For the sake of simplicity, the electric perme-
ability t, the mobility p and the diffusion constant D are
assumed to be constant. After the elimination of nd with
the help of Poisson's equation (3) and the transformation
to dimensionless variables, one obtains

0.6

t-

C5

0.3—

8~no = c) no —0 (noE) + f(no I —no + rtcI*E, E)

g&E = J+ no —noE
(5)

(6)
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where the following rescaling is used: t m v.„t,,
z M v'r Dz, npd M Nnpg, f w (N/7 )f, E
(gD/~„/IJ, )E, and J ~ qNQD/7. „J,with ~„being the
recombination time. Further, rt = 7 /7„, where the di-
electric relaxation time v = s/(qpN) characterizes the
time scale for the decay of charge fiuctuations. Usually,

g (( 1 holds. 2'9

Let us now investigate the linear stability of a uniform
solution of (5), (6). The addition of a small perturba-
tion hnp, 6Eoc exp'(At + ikz) to the stationary uniform
state leads to a linear eigenvalue problem for the complex
eigenvalues A. The characteristic polynomial

n, [A —f'+ v, (E —ik)] + rI A(A —f'+ ikE + k')

+O„,f(ikE+ k ) = 0 (7)

must be solved for A(k), the real part of which is the
growth rate of the small-amplitude wave with wave num-
ber k and a frequency corresponding to the imaginary
part of A(k). In (7), we defined f'—:O„,f —B„,f and
vo = c)a f/np Assuming . that 8„,f, f', and —vp are pos-
itive, one can show that in the limits k ~ 0 and k ~ oo
the perturbation decays to zero. Hence, an instability
can only occur at a finite wave number. ln the following,
the results are given for g « 1 instead of writing down
the unwieldy exact solutions Ai 2(k) of (7) for finite k.
Inspection of (7) suggests that the eigenvalues are of the
form Ai ——gi(z) + ikhi(z) and Az

——rI gz(z) + ikh2(z),
where gi z and hi z are real functions of z—:rIk /np,
and can be expanded in power series with respect to g.
The dependence on z refiects the well-known strong cou-

FIG. 2. J-E characteristics of uniform states at the onset
of impact ionization [parameter values of Fig. 1; cr = 1.7 (c)].
The unstable parts and the stability boundary are indicated

by dotted curves.

pling of the carrier-density mode bno to the dielectric
relaxation mode bE on the Debye scale ~gk, which is
caused by the long-range Coulomb interaction between
the carriers.

For Az, this ansatz yields gz(z) = —np(1+z)+O(rI) and
h2(z) = [E+vp/—(I+z)]+O(ri). Thus, Az corresponds to
a stable branch of the spectrum associated with dielectric
relaxation at k = Q and to carrier diffusion at k m oo.
For Ai one finds

f' —voE+ [h, (z) + hi(z)E —8„,f]z
gy z +O ri1+z

hi(z) = + O(rI)

Marginal modes correspond to the positive solutions z of
the equation gz(z) = 0, which can be written as

8„,fz + (28„,f —f')z

+[8„,f —2f'+ vp(E —vp)]z+ vpE —f' = 0 . (10)

Plotting the solutions of this equation in the J-k plane,
one obtains a curve (neutral curve) which represents at
fixed control parameter J the boundary of the band of
wave numbers associated with undamped waves. Because
all the coefficients of the polynomial (10) in z are positive,
except for large vo, when the third one becomes negative,
we conclude that an instability occurs at large values of
c)sf
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FIG. 1. Neutral curves for the parameter values Al ——10
and n = 0.1 (a), 1.0 (b).

FIG. 3. Stability boundary in the J-W; „plane; Al ——10
(I), A~ = 20 (II).
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FIG. 4. Maximum values of W; „asa function of Al, where
a traveling-wave instability can occur.

To give a specific example, we consider a typical
semiconductor sample used in recent experiments con-
cerning impact-ionization avalanche breakdown in In-
doped p-Ge. Typical values of the parameters are N
10'4 cm-', ~„- 10-' —10-' s ~ —10-" s, D =
10 cmz/s, and p 10s cm2/ Vs.

The g rfunctio-n f is constructed in the usual way. z

Generation of carriers consists of thermal (AT ) and im-

pact (AI) ionization processes at the impurities. Re-
combination of carriers corresponds to the inverse pro-
cesses, which are single-carrier capture (BT ) and Auger
recombination (BI), respectively. With the approxima-
tion AT = 0 (which is reasonable at low lattice tem-
peratures) and neglecting Auger recombination, 2 the g r-
function reads

f = Ainpng —np(l —ng)

where only the impact-ionization coefficient Ai is as-
sumed to depend on E. This dependence is modeled
by AI = AI exp( —W; „/W) with a constant ApI. Typical
ionization energies of shallow impurities are W; „10
meV. The impact-ionization coefficient can be written in
the form API exp( —a/Ez), where a = W; „T„p/(qDT ).
From the crude parameter values given above and w

10 —10 s, we conclude that o, lies somewhere
between 10 and 10 .

The relevant uniform solution of f = 0 is np

AI/(1+ AI), and it holds 8„„f = AI ) 0, f' = —AI ( 0,
and vp = 2anp/Es ) 0. This implies that the J—E char-
acteristic, J = noE, is strictly monotonous, i.e., NDC
does not occur.

The neutral curve is obtained &om z +3z + (3+c)z+
1+ b = 0, where b = 2ang/E and c = b(1 —bAI/E );
solutions are shown for two values of n in Fig. 1. Current-
field characteristics at the onset of impact ionization are
plotted in Fig. 2, where the unstable part is indicated by
dotted curves. At low fields almost all carriers are bound
to the impurities, representing the low-current state. At
fields of the order E v a impact ionization sets in, and
the current increases in a nonlinear manner. In the un-
stable regime a band of finite wave numbers gives rise
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to the formation of traveling waves. Figure 3 shows the
unstable regime in the J-W; „plane. The instability van-

ishes for W; „)W; „,when impact ionization is weak,
e.g. , in the case of deep impurity levels. This implies that
a traveling-wave instability occurs in samples with impu-
rities of rather low ionization energies. Figure 4 shows

W;~„~ as a function of Ai.
In order to confirm that a traveling wave forms in

the linearly unstable regime, Eqs. (5) and (6) have been
solved numerically for Neumann boundary conditions
([9 np = 8 E = 0 at x = 0, L). Choosing Tl = 0.005,
L = 5, and parameter values in accordance with case b of
Figs. 1 and 2, one expects from the neutral curve a trav-
eling wave with a wavelength approximately between 0.5
and 1.8 in units of QT„D. In Fig. 5, the space-time plot of
the electric field shows a traveling wave with wavelength

1.5. Traveling waves of this kind should be observable
in appropriate experiments.

In this paper, a model is investigated describing im-
pact ionization in extrinsic semiconductors at low tem-
peratures for the case of fast dielectric relaxation com-
pared to carrier recombination. At the onset of impact
ionization and at sufficiently low ionization energies, the
uniform steady state turns out to be unstable against
traveling waves with finite critical wave number. The
neutral curve is derived and the instability is discussed in
parameter space. Typical critical wavelengths are of the
order of the Debye length, and typical &equencies are of
the order gnp/(T T )/2vr. This simple model may also
explain recent experimental results: assuming no 10
at the onset of impact ionization leads to a frequency
= 10 kHz, in accordance with the values reported in
Ref. 1.
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FIG. 5. Density plot of the electric field E(z, t) obtained
from a numerical solution with Neumann boundary conditions
(and almost uniform initial conditions). The values of E(z, t)
approximately range between 0.7 (largest boxes) and 0.3 (zero
boxes); Ai ——10, a = 1, [I = 5 x 10, L = 5, and J = 0.1.
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