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Calculation of strong-field magnetoresistance in some periodic composites
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A calculational method based on Fourier expansion is applied to a study of the strong-6eld

magnetotransport of a uniform free-electron metal, inside which is embedded a simple cubic array

of identical spheres or cylinders, which have a diferent conductivity tensor. When the magnetic

field is strong enough, the magnetoresistance exhibits very strong variations with the direction of
the 6eld. This can be understood in some of the cases by simple physical considerations about

the distortions induced in the current flow by the inclusions. The strong dependence on the 6eld

direction is qualitatively, and sometimes even quantitatively, similar to what is observed in some

metallic crystals which have a noncompact Fermi surface.

I. INTRODUCTION

Measurements of magnetotransport in composite con-
ductors are quite rare, especially in comparison with
the widespread use of Hall and magnetoresistance mea-

surements in the study and characterization of uni-

form conductors. Those few experimental studies that
have been reported are confined to the domain of disor-
dered composite media. ' Not surprisingly, perhaps, the-
oretical discussions have also been con6ned, until now,
to disordered composites, especially near a percolation
threshold, where interesting behavior was predicted
and, in some cases, observed. In these works the results
were always independent of the direction of the magnetic
Beld H, as a consequence of the statistical isotropy of the
disordered composite medium. However, in a composite
medium with periodic microstructure, it is reasonable to
expect that some of these properties will be anisotropic.
Even for the case of a cubic lattice, for which the re-
sistivity tensor is a scalar when H = 0, the presence
of a nonzero H can lead to a strong anisotropy of the
magnetoresistance. This is well known from the study of
metallic crystals, ' but has never been studied in the
context of a composite conducting medium.

We report here on some results of a theoretical and nu-

merical study of strong-Geld magnetotransport in a com-
posite conductor with a periodic microstructure, namely,
a simple cubic array of spheres or cylinders embedded in
an isotropic conducting host medium which is taken to
be a free-electron metal without any intrinsic magnetore-
sistance. The inclusions are either insulating, or else con-
ductors that are also of the free-electron-metal type, but
with a difFerent value of the Hall conductivity than that
of the host medium. When the magnetic field H is strong
enough, we find a strong dependence of the bulk effective

II. A SHORT DESCRIPTION
OF THE CALCULATIONAL METHOD

We consider a two-component periodic composite
made of two uniform conducting components, character-
ized by conductivity tensors o, , i = 1, 2, which in the

presence of a magnetic field have symmetric as well as an-

tisymmetric parts. The position-dependent conductivity
tensor o'(r) can be represented with the help of the char-

acteristic or indicator function eq(r) of the &iq component
and the conductivity tensor difFerence bo. , namely

1 for r inside o q
Og r

0 otherwise,

Bo = cled
—o] )

o-(r) = o.2 —8o8~(r).

(2)
(3)

Ohmic resistivities upon H. Moreover, both the trans-
verse and the longitudinal resistivities exhibit a strong
dependence on the direction of H, including a sequence
of maxima and minima, the appearance of which can be
understood, in some of the cases, from a simple physical
argument.

The remainder of this paper is organized as follows:
In Sec. II we summarize the technique used to evalu-
ate the efFective conductivity tensor (a more detailed de-
scription will be published elsewhere ~) and discuss the
procedure of calculating the transverse and longitudinal
components of the resistivity tensor. In Sec. III we

present numerical results for a composite with spherical
inclusions and in Sec. IV we do likewise for the case of
cylindrical inclusions. Section V provides a discussion
and summary of those results.
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The function ei(r) includes all the information about the
system microstructure. Its volume average is just the
volume fraction pi of the o.i component.

The bulk effective conductivity tensor o., of the com-
posite medium is defined by the relationship between the
volume averages of the electric field VP and the current
density J = o V(s

(4)

The local potential field P( )(r) which results when

(VP) = Vr = e, i.e. , a unit vector in the n direction,
is the solution of an integro-differential equation

y(~) —„+I y(~)

I'd = f dV'dr)r')'WG)r, r'~~dr) dd V'd(r'),

where G is the Green's function for the o2 component
which vanishes at a pair of parallel equipotential planes.
It can be found by solving the following boundary value
problem:

V o.2 VG(r, r'~cr2) = —hs(r —r'),
G=0 when r =O, L.

Clearly, the characteristic function ei(r) includes all the
information about the microstructure or microgeometry
of the medium. Because there is an asymmetry in this
description, we will always take the oi component to
represent the inclusions, while cr2 will represent the host
medium.

The periodicity of the medium is exploited in order
to expand ))') in an appropriate Fourier series. This is
possible whenever the finite thickness of the system L is
large compared to the size of the unit cell. In that case,
the results for o will be independent of the thickness L.
When L is not large enough, there will be size effects and
surface effects —those will be discussed elsewhere. In the
limit L ~ oo, the operator I' can be represented by the
infinite matrix

(g . ho. . g') Og g

(g . g)'"(g' s')" '

where g, g' are vectors of the reciprocal lattice and 0 is a
Fourier coefficient of Hi(r). Using this representation, the
following series expansion in powers of ho can be written
for the elements of the matrix a, (note that a summation
over the repeated tensor indices p, w is implied):

series obtained in this way for (t is then used to calculate
(J) in (4), thus leading to the series for dT, . In order to
calculate the coeKcients A~", we usually used truncated
matrices I zz which included g vectors, appropriate to
a simple-cubic lattice, of the form g =

& (n, n„, n, ),
where b is the lattice constant and n, n„,n, are integers
ranging as far as —10 to +10 in each direction, although
sometimes, when the numerical calculation was very time
consuming, we only included components of g ranging
from —7 to +7 in each direction.

Instead of expanding in powers of I', we could use the
resolvent operator 1/(1 —I') in order to calculate o, . That
would involve inverting the nonsparse matrix 1 —I', and
would thus pose a severe limitation on the number of
g vectors that can be included: if the components of g
range from —5 to +5 in all directions, the size of the ma-
trix I z is already 1330 x 1330, which is the largest that
we are conveniently able to invert with existing work-
stations. The I' matrices that we actually used, with
components of g ranging &om —10 to +10 in all direc-
tions, are of size 9260 x 9260 and thus clearly beyond the
capability of standard inversion techniques. Such sizes
are necessary in order to get accurate, reliable results at
large contrasts between the two components.

All of the results that are reported here are converged,
as far as their dependence on the size of the matrix I'z is
concerned. However, the series (9) only converges when
H is not very strong, i.e., when o.~„& o. ~, at least in
the o2 component. For larger values of H, Pade approx-
imants, as well as other standard methods, were used in
order to sum the divergent series, based on a detailed un-
derstanding of its analytic properties. This approach is
similar to one that has been used recently for calculat-
ing the bulk effective dielectric properties of a periodic
composite. Here we only mention the fact that the rea-
son why those methods are so effective in summing that
series is that the operator I' is bounded and continuous.
Therefore, the singularities of the function that the series
(9) represents, which are essentially just the eigenvalues
of I', are a bounded discrete set of simple poles, which
can be shown to lie inside the rectangle 0 ( Re(s) ( 1,
~lm(s)

~
( II + 1 [H is defined precisely after (12) below]

in the complex s plane.
Although our calculational procedure naturally evalu-

ates o, given o.i, cr2, and 8+, the physical implications are
best described and discussed by referring to the resistiv-
ity tensors p~'~ = o, and p; = cr,. , i = 1, 2.

The resistivity tensor p; for a free-electron metal has
the form

(o.2 —pibo —o, ) p = ) ho. ~A(" ')bo p, (9) R,.'8 —R, 'R„)
p; RR

—RA. p; )

(10)

One way to obtain this result is first to solve (5) by
iterating the integro-differential operator I'. The infinite p;H = R,.'R. (12)

where the Ohmic resistivity p; and the Hall coefBcient
R; are independent of the magnetic field. As it appears
here, the magnetic field 'R is measured in conventional
units. It is convenient to define a dimensionless form H
for the magnetic field by
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In these units H = [H[ = u, 7', where the cyclotron fre-
quency of a conduction electron with effective mass m,
is given, in SI units, by ~, = e['R[/m„and 7. is the con-
ductivity relaxation time.

Following the above definitions, the conductivity ten-
sor o,. = p, , z = 1, 2, separated into symmetric and
antisymmetric parts: o = o., + o. , may be written in the
form

(1+H.'
(0) p=, , H H„~'('+

I, H H

0
—H,

p, (1+Hz)

H.H„H, H. )
1+H2 HyH,
H„H, 1+H2 j
H, H-

O' H.
"

H —0 j
We restrict ourselves to two types of materials:

(a) composites with spherical inclusions and (b) compos-
ites with cylindrical inclusions. A picture of the different
types of unit cells that were used in this study is shown in
Fig. 1, while analytic expressions for the appropriate 0+
functions are given in Table I. Other shapes of inclusions
can be treated by using the expressions for 0+ provided
in Ref. 21.

We begin our analysis with a single inclusion, assuming
it has spherical shape [see Fig. 2(a)], placed in a homoge-
neous conducting medium. The coordinate axes are just
the cubic symmetry axes, and those will usually be used
to characterize and evaluate the components of resistiv-
ity or conductivity tensors. At first we assume that the
magnetic field is directed along the z axis. Then the lon-

gitudinal component p of the bulk effective resistivity
II

tensor p(') is just p,', . The two transverse components

p& = p and p& = p» are then equal. When we(e) (e) -(e) (e)

rotate H in the y, z plane, p
' remains one of the trans-

verse components of p('), and we will continue to denote
it by p& . The other transverse component, denoted by

p&, as well as the longitudinal component of p('), will
lie along two directions in the y, z plane which in general
are not symmetry directions. Therefore, p& and pII' will

then have to be calculated by applying to the tensorial
components of p(') the appropriate rotation transforma-
tion T(() by an angle ( in the y, z plane [see Fig. 2(b)]

z

a ~ b. C.

( cos( —sin( 0 )
T(() =

~ sin( cos( 0
0 0 1)

For other directions of H, the transformation T must be
generalized appropriately —in general, it will depend on
three Euler angles which characterize the direction of H
and that of the volume averaged current density (J) in
the fixed coordinate system.

III. SPHERICAL INCLUSIONS

Let us consider the case of a composite, made of iden-
tical spherical insulating inclusions which are placed pe-
riodically as a simple-cubic array inside a homogeneous
conducting medium. As we explained above, we expect
in this case different values for the three components

t' t
tail the angular profiles that were found for these com-
ponents.

A. The transverse component along the (100)
direction p~

FIG. 1. The different unit cells used in our calculations: (a)
Single sphere (simple-cubic lattice). (b) fcc lattice of spheres.
(c) Single cylinder (simple-cubic lattice). The size of the unit
cell is b x b x b. The radii of the sphere and the cylinder are
denoted by R, the length of the cylinder by l. The formulas
for 8 corresponding to these unit cells are given in Table I.

where

= T(&)p"T '(() (14)
We first consider the case where the inclusions are per-

fectly insulating, i.e. ,
o.

q
——0. In Fig. 3 we show results,

TABLE I. Fourier transforms of the characteristic functions corresponding to Fig. 1.

Figure

Sphere

[see Fig. 1(a)]
fcc lattice of spheres

[see Fig. 1(b)]

Cylinder

[see Fig. 1(c)]

Hs ——
v f Hg(r)e 's'dV

Hs = [4~/([gib)'] [»n(lglR) —lglRcos(lg[R)]
where ]g[ = Qgs + gs~ + g2

Hs
——[cos(g b/2) + cos(g„b/2) + cos(g b/2)

+cos(g b/2) + cos(g„b/2) cos(g b/2)]Hs'
where Hsi'~"'"i ——[4s /([g[b) ] [sin([g[R) —[g(R cos(]g]R)]

Hs = (4~/g~) RJ~(Rg~) [»n(lg. I&/2)/Ig. I]

where Jq(z) is a Bessel function and g~ = gg~ + g„



49 CALCULATION OF STRONG-FIELD MAGNETORESISTANCE IN. . . 16 259

p(~) =p(e)
n

p(e) =p(&)i xx
p(e) =p(e)

L J.

a.

z
]I

p)~) =p(~)

HLr

X p(e) =p(e)
xx

b.

H

p(e)

FIG. 2. (s) Schematic drawing of the coor-
dinate system and direction of the magnetic
field for a single sphere. The transverse mag-

7~) (~) -(~) — (~)netoresistances pz —p~~ and p~ = pyy
have the same value. (b) The same for a
composite with a simple-cubic array of spher-
ical inclusions. The x axis is always directed
along the lattice axis (100) and the magnetic
Geld H is rotated in the y, z plane, mak-

ing an angle f with the z axis. The first

transverse component pz
——p

' represents() ()
the resistance when the average current Jo
is directed along the lattice axis (100), while

the other transverse component pi repre--(e)

sents the resistance when Jo lies in the y, z

plane, perpendicular to H. For the special
case where H

i~ z, we can write pii
—p,',(~) (~)

and pi = ps''„(note that pz~'l ——pz~'l for a
cubic lattice in this case).

obtained for the bulk effective transverse magnetoresis-

tance pi = p
' in four samples with different sphere

radii of the inclusions, when the magnetic field H has a
fixed magnitude iHi = H and is rotated in the y, z plane.
The distance &om the origin in these plots gives the mag-

nitude of pz (H)/pl'i (0)—1 as a function of the direction
of H. Clearly, the magnetoresistance increases both with
the sphere radius a and with H. For large enough II it
develops a strong anisotropy, and the variations with the
direction of H become more pronounced with increasing
H and with decreasing a. The magnetoresistance even-
tually saturates with increasing H in any fixed direction,
but this occurs more quickly at the minima. In fact, the

deeper the minimum, the sooner the onset of saturation.
The deepest minima are in the low order lattice direc-
tions equivalent to (001), then come those in the (011)-
like directions, then (021), etc. For a given radius of the
spheres only a finite number of minima appear, and the
total number of minima increases with decreasing radius.

Although the number of minima observed in a given
sample at first increases with H, the number saturates
when H is large enough, even before the values of pi
itself have saturated. To demonstrate this, we show in

Figs. 4(a) and 4(b) a calculation of pi~' (H) for the same
samples as in Figs. 3(a) and 3(b), but for larger values
of H. The jagged features which appear in some places

0.2
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(0To)0

-0.2

0.2—
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0
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a=0.2; p, =0.03

—02 0 02
a. a =0.4; p, =0.27
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)
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d. a=0.15; p, =0.01

-0 2 0 02
a= 'p

FIG. 3. Plots of the transverse magne-
toresistance pz = p, (H) for four sam-(~) (~)

ples of a cubic array of insulating spheres
with radii a = 0.40, 0.30, 0.20, 0.15 and a
lattice constant equal to 1, embedded in a
free-electron host medium. The volume frac-
tion of the spheres pi is shown in the fig-
ure. The relative transverse magnetoresis-
tance bp/ps = p

' (H)/pi'i(0) —1 is plotted
for fixed ~Hi = H as s function of the direc-
tion of H in the y, z plane. The magnitudes
listed for H are actually the values of the
dimensionless Hall to the Ohmic resistivity
ratio p „/p for the metallic host medium.
The maximum number of minima in hp/po
increases by 1 along a new lattice axis each
time the sphere radius is decreased along the
sequence of values corresponding to the four
samples of this Ggure. The new minimum
which appears in each sample is highlighted
by an arrow. The jagged oscillations which
are evident in a few places in (a) and (b) are
due to calculational errors and are discussed
in the paper. The reciprocal lattice vectors
used in these calculations ranged from —7 to
7 in each direction.
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a. a=0.4; p, =~; pz= 1

0:

I & I I l i jul i I i I
8

-2 0 2 4

-2

-2

b. a=0.3; p, =~; p~= 1

FIG. 4. (a) and (b) Plots of the absolute

transverse magnetoresistance p~'~(H) for the
same two samples as in 3(a) and 3(b), but
for larger values of H. Although the quality
of the numerical results is poorer (the jagged
oscillations are spurious, and are discussed
in the paper), they show that the total num-

ber of minima has ceased to increase with H.
All the results are for the case of perfectly in-

sulating inclusions inside a conducting host:
pi ——oo, p2 = 1. (c) and (d) The same for
the case when the inclusions have a finite re-
sistivity which is different from that of the
host material: p~

——2, p~ ——1. The recipro-
cal lattice size used was the same as in Fig. 3.

8=15
i I ) i i I » i I » kl » i I i

-4 -2 0 2 4

a=04; pi 2 p2 1

-2 0 2

d. a=0.3; p, =2; p~=1

in this figure, and also in a few places in Figs. 3(a) and
3(b), are due to imperfect convergence of the Pade ap-
proximants which we used in order to sum the divergent
series. These spurious features can usually be differenti-
ated from the true physical oscillations by the fact that
they change their positions erratically when different el-
ements of the Pade table are used or when H is changed.
Their appearance is, therefore, indicative of the diKcul-
ties in our numerical procedure. The physical results for

pz (H) are always smooth functions of H.
All of these observations can be understood by con-

sidering the shape of the current distortion field J(r)
which appears around a single insulating sphere of ra-
dius a in a uniform, free-electron metal when a current
is made to Bow that has a uniform value Jo far away
from the obstacle. In the absence of a magnetic field, the
distortion has a simple dipolar shape, so that the com-
ponent of J —Jo in the direction of Jo depends on the
polar coordinates based on that direction according to
(3cos 8 —1)a /r, where r is measured from the center
of the obstacle. When a strong magnetic Beld H 4 Jo
is present, the distortion has a more complicated shape,
but for an isolated insulating inclusion of either spheri-
cal or cylindrical shape, it has been solved exactly some
years ago. In Figs. 5—8 we reproduce some drawings of
the current How patterns and the local dissipation rates
around such obstacles, taken from that reference. In the
case of a spherical obstacle, J—Jo has approximately the
shape of a long cylinder of radius a and length (p „jp )a
in the direction of H [see Fig. 8(a)]. This produces an

unsaturated magnetoresistance which increases approxi-
mately linearly with H. When there is a finite density
of spherical obstacles, these cylinders of distortion inter-
act with one another and with other spheres, and this can
lead to saturation of the magnetoresistance with increas-
ing H. In a cubic array of spheres, this interaction will
obviously be most effective when the cylinders of distor-
tion lie along one of the (001) directions, and will be less
effective if they lie along either a high index direction or a
nonreciprocal-lattice direction. The value of H at which
the interaction becomes effective and saturation begins
to set in depends on the distance to the nearest sphere
in the direction of the distortion cylinder axis, but also
on the cylinder radius. If that radius is small enough, we

can expect an oscillatory behavior of p& with changing
direction for large enough values of H. The minima in
this angular dependence will occur in the lowest index
directions, i.e. , (001), (011), etc. The maximum number
of such minima, as well as their sharpness and depth,
should increase with decreasing radius a. This number
can be estimated from simple geometric considerations,
in which we determine whether the cylinder of distortion,
created by one supposedly isolated sphere and growing in
length (but not in width) in a given direction with H, can
reach its closest neighbor in that direction without first
encountering other, closer spheres as a result of the finite
radii [see Figs. 9(a) and 9(b)].

To see this, let us draw the normal &om the center of
the sphere B [see Fig. 9(b)] to a cylinder of distortion
created by the sphere centered at point A. If the distance
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I

l I~II
&c&=10

l

I

1

aH

a 1

2/1 + n2
(16)

imum, where 8 is the angle between the (001) and the
(Onl) lattice axes [8 = arcsin(l/gl+ n2)] and b is the
lattice constant of the cubic array. These considerations
lead to the prediction that a minimum in the (Onl) direc-
tion will appear at sufficiently large values of H whenever
the sphere radius a satisfies the following inequality

FIG. 5. Projection on the z, z plane of current lines (in-
jected uniformly at z = oo) in the region near a cylindrical
void, for different values of u, ~. The dashed lines indicate re-
gions of high current density (after Ref. 23). We have added
to this figure an indication of the approximate total length
of the distorted region, namely, Ha = ~,7a, where a is the
cylinder radius.

BC is smaller than the sphere radius a, then the cylinder
based upon the sphere A will be severely impeded by the
sphere B before reaching D. But if BC is larger than a
then the cylinder of distortion produced by A can extend
unimpeded all the way to D, and we can expect that a
minimum will appear in the magnetoresistance when H
is in that direction. Using simple geometry we can write
BC = (BE —a) = (bsi 8n—a), &om which we get the
condition a & bsin 8/2 for the appearance of that min-

"100
{a}

tLQ
C~

F 10

100

This criterion is in good quantitative agreement with our
numerical results for p& (see Fig. 3).

The results, presented in Figs. 3, 4(a), and 4(b) were
calculated for a composite with perfectly insulating inclu-
sions (i.e. , o q

——0). Results for some samples in which the
inclusions have a nonzero conductivity that difFers from
that of the host material are shown in Figs. 4(c) and 4(d).
In these samples, the conductivity tensor of the embed-
ded inclusions was taken to be one-half of that of the host
material. The similarity to the results for insulating in-
clusions is evident. A notable di6'erence is the appearance
(when a'q is close to o2) of additional minima [shown by
the arrows in Figs. 4(c) and 4(d)]. In contrast to the case
o.

q
——0, in the present case the single-spherical-inclusion

problem is unsolved, and the method of Ref. 23 cannot
be easily generalized to treat it. We, therefore, ofFer the
following speculation: In the absence of a magnetic field,

'tp
5

'Ro 1 ~~—0

~ 0.1

24"

sW—)PP

8"
10
0

FIG. 6. Isometric projection of the current Bow pattern of
Fig. 5 illustrating the extent of 8-shaped distortions and the
high-density current sheets at large w, 7 (after Ref. 23). Note
that the magnetic field H is denoted here by B.

0 0 4 0-8 1.2 1.6
R Ro

FIG. 7. (a) Volume power density J E for the current dis-
tribution shown in Figs. 5 and 6 plotted along a line parallel to
the x axis which touches the cylinder at s = Ro, the cylinder
radius. (b) Radial dependence of the volume power density
J ~ E for the current distribution shown in 8(b) plotted in
the plane corresponding to z = Ro, the sphere radius (after
Ref. 23).



16 262 DAVID J. BERGMAN AND YAKOV M. STRELNIKER 49

&g&= 100

the amplitude of current distortion around the obstacles
is proportional to a(l —or./cr2) .If we assume that in the
presence of a strong magnetic field H this is translated
into a reduced effective radius a,1r

= a(1 —aq/u2) and re-
duced effective length a,HH of the cylinder of current dis-

tortion, then everything can be explained. Thus, for the
case of conducting inclusions with a = 0.4 and 0 q

—o 2/2
[see Fig. 4(c)] we get a,g = a/2 = 0.2, which corresponds
to the case of insulating inclusions shown in Fig. 3(c),
with minima in the (011) and (021) directions. Note that,
in the case of the insulating inclusions of radius 0.4, these
two minima were not observed [see Fig. 3(a)]. Neither
were they observed when we calculated the magnetore-
sistance for spheres of the same radius a = 0.4 and con-
ductivity tensor oq ——a'2/10. This is consistent with our
hypothesis about the lengths, since, according to (16),
when the effective radius is a,p = 0.4(1 —0.1) = 0.36,
minima should appear only in the (001)-like directions
and should not appear in other directions. The addi-
tional minima obtained when crq g 0 are very smooth
and shallow, compared to the minima found also when

IYq
——0. We can, therefore, regard them as higher or-

der minima and assume that the geometric mechanism
of minima production described above and the inequal-
ity (16) apply to them as well.

B. The longitudinal component p
It

a.

FIG. 8. (a) Isometric projection of current lines (injected
uniformly at x = oo) in the region near a spherical void when

Jo J B. (b) Isometric projection of current lines (injected
uniformly at x = —oo) in the region near a spherical void

when Jo
~~

B (after Ref. 23). Note that the magnetic field H
is denoted here by B.

The longitudinal component p~t' for an arbitrary di-

rection of H in the y, z plane was obtained using (14).
For insulating inclusions, its angular dependence, shown

in Fig. 10, is somewhat similar to that of p&, but there

are also some difI'erences. For instance, p~t' has a mini-

mum in the (011) direction when H = 8 [see Fig. 10(c)].
This is in contrast with the behavior of p&, which does
not have a minimum there, in agreement with (16). This
can be explained as follows: In the derivation of (16)
we supposed that the volume of current distortions has
a cylindrical shape. However, for the longitudinal case,
where the average current is directed along 8, the dis-
tortion volume has approximately the shape of a skewed
cone [see Fig. 8(b)]. Therefore, inequality (16) would

need to be modified in order to describe the behavior of
the longitudinal component.

0 (s) C. The second transverse component p~
-(~)

FIG. 9. (a) Schematic illustration showing how the onset of
interference between the cylinders of current distortion from
different spheres depends on the orientation of the magnetic
Geld with respect to the lattice of obstacles. Note that the
average current density (J) is perpendicular to the plane of
the page. (b) Schematic drawing used for the derivation of
inequality (16) and showing the cylinder of current distortion
with respect to the locations of the spherical inclusions.

In Fig. 10 we show, besides p& and ptt, »» p&
a function of the direction of H for difI'erent values of
its magnitude. It is evident that this transverse magne-
toresistance, which is not measured along a fixed lattice
direction like p&, exhibits behavior that is qualitatively

different from that of p& for the same case of insulating

spherical inclusions. In particular, p& has a sequence of
maxima in the same directions where p& had minima.
We were not able to find a simple geometric explanation
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for this behavior, in contrast with the case of the minima

in the angular dependence of p& . However, we would{e)

like to offer some speculations about it.
In contrast with the case of p&, when the direction

of H changes in the y, z plane, so does the direction of
flow of the average current density (J), which is in the
same plane but perpendicular to H. Therefore, the ge-
ometric cross section presented by the obstacles to this
flux is also changing. The geometric shadowing effects
by collinear obstacles is greatest when (J) lies along a
low index direction of the lattice, and one might there-
fore naively expect the obstacles to be less efFective in
obstructing the flux in those directions, thus leading to a
loner resistivity. This logic is clearly wrong when H = 0,
since then the resistivity is entirely isotropic. The above
argument is fallacious because even a single obstacle of
radius a does not simply cut a geometrically sharp hole of
that radius in the Hux, but causes it to deform in a more

gradual, long range dipolar fashion. In fact, the short
range current distortions are probably smaller when the
average current is not along a low index lattice direction
such as (001). When a strong magnetic field is turned
on, we believe there are now two competing eQ'ects.

The first is that the current distortion is much sharper
and, apart from extending as a long cylinder along H,
is actually much more localized in the close vicinity of
the obstacle itself. That is why the naive picture of each
obstacle cutting a geometrically sharp hole in the flux
becomes more reasonable, and the geometrical shadowing

effect would make the resistivity smaller in the lowest

index directions. In fact, this is what we found to happen

for both p~ and
p~(

(e) (e)

But there is also another efFect, namely, that for a gen-

eral direction of (J), the current distortions are less pro-
nounced even when H = 0. Therefore, the additional
distortion that appears when H g 0 is not as great as
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FIG. 10. Plots of the absolute (a)—(d) and

relative [i.e., bp
' (H)/p

' (0)—:P~'~(H)/

p
' (0) —1; p~' (0) is denoted in the figure

by pp for simplicity] (e) and (f) magnetore-
(~) (~) -(~)

sistance components p&, pll, and pz of
two samples with a cubic array of insulat-

ing spheres with radii a = 0.40, 0.30 and

a lattice constant equal to 1, embedded in

a free-electron host medium. The reciprocal
lattice size is the same as in Fig. 3.
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-0.5 0 0.5
f: a=0.3



16 264 DAVID J. BERGMAN AND YAKOV M. STREI.NIKER 49

in the (001) and other low index directions. This would
lead us to expect a greater enhancement of the resistivity
in the latter directions.

If the second effect is dominant, that could explain
the maxima observed in p& in some of those directions.
Clearly, this phenomenon needs to be studied further in
order to determine whether these speculations are valid.

IV. CYLINDRICAL INCLUSIONS

In order to make quantitative predictions for possi-
ble experiments, the appropriate type of microstructure
must be considered explicitly. Since it might be easier to
produce a periodic composite where the inclusions have a
cylindrical shape (e.g. , by using lithographic techniques
developed for microelectronics technology), we now con-
sider a three-dimensional composite medium made of a
three-dimensional simple-cubic array of parallel insulat-
ing cylinders of finite length embedded in a conducting
host, with the cylinder axis along the (100) direction.
Such a medium can be studied by the same methods that
were used in Sec. III.

We now take H to be perpendicular to the cylindrical
symmetry axis. In the strictly two-dimensional case of
in6nite cylinders, there is no magnetoresistance in com-
posites made from materials which have no intrinsic mag-
netoresistance when H is parallel to the cylinder axes.
However, since the composite under consideration is in

fact three dimensional, and since H is perpendicular to
that axis, we do find magnetoresistance, and moreover,
there appears a strong dependence on the direction of H.

In order to show how the behavior changes gradually
with the cylinder length t, we present in Fig. 11 results
for four samples with different values of /, namely L =
0.6, 0.7, 0.95, and 1.0 (the last of these corresponds to
infinitely long cylinders). The explicit form of Og for
cylindrical inclusions is shown in Table I. Prom Fig. 11
we see that p&

= p decreases with increasing I and in(~) (~)

the limit l ~ 1 this component of p(') becomes a smooth
circle with a radius that is independent of H, i.e., there is
no magnetoresistance. Although this may appear similar
to the exact result for two-dimensional composites, which
was mentioned above, it is actually quite different: The
two-dimensional theorem, which is proved in Ref. 24,
states that there is no magnetoresistance in the plane of
the sample when H is perpendicular to it, whereas here
H is in that plane.

The reason why bp&I' = p&i' (8) —p&i(0) = 0 when the
cylinders are infinitely long is that in this case the cur-
rent How, which is everywhere along the cylinder axes,
is unaffected by H: This is the case where the geomet-
rical shadowing effect is perfect. The other components

p ' n mey ~ll
and ~z, do depend upon H. Their

behavior is qualitatively similar to what was found in the
case of spherical inclusions (in contrast with the behavior

of p& ). In Fig. 12 we show all three magnetoresistance

components p&, pl~', and p& for infinitely long cylin-

H=5 Z H=5 Z

J~

a. 1=0.6, p, =0.30

(e)-

20: H=g

0

I I I
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I I I I
i

I

P )e}—
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Ie)

Pg

I I i I I I I I I I I

-5 0 5

b 1=0.7, . p, =0.35

FIG. 11. Plots of the absolute magnetore-
sjstance components pz, pIl, and p~ of() () -()
four samples of a cubic array of cylinders with
the same radius a = 0.4, but different lengths
l: l=0.6, 0.7, 0.95, and 1. The cylinders are
perfect insulators and the host material is a
free-electron metal. By increasing l, the value
of pz decreases and its angular dependence(e)

becomes smoother, finally reducing to a cir-
cle of radius that is independent of H when
l = 1. The behavior of ply' and pz is, in
general, similar to the case of spherical in-
clusions; however the eKect is much stronger.
The jagged oscillations have the same spuri-
ous nature and origin as in Figs. 3 and 4,
and are discussed in the paper. The resistiv-
ity pz becomes very large when l m 1, which
corresponds to infinitely long cylinders. The
reciprocal lattice size is the same as in Fig. 3.

I I I I I I I I I I I I I l

-10 -5 0 5 10
I I I I I I I I I I I I I 11+
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c. 1=O.95, p, =0.48 d. l= 1.0, p, =0.50
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ders with radii a = 0.40, 0.30, and 0.20 at difFerent values
of H. The appearance of maxima and minima is in ac-
cordance with the scheme described in Sec. III for a cubic
array of spheres.

In Fig. 13 we show results for pz in the (010) direc-
tion as a function of the magnetic field strength H. For
cylinders of finite length, p& saturates with increasing
H, as expected. But for l = 1, when the cylinders are
infinitely long, there is no saturation. This can be un-
derstood as follows: From the exact solution for a single
insulating cylindrical inclusion of infinite length, we know
that even when the field H and the average current Jo
are perpendicular to the cylinder axis, the distorted cur-

rent has a component that is parallel to that axis2s (see
Fig. 6). Such a component will also be present in the
case of an array of parallel cylinders, and it will increase
with H without saturating, because of the perfect geo-
metric shadowing e8'ect along the cylinder axes. This will

produce a correspondingly nonsaturating increase of p&
with H.

One might speculate that the latter effect could be
present, to some extent, also in the case of an array of
spherical inclusions. If so, that would tend to produce a
maximum rather than a minimum in the resistivity along
a low index lattice axis, as was observed to occur in the
case of p& .-(~)
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FIG. 12. Plots of the absolute magnetoresistsnces (the components pz, pIl', and pz ) of three samples with a
two-dimensional square array of infinitely long cylinders with axes in the 2; direction and radii a = 0.4, 0.3, and 0.2. The
component pz has no field dependence and is entirely isotropic [see the circle in the center of (a), (d), and (g)]. The other
two components exhibit strong angular dependences. In the first column [(a), (d), and (g)] all three components sre shown
for a single value of H, while in the second column [(b), (e), and (h)] only pII' is shown, but for difFerent values of H, and

in the third column [(c), (f), and (i)] only pl~) is shown, again for difFerent values of H The number of mini.ma (for pI~' ) or

maxima (for p~ ) increases by one along a new lattice axis each time the cylinder radius is decreased [this is in agreement with
the inequality (16), even though we have no reason to believe that it should apply here]. Note that the small maxima in the
(012)-like directions in (i), one of which is marked by an arrow, are real. The reciprocal lattice vectors used in these calculations
ranged from —10 to 10 in each direction.
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V. DISCUSSION AND SUMMARY

We have found that a new kind of anisotropic magne-
toresistance should appear, at strong magnetic fields, in
a periodic array of inclusions embedded in a conducting
host, even when both components are free-electron met-
as, wi ou a1 'th t any intrinsic magnetoresistance of t eir own.

HallThe anisotropy observed is a result of the strong a

FIG 13. ~a~ The y, z plane transverse effective resistance

pz of three samples of cylinder arrays of lengths ~in the z di-

rection) I = 0.8, 0.9, 1.0 (the last case corresponds to infinitely

long cylinders) as a function of the strength of the magnetic
field 0 which is always directed along the (010) axis. For)

cylinders of finite length, p& saturates as H ~ oo, but when

that length is in ni e, pzh
' '

fi 't ' continues to increase without limit.
The reciprocal lattice size was the same as in Fig. 12.

effect, but otherwise is a purely classical phenomenon.
This means that in order to test our predictions an
experiment should be done on a composite conducting
medium in which the inclusions are large compared to the
electron mean-free path and other microscopic lengths.
From our physical understanding of the effect, it is clear
that it must appear under quite general circumstances in
a composite conductor with a periodic microstructure:
The components need not be free-electron metals, they
only need to have different magnetoconductivity tensors.
These predictions clearly need to be tested experimen-
tally.

Our intuitive physical understanding of the effects de-
scri e in i'b d

' th's paper is based on a geometrical picture
of the interference between the current distortion e s

produced by different inclusions. It is clearly incomplete
because we have not been able to explain all the angu-
1 fil that were found by the numerical calculations.ar pro es a

a detailedMore work needs to be done, perhaps including a detai e
evaluation of the current distribution, in order to obtain
a complete picture of what is happening and explain the
numerically calculated angular profile of the magnetore-
sistance in all cases.

It is interesting to recall the fact that the full quantum-
mechanical treatment of magneto-transport in a periodic
crystal can also lead to a complicated and anisotropic
magnetoresistance, due to a complex structure and con-
nectivity of the Fermi surface. The fact that a periodic
composite medium, which is a purely classical physical
system, can give rise to such a similar behavior we find
to be quite remarkable. We note that this similarity in-

cludes the fact that the minima in the angular depen-
dence of p~ for a crystal, when measured in a fixed lattice
symmetry direction as a function of the direction of H,
are also found to occur when H lies along the lowest index
crystal axes [see, e.g. , Refs. 20 and 25—27). The quantum
case and the classical case have in common the periodic
nature of the inhomogeneous microstructure, but they
appear to have nothing else in common.

EXPERIMENT

COPPER
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FIG. 14. Relative transverse magnetore-
sistance 8p/po in a fixed direction as a func-
tion of the magnetic field direction. In (a)
and (b) the magnetic field is rotated in the
plane perpendicular to the (100) axis, while

in (c) and (d) it is rotated in the plane per-
0pendicular to an axis inclined less than 3

away from the (100) axis. The results plotted
on the left-hand side (a) and (c) are real ex-

perimental data obtained for copper at 18 000
G and 4.2 K in Ref. 25, while the plots on
the right-hand side are our results, obtained
b numerical computation for a fcc lattice ofyn
spherical inclusions. The striking difference
between the two pairs of figures (a) and (b)
and (c) and (d) is a result of the great sen-

sitivity to sample orientation, as found both
in. the experiment (Ref. 25) and in our calcu-
lations.
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We conjecture that this appearance is misleading, and
that a quasiclassical treatment of the quantum problem
may lead to the same kind of results that are tradition-
ally found by considering the purely quantum-mechanical
Fermi surface. In support of these speculations we
reproduce in Figs. 14(a) and 14(c) some experimental
curves from Ref. 25, which describe the angular depen-
dence of transverse magnetoresistance in a single crys-
tal of very pure copper at liquid helium temperature,
alongside results of some composite-medium-type calcu-
lations that we did on a face-centered-cubic (fcc) array
of insulating spheres embedded in a free-electron host in
Figs. 14(b) and 14(d) (8+ for this case is shown in Ta-
ble I). The two sets of graphs cannot be compared quan-
titatively for a variety of reasons, among which is the
fact that we do not know what value we should assign
to our dimensionless parameter H. After this caveat,
the similarity of shape between the two sets of graphs
is nevertheless remarkable. This similarity may not seem
entirely surprising if we recall the Drude theory of metals.
The electron sea in that theory may be associated with
the conducting host material, and the ionic core lattice
with an array of insulating spherical inclusions, since the
ionic core may be treated approximately as an insulator:
all its bound electronic levels are filled, and the electrons
&om the sea of itinerant electrons cannot penetrate in-
side the ionic core. A more precise description (i.e., the
electron shells are not exactly spherical and are not to-
tally impenetrable) would introduce corrections. These
ideas are currently being pursued in using a semiclassical
approach to the quantum description of electronic motion
in a potential in the presence of a magnetic field.

It may seem that our calculation sheds no light on real
composite materials. It is true that most composite ma-
terials used in present day technology are not sufficiently
ordered or periodic for our analysis to apply. However,

truly periodic (though nonconducting) composites have
recently been made in connection with the quest for a
photonic band gap. ' We now hope that material sci-
entists will try to make periodic composites which are
conducting, in order to try and observe some of the new
behavior that we have predicted here.

Finally, we consider some practical issues related to
experimental testing of our predictions. As we showed

earlier, it is possible to observe the anisotropy effect

only when the magnetic field is strong enough, i.e. , when

p „)p, or equivalently H = ur, 7 ) 1, in the host
inedium. Since ur, = e'R/m, in SI units (m, is the elec-

tron effective mass in kg, 8 is the magnetic field strength
in T, e is the electronic charge in C), and since the relax-
ation time ~ may be expressed in terms of the electric-
field mobility of the electron y, = er/m„we can also
rewrite this requirement as H = p'R ) 1 (see Ref. 20).
The mobility p can have values within a very broad range,
i.e. , 10 7—10 mz/Vsec, and depends on the materials
used as well as on the temperature, since the electron-
phonon interaction and the scattering by imperfections
and impurities both affect the value of p. It is possible
to achieve the condition H ) 1, even with a field as low

as 1 T, by working at liquid helium temperatures and

using extremely pure copper or semiconductor films (see
Ref. 20).
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