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The innuence of the interaction between electrons on the Aharonov-Bohm effect is investigated
in the framework of the Hubbard model. The repulsion between electrons associated with strong
correlation is compared with the case of attraction such as U-center pairing. We apply the Bethe-
ansatz method and exact numerical diagonalization to the Hubbard Hamiltonian. It is shown that the
quasi-half-quantum-Bux periodicity occurs for any nonzero values of U for two electrons. For a large
number of sites, or strong U, the quasiperiodicity becomes an exact half-quantum-Qux periodicity.
The character of the state created on the ring is different in both cases. In U-center pairing the
electrons are bound in pairs located on the same site. For strong correlations (large positive U)
the electrons tend to be as far from each other as possible. We show by numerical solution of the
Bethe-ansatz equations that for three electrons the Qux periodicity of the ground-state energy is

equal to —. The one-third periodicity may occur even for small values of the ratio U/t, for the
very dilute system. It is shown analytically using the Bethe-ansatz equations for N electrons that
for dilute systems with arbitrary value of the Hubbard repulsion U, the fractional Aharonov-Bohm
effect occurs with period fr = 1/N in units of the elementary Sux quantum. Such a period occurs
when the value Nt/LU is small, where L is the number of sites. Parity effects disappear in this
fractional regime. We discuss possible experiments to detect fractional Aharonov-Bohm efFects.

I. INTRODUCTION

The importance of strong correlations in condensed
matter physics became obvious after the discovery
of the quantum Hall effect and high temperature
superconductivity. In fact the correlations are created
by Coulomb forces which are especially important in low-

dimensional systems. 2 In spite of rapid progress in the
understanding of strongly-correlated states such as the
fractional quantum Hall effect, or the one-dimensional
Luttinger liquid, the microscopic detail of these correla-
tions still needs to be developed further. '

In order to shed light on their nature we investigate
using the Bethe ansatz as well as by direct diagonaliza-
tion an exactly solvable Hubbard model describing a fi-

nite number of electrons in the magnetic field located
on a ring. The filling factor is kept as a free parameter
by varying the number of sites. Lieb recently pointed
out that for small chains, the general "Bethe-ansatz" so-
lution, while correct, is too complicated for numerical
calculations. Examining this problem, we first investi-
gate the simplest case, when two electrons are located on
the ring. In this case the solution may be given analyti-
cally for certain cases. It was I andauer (see also Refs.
11—13) who recognized that the flux quantization and the

persistent current may survive on the small nonsupercon-
ducting ring, re6ecting quantum mechanical properties of
the charge carriers. Therefore, the Aharonov-Bohm ef-
fect may be a good tool to study the character of the
electron states and electron correlations.

We use the Aharonov-Bohm effect as a tool to study
the pairing of the correlated state and compare it with
the U-center pairing. In the limit of large repulsion, when
U/t ~ oo, Kusmartsev~4 found that the Aharonov-Bohm
effect might be fractional. The Aharonov-Bohm period is
changed from the conventional one to 1/N, where the N
is the number of electrons on the ring. Kusmartsev's re-
sult has since been confirmed in other investigations.
In the present work we show that the fractional 1/N
Aharonov-Bohm effect may occur for an arbitrary N and
for an arbitrary (even very small) ratio U/t for the very
dilute system, when the filling factor drops to zero.

The numerical calculations for a given number of sites
are based on the exact diagonalization of the two elec-
tron Hubbard Hamiltonian. With this method we can
then analyze all the finite size effects, which may give
many instances of both level crossings and permanent
degeneracies (as a function of U), as have been found by
Heilmann and Lich in their studies of the energy levels
of the benzene molecule having six sites and six electrons.

%'e obtain the same results from this direct diagonal-
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ization as from the Bethe-ansatz method. This con-
trasts with solutions of Bethe equations obtained in the
therrnodynarnic limit ' or calculations by Woynarovich
and Eckle, who evaluated the asymptotics of finite size
effects on the ground-state energy. In fact, finite size ob-
jects such as rings may have complicated non-Abelian dy-
namical symmetry groups which were not accounted for
on the basis of the known invariance groups (spin, pseu-
dospin, and rotational symmetries of the ring). s In fact
we found that 6nite scaling finite size effects were very
important. There is a scaling behavior of the ground-
state energy which does not depend on size L or on U,
but depends only on UL/N =const= a ~, where U is
measured in units of t and L is measured in units of the
lattice constant. Such scaling occurs only at small val-
ues of a. Due to this scaling symmetry the &actional
Aharonov-Bohm effect may arise even for small values of
U, for very dilute electron systems.

Our results agree with studies by Ferretti, Kulik, and
Lami of the Hubbard ring with 10 or 16 sites and with
2 or 4 fermions that the quasi-half-quantum-flux period-
icity appears both for the positive and the negative U
values. However, we stress that the pairing of two elec-
trons for the positive U case is different from U-center
pairing. If the number of electrons is more than 2, then
the fractional 1/N Aharonov-Bohm effect may appear,
which is not related to a pairing, but rather to the bound
state of N particles. Such a state is created via a com-
petition of the kinetic and the potential energy of the
particles. As a result of an interaction with the phonons
the effective mass of these particles increases. There-
fore, in comparison with the potential energy their ki-
netic energy decreases and the state may be destroyed;
this was observed in Ref. 30. Note that the discussed
N-particle bound state is distinct &om the charge trans-
fer pairing created on the ring described by an extended
Hubbard model, where the quasi-half-quantum-flux pe-
riodicity was observed. In all these works the twisted
boundary conditions have been used. The twist in the
boundary conditions has been applied also at the calcu-
lation of a charge stiffness and of the finite size effects on
the optical conductivity.

Note that there was another proposal of the frac-
tional 1/N Aharonov-Bohm periodicity for a system of N
strongly correlated parallel charge density wave (CDW)
chains. ss M However, the physics of the fractional 1/N
Aharonov-Bohm periodicity obtained in the present pa-
per is distinct from 1/N Aharonov-Bohm periodicity ob-
tained for the system of N strongly correlated parallel
CD% chains.

The paper is organized as follows. In Sec. II we dis-
cuss the model and introduce Bethe equations for the
Hubbard ring in a magnetic field. In Secs. III—V we
study the ring with the repulsive Hubbard U. In Sec. III
we solve analytically and by direct diagonalization (nu-
merically) this model for the case of two electrons and
make an analysis of the hidden symmetry. In Sec. IV we
introduce the method for the numerical solution of Bethe
equations and solve these equations for the cases of three
and four electrons at different ring sizes L and values U.
The investigation made in these two sections use a small

parameter u = Nt/UI (( 1, where the behavior of the
Hubbard model in a magnetic 6eld is universal. Using
this parameter in Sec. V we find an analytical solution
of Bethe equations for an arbitrary number of electrons
N and arbitrary sizes of the ring. In Sec. VI we discuss
how the correlations destroy the parity effect. In Sec. VII
we discuss the Aharonov-Bohm effect for the model with
negative values U and compare the case of the repulsive
positive value U. In Sec. VIII we discuss the physical in-
terpretation of the predicted fractional Aharonov-Bohm
effect as well as real experimental situations where this
effect may be observed. Finally some conclusions are
given in Sec. IX.

II. MODEL AND BETHE EQUATIONS

To describe the &actional Aharonov-Bohm effect for
dilute systems we study the Hubbard Hamiltonian

I
H = t ) —at ai +U) npn,

(i,j),n i=1

involving as parameters the electron hopping integral t,
the on-site repulsive Coulomb potential U, and the num-

ber of sites I. The operator at (a; ) creates (destroys)
an electron with spin projection o (o = + or —) at a ring
site i, and n;~ is the occupation number operator a, a;~.
The summations in Eq. (1) extend over the ring sites i or,
as indicated by (i, j), o', over all distinct pairs of nearest-
neighbor sites, along the ring with the spin projection
0'.

The eff'ect of the transverse magnetic 6eld is included
via twisted boundary conditions, with the Bethe ansatz
substitution for the wave function. It is important to
note that the Zeeman energy term

L

U = p~H) (n;+——n, ),

where H is the magnetic Geld associated with the flux
quantum threading the loop, cannot be simply dropped,
and in some cases may give very interesting new physics.
However, we will 6rst study the ring neglecting the Zee-
man term. Using an analogy between the low and high
density limits we will show the implicit importance of
that term.

For exaxnple, as shown below, the &actional Aharonov-
Bohm periodicity may appear even for the model of neg-
ative U centers, provided that in that system the Zeeman
energy is larger than the orbital energy (the energy of a
persistent current). The Zeeman energy is proportional
to vH, where v is the filling factor. The orbital energy
is determined by the condition v02B . The region of
fields where the intersection of levels occurs is determined
when the fiux f HR 1/N; we assume a priori 1/N
flux quantum flux periodicity. The Zeeman energy is
smaller than the orbital energy, if R » N, where B is
the radius of the ring.

For a large enough system, when R » N, the Zeeman
energy term may be neglected. For this rough estimation
we used atomic units. At first, we consider the ring when
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its radius is much larger in comparison with interatomic
distance.

For the case of the magnetic field we will use the same
form of the wave function as has been proposed in Refs.
29 and 26

and

Ix = 2 arctan
sin x

Ly = 27r f + 7rm,

(9)

(10)

@(xi, . . . , ~N) = ) [Q, P]exp i ) kJ~xq~, (3)

'(It: -L —2 f)
M.—.fitsink, —iAp —U/4l

(it sink —iAp + U/4)P=1 2

(4)

and

N
~ — (it sink, —iA —U/4l

( it sin k —i A + U/4 )2=1 CX

M
itA —iAp + U/2b

-". I, iA —iAp —U/2)P=1

where P = (Pi, . . . , PN) and Q = (Qi, . . . , Qiv) are two
permutations of (1,2, . . . , X) and X is the number of
electrons.

The coefflcients [Q, P] as well as (ki, . . . k~) are deter-
mined from the Bethe equations which in a magnetic field
are changed by the addition of the flux phase 27r f, s4 i

ki 2
——karccos( —e/2 + A&2/4 + 1) + mf,

which shows that with the increase of U there is an
increase of the difference between the k vectors of the
first and second electron. The increase of this difference
improves the quasi-half-quantum-flux periodicity of the
Aharonov-Bohm effect. The ground-state energy (persis-
tent current) is described by simple expression

Es,ouus 2
———2t( —e/2 + ge /4 + 1) cos(vr f ), (12)

where x = (ki —k2) /2, y = (ki + k2) /2, and r.

U/(4t cos[(2irf + 7rm)/L]) Th. e numbers n, m may have
both positive and negative values.

When L = 2 (U ) 0), Eq. (9) may be solved im-

mediately and the solution is valid for the range of flux

~f ~

( 1/2, where we must set m = n = 0. For other
values of the flux the solution must be periodically con-
tinued. The result is

M

Lk~ = 2vrI~ + 27rf —) 8(4(tsink~. —Ap)/U),
@=1

(6)

—) 8(4(t sin ki —Ap)/U)

= 27rJp+ ) 8(2(Ap —A )/U), (7)

where 8(z) = 2arctan(z) and the quantum numbers I~
and Jp, which are associated with charge and spin de-

grees of freedom, respectively, are either integers or half
odd integers, depending on the parities of the numbers
of down- and up-spin electrons, respectively:

f is the flux in units of elementary quantum flux po.
The explicit form of Bethe equations in a magnetic field
is29, 32,14,15,17

22 = ~+ground 2/~f =- 87rt2 sin(2 f vr)
(13)

g[U + 64t cos(f ir)]

where f is limited to the region ~f~ ( 1/2. The in-

teraction changes the value of the persistent current.
At the fixed value of the flux f the current monotoni-

cally decreases as U increases. The interactions change
the current-flux dependence in a way that is similar to
that of disorder or temperature, as shown in our recent
paper. ' That is, the interactions cause the jumps in
current-flux dependence, or the cuspoidal points in the
energy-flux curves, to disappear. With stronger inter-
actions these curves become gradually smoother. The
energy dependence is a single-flux periodical function at
any value of U. The reason for the single flux periodicity
is that the two site ring with two electrons is a very spe-
cial case in that it is half full with two electrons. In the
limit U ~ oo the current and the energy vanish, which

coincides with the result obtained in Ref. 14. That is, for
the half-filled cases in that limit, the persistent current
equals zero.

M N —M+1
I~ = — (mod 1), Jp = (mod 1).

2 2 2
(8)

B. Hidden symmetry

The actual values (sets) of these numbers must be chosen
to minimize the total energy for the given value of the
flux f

III. HALF-QUANTUM-FLUX PERIODICITY
FOR TWO ELECTRONS

However, this single Qux periodicity disappears when
we go away from half-filling and instead immediately
obtain quasi-half-lux periodicity. For example, for the
Aharonov-Bohm effect on a ring having four sites (1/4-
filling) the explicit formulas may also be written. In this
case Eq. (5) simplifies to the cubic equation

A. Two sites z +Ez —z —t/2 = 0,3 2 (14)

In the case of interest, for two electrons on the ring the
system of equations (6 and 7) simplify to two decoupled
equations

where z = cos x. With the aid of the Cardano formula
the solution can given explicitly. In the limit of large
values of c it has the form
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& 1 1) (2zf+7rm)
ki~2l = +(—) arccos

~
+ —

~

+
4e) 4

with the flux energy dependence

when e )) 1, (15)

(~f~ ( 1
Es, „q4 ———4cosI

I
/

+ —
I&2) & 2 4&)

(16)

A nontrivial fact here is that there is another solution,
associated with singular values of A, which for an arbi-
trary value of L has the form

ki, 2 ——(+0 + 2~f + ~ri)/L, (1S)

where the function 8 depends on e and increases with
U and L. For the case L = 2 the explicit dependence
8(U, f) is given by Eq. (11).

The ground-state energy is determined from the for-
mula

Hux dependence is determined by two solutions (16) and

(17), which give the needed quasi-half periodicity.
From Eqs. (15) one sees that the phase increases with

U ~ oo from zero to 7r/4. The general result, which is
valid for any value of L, is as follows. With the increase
of U the difference between kq and k2 increases, and the
solution is given by the following formula:

(2z(f —2) l (vr
Es, „„d I, = —4cos

~ L I

cos
&L

N

E = 2t) —coski, (19)

This formula coincides with that describing the energy-
flux dependence of two noninteracting spinless fermions
on a ring with L sites. For the problem under considera-
tion this dependence also corresponds to a triplet state.
This means that on the two sites ring there is a region
of Hux values near half-odd integer numbers in which a
very surprising degeneracy between triplet and singlet
states occurs. This means that at this value of flux the
matrix element for interaction vanishes for the singlet
state. For the singlet state there already occurs a trap-
ping of the Hux quantum, which is shared between two
electrons. The trapping of the quantum flux occurs at
each cuspoidal point of the energy-flux curve. On the
other hand, the trapping does not occur for the triplet
state. This degeneracy, reflecting some hidden symme-
try, may be schematically expressed with the aid of the
following formula: singlet + fiuz quantum = triplet.

C. Scaling symmetry

For the two sites ring discussed above, this solution
(17) exactly equals zero, giving a single flux periodic-
ity in the energy-Hux dependence for the half-filled ring.
Thus, for a non-half-filled ring the ground-state energy-

where the Beyers-Yang theorem2r 2s (see also Refs. 26
and 18) is used to remove Hux.

From Eqs. (9) and (10) one may conclude that for
the ground-state energy the momenta k~ and k2 must be
single-quantum-Hux periodical functions. Because of the
difFerence between ki and k2, due to the function 8, the
ground-state energy E as a function of Hux becomes a
quasi-half-flux periodic function.

With the increase of U or L ( L ) 2) the shift e in-
creases and consequently the half-quantum-flux period-
icity improves. This efFect exists in two cases. Good
half-flux quantum periodicity appears for a small ring
with a large U or for a large ring with small U. Numeri-
cal results indicating these eH'ects are presented in Figs.
1 and 2.

For the electrons on the Hubbard ring the repulsive
potential U causes the particles to locate on opposite
sides of the ring. Because of finite size efFects (or al-
ternatively the kinetic energy of electrons) this localiza-
tion is not complete. The criterion for strong U to have
good quasi-half-quantum-flux periodicity is then that U
is much larger than the kinetic energy. This is why the
half-Hux periodicity improves both with larger L and
larger U.
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FIG. 1. The ground-state energy depen-
dence on the Bux of the external field for the
Hubbard ring at the fixed value of U at the
different values of L. Here U = 50t and L is
three, four, or six sites. o is for L = 3, + is
for L = 4, and H is for L = 6. The ground-
state energy at zero Bux is subtracted off so
as to normalize the figures. Energies are in
units of t and the Sux is in units of quantum
Bux.
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IV. 1/3-FLUX PERIODICITY
FOR THREE ELECTRONS

In contrast to the preceding section, the three-body
problem does not allow an explicit solution. As discussed
by Lieb, the direct numerical solution of Bethe-ansatz
equations for small chains is a much more diKcult prob-
lem than the case of the thermodynamic limit. However,
the problem for finite chains may be solved if we give the
Bethe-ansatz equations in a form convenient for numeri-
cal iteration procedure.

A. Iteration procedure
The problem is to solve these equations (6 ) and (7 ),

that is, to find numerically the values of the variables k~
and A . In order to find such solutions we must repre-
sent the Bethe equations in a form convenient for itera-
tion procedure, which is usually used in numerical calcu-
lations. The first equation (6) is already in the required
form if we divide both sides by L. In the second equation
(7 ) we add to both sides the function NO(4Ap/U). With
the aid of these tricks one reduces the second equation
(7) to the form

U
Ap ———tan

4~ 2Ap + 2A 4t sink~ —4Ap
NH ~~ + 2+Jp+ 8

)

With the substitution Ap
——tpU/4 this equation may be simplified and we arrive at a couple of equations, convenient

for the iteration procedure:

and

27rI~ + 2vr f —) 8(4t sin k~ /U —tp)

k
@=1

2 L

tp ——tan

Ne(tp) + 27r Jp + ) e((tp —t ) /2) + ) 0(4t sink /U —tp)

(22)

In what follows below we use U to represent the ratio U/t.
We have solved these equations iteratively, for the case
of three and four electrons on the ring and for difI'erent
values of F, U, and L. The convergence depends on the
value of the parameters U and L and is fast if the value
of U or I/N is large.

B. Appearance of fractional periodicity

The results may be classified as follows. For a small
number of sites and a small value of U, the ground-state
energy dependence remains the same as that of the free
particle case. The ground-state energy dependence on
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flux is a single-flux periodical function. The ground-
state energy corresponds to the case when two particles
have down spins and one particle has an up spin, or al-
ternatively, two particles have up spins and one parti-
cle has a down spin. In that case the energy decreases
monotonously when the flux increases &om zero up to
f = 0.295167 and then the energy increases when the
flux increases up to 1/2. This behavior must be sym-
metrically reflected on the second half of the elementary
flux unit and then periodically continued for an arbitrary
value of the flux. If the value of U becomes larger than
the critical value, which, for the ring of four sites, is equal
to U, 20, there appear new minima at integer values
of the flux in the energy dependence. In Fig. 3 this
dependence is calculated for U = 50. The shape of that
curve is very diH'erent Rom the free fermion case. Each of
these parabolic curves is associated with the state char-
acterized by a de6nite set of quantum numbers I~ and
J . To show the validity of the Bethe-ansatz equations
for the value M ) N/2 we have solved these equations
for two cases, associated with the values of M = 2 and
M = 1. For these cases the Bethe equations have differ-
ent forms, although physically the states are equivalent
to each other. In fact, the energy-flux dependences for
these cases are identical, although the quantum numbers
are distinct. Each state associated with the parabolic
curve on Fig. 3 is represented by a vertical column in
Table I. One sees that for the transition of one state
to the other at the value M = 2, the set of quantum
numbers is changed drastically.

With a further increase of U the minima become more
profound, transforming gradually to the curve consisting
of equidistant parabolas, which is the 1/3-Hux periodical
function. However, one gets the same efFect with the
increase of the number of sites L. For example, for the
value U = 50 of Fig. 4 the flux-energy dependence is
shown for the six-site ring. With the increase of the sites
number from L = 4 to L = 6 the 1/3-Hux quasiperiodicity
has been gradually increased. If we take a smaller value of
U, for example, U = 8, for the same number of sites L =
6, two parabolic curves disappear Rom the ground-state
energy curve, which now consists of only two parabolas
(see Fig. 5). For a larger number of sites, L = 12, for
example, one again has four parabolas for the ground-
state energy and a 1/3-flux periodical dependence also
appears (Fig. 6). It is clear from these calculations that
the general tendency of the appearance of the 1/3-Hux
periodicity of the ground-state energy is either with the
increase of U at the Axed L or with the increase of the

-0.7

Q
04 0 9

Magnetic Flux f
FIG. 3. The behavior of the ground-state energy and the

Srst excited levels as a function of Bux for three electrons at
the values L = 4, N = 3, and U = 50 in the region of Bux

within the single fundamental lux quantum $0 = —"'. Two

particles have up spins and one particle has a down spin.

value of L for 6xed value of U.
The appearance of the 1/3-Hux periodicity may arise

also at small values of U, provided that the value of L is
large. This is illustrated in Fig. 7, where the value of U
is equal to 1 and the number of sites is L = 128. Further-
more, one can claim that the shape of the ground-state
energy-Hux dependence does not depend on the partic-
ular values of U and L, but depends on their product.
Figure 8 shows the Hux-energy dependence for the value
U = 0.5 and the value L = 256 with the same product
UL=128 as in the former case, given in Fig. 7. Compar-
ison of Figs. 7 and 8, which are identical if the energy
scale is neglected, allows one to conclude that there is a
scaling symmetry, which states that if the product UL
is constant, the shape of the flux-energy dependence is
not changed. Note that to have 1/3-Hux periodicity this
product must have a large value. The results of the cal-
culations we made for the case of four electrons (N = 4)
are to a large extent the same, but with the difference
that the 1/4-Hux periodicity appears.

The general conclusion can be drawn that the frac-
tional Aharonov-Bohrn effect appears when the param-
eter a = tN/UL is small, but not exclusively in the
case when t/U is small, as discussed in previous work
by Kusmartsev and by Yu and Fowler. Encouraged
by these numerical investigations of very small rings we
investigate the general case of an arbitrary number of
electrons on the ring, when u is small. These parame-
ter values correspond to realistic situations when U/t has
some 6xed value but the system has a very dilute density.

TABLE I. The sets of quantum numbers I~ and J corresponding to the parabolic curve with
the lowest energy and the values of the aux at the minimum values are given in the vertical column.

State number

M=2I~
M=2 Jp
M=XI,-

M=1 Jp
Flux j;„

(-1,0,1)
(1 2)

(-3/2, -1/2, 1/2)
(3/2)

(-1,0,1)
(-1,0 )

(-3/2, -1/2, 1/2)
(1/2)
1/3

(-2,-1,0)
(0,1)

(-3/2, -1/2, 1/2)
(-1/2)

2/3

(-2,-1,0)
(1,2)

(-3/2, -1/2, 1/2)
(-3/2)

1
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—1.7
—3.8

U
9 ~g -4.2

-4.6—

Magnetic Flux f
FIG. 4. The same as in Fig. 3 but at the value L = 6. At

the cuspoidal point the fiux absorption appears.

Magnetic Flux f

FIG. 8. The same as in Fig. 3 but at the values I = 256
and U = 0.5. One sees that the shape of this dependence is

scaled to the one shown in Fig. 7. The energy is expressed in

units t10 . The zero energy corresponds to —2.999t.

V. FRACTIONAL 1/N-FLUX PERIODICITY
FOR N ELECTRONS

2 ~ 1 A. Zero appreximatian

Magnetic Flux f

FIG. 5. The same as in Fig. 3 but at the values L = 6
and U=8.

-2.6

Let us show that the &actional Aharonov-Bohm ef-
fect is created for an arbitrary number of electrons N
on the ring and arbitrary values of U. From Eq. (21)
one sees that the numerator of the right-hand side can-
not be larger than 2m%. This holds since for values of
quantum numbers satisfying I~ & N/2, the flux f & 1

and P. z g(zz) & xM. If 2+N/L « 1, one has values

of k~ && 1. Hence on the right-hand side of Eq. (21)
the value 4sink~/U 4k~/U N/UL = n is a small
parameter. Therefore in zeroth approximation, for small
o. , the expression 4sink~/U may be neglected and one
gets an expression for k~ in the form

2m I~ + 2vr f + ) 8(tp)
p=z

(23)

Magnetic Flux f
In an analogous way, from Eq. (22) one gets an equation,
which does not depend on k~'

FIG. 6. The same as in Fig. 3 but at the value L = 12
and U=8. N~(tp) = 2~~0 + ) |((tp t )/2). (24)

-7 5
This coincides with the equation obtained by Yu and
Fowler, in the limit of large U/t. From Eq. (24) we

calculate the sum needed for the right-hand side of Eq.
(23). After the substitution into that equation one gets

-7 9-
(25)

Magnetic Flux f
FIG. 7. The same as in Fig. 3 but at the values L = 128

and U = 1. The energy is expressed in units t10 . The zero

energy corresponds to —2.99t.

This expression was obtained in the limit U/t —+ oo by
Kusmartsev and then rederived by Yu and Fowler.

In our derivation we have not made any assumption
about the value of U. Here the ground-state energy is
a 1/N-flux periodical function, where the ground-state
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energy-Qux dependence consists of parabolic curves with
minima at the fiux value fm; = p/N, where p is the
number of parabolic curves:

2~
Esp~~~s D cos f (26)

where p = N/L is the filling factor. Summarizing, for
any fixed value of the ratio t/U, there exists a dilute
density limit associated with o. « 1. In this dilute limit
the conventional Aharonov-Bohm effect disappears and
the &actional eHect takes over. Let us note that for the
almost completely polarized system, for example, when
the number of up spins is much larger than the number
of down spins M/N « 1 Eq. (24) may also be solved
analytically. In that case one assumes that the value of
tp in Eq. (24) is small. This gives

where the fiux value f is changed in the region
(2p — 1)/2N & f & (2p + 1)/N and D
2 sin(~N/L)/sin(z/L). Also from the above derivation
it is clear that the parameter of our expansion is equal
to

Nt = pt/U,

does depend on both parameters: U (or u) and f .The
first correction to tp does not depend on the index P.
The dependence of tp on the fiux f comes about through
its explicit dependence on the momenta k~ via the second
term on the right-hand side of Eq. (31). Substituting the
equation for variables tp into Eq. (23) for the momenta
k~ and making an expansion using the parameter e, we

get the form

M

Lk, = 2+I, + 2xf + ) 8(zp)
p —1

N

8) (1 —Nb);)sink)
/=. 1

NU 1+ t2
p=y p

For small parameter a (dilute density) this system of
linear equations may be solved, with the result

2+I~ 2n f 2z
M

L(].+ s~) L NL

2x 8B
NL (UL+ 8B)

This looks like a spectrum of &ee spinless fermions on
the chain with 2N sites.

where B = Pp i i, is a real number. For the follow-
Rp

ing studies it is more convenient to represent this formula
in the more symmetrical form

B. First correction

With the aid of expansion with the parameter a de-
fined above, one may find the first correction. Making
an expansion in powers of the parameter o. of the second
Bethe equation (7), we get the form

8 1
N8(tp) ——

z ) sin(k~)U 1+tp

2x
k~ = =

L

M

I~+f+ N ).Jp
p=x

8B
+VI.

N

It

"p-1
= 2vrJp+ ) 8((tp —t )/2), (29)

which may be reduced to the equation

N M

N8 tp — ) sin(k, ) =2~Jp+) 8((tp —t.)/2).
j=1 a=1

(3O)

With the substitution zp = tp —~~ Q. i sin(k;) this
equation is reduced to Eq. (24), with unknown variables
2;p. The equation derived for the variables z is inde-
pendent of the fiux f and the value of U. It is just the
equation for an isotropic Heisenberg antiferromagnet on
the ring having N sites and M down spins. The solution
for x is independent of the fiux f or the value U. How-
ever, the original variable tp, expressed via x with the
aid of the formula

(34)

where L = L(1+ U+&) .
Taking this solution into account, the formula for the

ground-state energy takes on the form

2x p Imax + Iming d
—— Dc s&o= f ———+groun N 2

(),
SB t—g p

+UL =N +f N-
4

tp —xp + ) sin(kj)~NU. (31) (35)
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where p = —P& z Jp, I „and I;„are maximalM

and minimal charge quantum numbers, and D
2 sin(7rN/I )/ sin(m/L). Here the values of quantum num-

bers xp do not depend on the magnetic field. Precisely
speaking, they do not change their values when the flux

changes within a single parabola. The ground-state en-

ergy will be associated with a new set of the quantum
numbers Jp. This means that with the first correc-
tion taken into account, these parabolic curves, which
the ground-state energy consists of, change their posi-
tion mostly along the vertical axis and do not change in
form. Thus, in this case, the quasi-1/N periodicity is

preserved.
To conclude, our investigation sheds light on the case

in which the ring contains many electrons in the limit
of very dilute electron density. In the correlated state
an effective phase shift appears between the momenta of
the different electrons, a shift which is associated with the
repulsive interaction. Because of the shift the periodicity
of the Aharonov-Bohm flux may have a &actional value.
In contrast this effect is not expected to occur for the
negative U-center model, where at best one will have

only the half-quantum-flux periodicity. However, as we

shall see below, a 1/N fractional Aharonov-Bohm effect
may occur on a negative U-center ring, when the Zeeman
energy term becomes important.

VI. PARITY EFFECTS ON A HUBBARD RING

appears an additional phase shift due to scattering of
a given particle on the other particles, via two-particles
interactions. Each scattering event gives a phase shift

0(x) in the Bethe equations. For the case of spinless
fermions, the parity effect is conserved, in spite of the
appearance of the new phases. ~s

However, with the Hubbard interaction, one has a dif-

ferent picture. The analytical solution obtained in the
case of two electrons shows that the phase shift 0(x) cre-
ates a quasi-half-flux periodicity, which improves when

the parameter o. becomes smaller and smaller. The in-

teraction creates an addition to the statistical flux which

appears between the two electrons.
It is interesting that in the limit U ~ oo this phase

shift is exactly equal to a half-flux quantum. Therefore
if the flux of the external magnetic field is equal to a
half-flux quantum, then, with that additional statistical
half-flux quantum, the total flux is equal to a unit of
fundamental flux quantum. In comparison with the case
of noninteracting electrons, where the periodicity is in

units of flux quantum, here we already have a periodicity
at half a flux quantum. For the three-electron case the
phase shift is different.

The additional statistical flux arises on counting one

permutation for each of the other electrons. The value

of that phase can be estimated in the limit of o. ~ 0 and

equals

A. Statistical Sux

For spinless fermions there is a difference in responses
to a magnetic field for the cases of even and odd number
of particles on a ring. This is the so-called parity effect.
The effect is practically unchanged if there is an inter-
action between these spinless fermions. When the num-

ber of spinless fermions on the ring changes from odd to
even, there is a statistical half-flux quantum which shifts
the energy-flux dependence by exactly half of the fun-

damental flux quantum. Therefore, for small values of
the flux and at an odd number of spinless fermions, the

ring behaves like a diamagnet. When there is an even

number of particles it behaves like a paramagnet. Kus-

martsev obtained this result by an exact solution with the
aid of Bethe ansatz in the model of interacting spinless

fermions on the ring. ' This was also independently
qualitatively discussed by I eggett for the general case
(called Leggett conjecture) and was proven by Loss
with the aid of the bosonization method in the frame-
work of the same model, ' but for arbitrary coupling.
However, taking spins into account, the situation is dras-

tically changed.
Taking spins into account for noninteracting electrons

gives the diamagnetic response only when there are % =
4n+ 2 particles on the ring, where n is an arbitrary inte-

ger. For all other cases the response has a paramagnetic
character. With finite temperature and disorder there oc-
curs a double parity effect in which, for % = 4n+ 1 and
X = 4n, the response is paramagnetic; for % = 4n + 1

and % = 4n + 2 the response is diamagnetic.
With the inclusion of the Hubbard interaction there

where we get a fraction f„ t ——~. In this case one may
think that this flux is attached to each electron, that is,
all N electrons share 1 unit of the quantum flux. Putting
a new electron on the ring creates a new system, where

X + 1 electrons will now share a unit of quantum flux.
In this system, the response has a purely diamagnetic
character, for any number of electrons.

B. Classi6cation of parity e6'ects

In general terms, the appearance of the parity effect
and the conventional Aharonov-Bohm effect may be de-

scribed as follows. At small values of U, or more pre-
cisely large o. , we have the conventional parity effect for
free electrons (see Table II). With an increase of the in-

teraction there exists the critical value of U = U„i or
o.' = o.'«~, where for values U ) U«i or o. & a„i the
parity effect looks similar to the parity effect for spin-
less electrons. That is, for an even number of electrons
the magnetic response has a diamagnetic character and
for an odd number of electrons the response is param-
agnetic. Note that for spinless fermions the response is
diamagnetic for an odd number of electrons. With a fur-

ther increase of the coupling constant U there is a second
critical value, at U = U2 (o. = o.2), with the new type
of parity effect. Thus for U ) U2 (n ( o.2) the param-
agnetic response occurs only for X = 4n + 1 electrons.
Finally, for U ) U3, so that U3 ) V2, the parity ef-

fect disappears and the ring behaves as a diamagnetic
for any number of electrons. The value of V3 depends on
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TABLE II. The classi6cation of different regimes of the parity effect, with the change of the
Hubbard interaction. The number of electrons on the ring is equal to 4n+ 2, 4n+ 1,4n, and 4n —1,
respectively.

Particle Number

4n+ 2

4n+ 1
4n

4n —1

U& Ug

diamagnet
paramagnet
paramagnet
paramagnet

Ui &U&U2
diamagnet

paramagnet
diamagnet

paramagnet

U.2 & U & U.3

diamagnet
paramagnet
diamag net
diamagnet

U, 3 & U

diamagnet
diamag net
diamagnet
diamagnet

the electron density. As discussed above, the parameter
a is what matters. From our investigation we may con-
clude that the critical value for the disappearance of the
parity effect equals a3 0.02. With the disappearance
of the parity effect the quasi-1/N-fractional Aharonov-
Bohm periodicity will appear. The classification of the
different parity regimes is shown in Table II.

The parity effect is preserved with disorder or finite
temperature. However, the change of this classification
with the change of temperature is nontrivial and will be
discussed in a forthcoming paper.

VII. AHARONOV-BOHM EFFECT
FOR U-CENTER PAIRING MODEL

A. Half-flux periodicity

It is interesting to compare the results with the
Aharonov-Bohm effect in the case when there exists a
pairing of the electrons induced by a negative U po-
tential (pairing due to a negative U center). In a one-
dimensional system with negative U pairing one expects
that the two electrons will tend to pair together on the
same site. On the ring these electrons will also have the
tendency to move in pairs. The kinetic energy, due to
the finite size, will try to destroy the pairs.

Therefore we may have in this case the approximate
half-quantum-flux periodicity. For the same reason as in
the correlated state discussed above in Sec. III, the half-
quantum-flux periodicity is improved with the increase
of iUi and I. However, the character of this state is

different &om the correlated one. For large negative U
one needs an activation energy (spectral gap) to destroy
the localized pair.

For illustration we show the ground-state energy de-
pendence on the flux in two cases: at a constant value
of U with an increase in the number of sites and at a
constant value of L with the decrease of the negative
value of U. We see in Figs. 9 and 10 that in both cases
half-quantum-flux periodicity improves as both iUi and
L increase. The change in slope of the ground-state en-
ergy as a function of flux will correspond to the change
in the direction of persistent current. In ring supercon-
ductors this current keeps flux quantized in units of half
a quantum lux, for which the negative U case is a plau-
sible model. The magnetization also behaves similarly to
the current.

It is noted that here there is also a parity effect: in
the cases of an even and an odd number of particles the
Aharonov-Bohm effects are qualitatively distinct. For an
odd number of electrons on the ring there is an unpaired
electron with energy above the spectral gap. Therefore
its contribution to persistent current is important, dis-
rupting the half-flux periodicity created in the case of an
even. number of particles on the ring.

B. Low versus high density limit

There is, however, a correspondence between the states
associated with the positive and negative U values. The
dilute density limit of electrons on the ring described by
the Hubbard Hamiltonian with positive values of U cor-
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FIG. 9. The same as in Fig. 2 but for the
case of U-center pairing. Here L is kept 6xed
at 6ve sites, but U = —1t, —St or —20t. o is
for U = —t, + is for U = —Gt, and is for
U = —20t.
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FIG. 10. The same as in Fig. 1, but for
the case of U-center pairing. Energies are in
units of t. Here U = —10t and L takes on val-

ues of three, five, and eight sites. o is for three
sites, + is for five sites, and . is for eight
sites. The ground-state energy at zero Bux
has been subtracted to normalize the curves.
The Bux is in units of the quantum Gux.
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responds to the high electron density limit, described by
the same Hubbard model with negative values of U, with
the aid of the transformations

c, + Ma, + (37)

and

c~ Ma +

The Hamiltonian (1) transforms into

H = t) (o +o'+i+ —o 6'+i )

+U) n+ —U) n+n, (39)

(40)

This is a negative U-center model in a magnetic Beld of
strength U, creating the Zeeman term. Note that with
this transformation the number of spin-up particles is
not changed N+ „, ——N+, but the number of spin-down
particles is equal to N „, = L —N . In other words,
spin-down particles are equivalent to holes in the origi-
nal Hamiltonian. Thus the spin-up particles are moving
in a field of flux 4+ ——f and spin-down particles are
moving in a field of flux 4 = f + lvr. Therefore the
systems with an odd and an even number of sites will
have diferent energy-flux dependence. One of them will
be transformed into the other one with a shift of a half-
flux quantum. Thus there is a parity eÃect here. Let us
now discuss the ring with an even number of sites. We
have shown that electrons on the ring, described by the
Hubbard Hamiltonian with positive values of U in low
density limit, behave in the same way as the high den-
sity electron case, described by the Hubbard Hamiltonian
with the negative values of U, provided that the system

Introducing an auxiliary Geld acting only on the spin-
down electrons with a Bux through the ring of 4 = vrL

the Hamiltonian (39) may be transformed to the form

H = -t) o,',o,„,+ U) n;,, —U) n;,,n;, .

is highly polarized.
This comparison shows that the Zeeman energy

term gives very interesting new physics, i.e., fractional
Aharonov-Bohm periodicity for the model of negative U
centers. In the high density electron case, we again have
the fractional Qux periodicity of the ground-state energy
and the persistent current with the period equal to 1/N
This number N is equal to the sum of the number of
spin-up particles and the number of holes. Physically
it is not clear why the fractional 1/N periodicity would
occur in that model. Since the factional 1/N period-
icity in the repulsive Hubbard model indicates strongly
correlated state on N electrons, the same fractional peri-
odicity in the attractive Hubbard model might mean the
appearance of some strongly correlated (bound) state of
P holes and N+ spin-up particles, where P+ N+ ——N.
We postpone the detailed investigation of the implicit
influence of the Zeeman energy on the Aharonov-Bohm
eÃect to a forthcoming paper, assuming for now that
this energy is small (i.e. , the ring has a very large radius).
In that paper42 we found that with the corrections with
the parameter o. the discussed fractional 1/N AB effect
may coexist with integer or half Hux quantum AB ef-
fects. The latter depends on the Zeeman energy . With
the increase of the Zeeman energy the half-lux quantum
periodicity transforms continuously to the integer lux
quantum Aharonov-Bohm periodicity.

VIII. POSSIBLE EXPERIMENTS

A. Quantum dot arrays

It is worth noting that there is a possible practical re-
alization where the above model may be applicable; that
is the case of a ring consisting of quantum dots placed
in succession. These structures may be built and inves-
tigated using modern technology. The single quantum
dot will act as a potential well for the electrons. If the ra-
dius R of the quantum dot decreases, the charging energy
e /R increases and a case occurs in which no more than
two electrons with opposite spin can be accommodated
on a single dot. The system of quantum dots is to be
described with a Hubbard Hamiltonian with U = e /R.
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Therefore in a ring consisting of quantuxn dots, with high
charging energy, one may observe the destruction of the
simple Aharonov-Bohm effect and the appearance of the
fractional period. Note that since the reason for the ef-
fect is a local charging energy of the dot, the round shape
of the ring is not important. Its shape, for example, may
be square or even triangular.

The second system where the proposed effect might
be observed is a two-dimensional array of quantum dots.
If we put such an array in the magnetic field, an edge
current Bowing through the dots at the edge occurs. The
How covers a maximal cross-sectional area and therefore
needs the lowest field to have Aharonov-Bohm period.
This current is similar to the creation of edge currents in
the &actional quantum Hall effect.

If we assume that the size of the quantum dot is about
50 A. , then the charging energy may be estimated as
about U = E, = 0.1 eV. In this case if the tunneling
integral is about t = 0.1 eV, then for a circumference of
the array (or the ring) of about LIi ) 10000 A one may
already see the fractions 1/3 or 1/4 or even 1/10 of the
Aharonov-Bohm period. This depends on the number of
electrons in the edge current.

The last remarks need to be extended. The issue is
to observe an edge or surface current in small semicon-
ducting samples. The current is assumed to flow through
edge states; the Aharonov-Bohm effect in such systems
is then due to transport via the edge states. It has
been shown that the periodic magnetoconductance os-
cillations can occur in singly connected geometry, such
as a point contact444 or as a disk shaped region in a
two-dimensional electron gas. ' One of these systems
might be, for example, a single quantum dot of the ra-
dius about R = 1000 A. or an array of such dots at large
distances from each other. The quantum rings may be
also created &om a two-dimensional electron gas by ap-
plying concentric gates. By applying such a gate volt-
age it is possible to deplete a central region and to forxn
a quantum ring. The electron concentration on such a
ring may also be changed and controlled with the gate
voltage. In such a way it is possible to create the con-
ditions where the fractional Aharonov-Bohm effect may
be observed. The importance of the Coulomb interaction
contribution in such quantum rings has been estimated
recently via a Hartree-Pock approximation in Ref. 49 and
via a variational method in Ref. 50. However, in both of
these publications the &actional Aharonov-Bohm effect
has not been recognized.

Sivan and Imry have shown that edge states of such
a quantum dot make the geometry effectively doubly
connected. In this case the quantum dot traps flux
quanta equally well as a ring and the orbital current flows
through the edge states. With the change in the gate
voltage one may change the number of electrons in the
dot. Measuring the Aharonov-Bohm period at different
gate voltages with the aid of &actional Aharonov-Bohm
effect one may see how the number of electrons in the
edge states increases or decreases. In this case again the
predicted 1/N fractional Aharonov-Bohm effect might be
useful, to measure the number of electrons in the edge
states of the single dot.

B. Semiconductor single ring

It is worth mentioning here a recent experiment
on a semiconductor single loop in the GaAs/GaAlAs
system, for which single-flux periodicity has been de-
tected. It was estimated that this loop has only a few
electron channels (equal to 4). The result of this exper-
iment has been explained in our previous publication,
i.e., the single-flux periodicity is due to disorder.

By doping or by applying a gate voltage the number
of electrons may be decreased. In that case the role of
the electron-electron interaction increases. Here again we
may have a physical situation when the kinetic energy of
electrons (an energy of size quartization) will be equal
to the energy of electron-electron interaction, i.e., the
situation of the fractional Aharonov-Bohm effect. That
is, we argue that even in that experiment the &actional
Aharonov-Bohm effect might be observed in the very low
density lixnit.

C. Carbon clusters

One of the possible systems where one xnay look for
the &actional Aharonov-Bohm effect is carbon clusters,
where recently considerable progress has been made.
The complicated polymeric molecules, different macro-
molecules of ring-chain shape, have been synthesized.

One exaxnple is the molecule C6p. When intercalated
with alkali metal atoms to form the fullerides A C6p,
that material with z = 3 becomes superconducting be-
low temperatures 18 and 28 K for A =K (Ref. 52) and
for A =Rb (Ref. 53), respectively. These discoveries
stimulated next progress in the construction of carbon
nanotubules, created by rolling up a graphene sheet and
having a cylinder shape of an arbitrary radius. 5 A short
review of these investigations may be found in Ref. 55.
These systems are especially attractive for an investiga-
tion of the &actional Aharonov-Bohm effect, since the
concentration of the current carried on a single tubule
may be easily changed by doping without the destruc-
tion of the tubule structure.

Attention must also be given to the clusters &om C2 to
C2pp, which are important &om another interesting as-
pect, namely, aromaticity. It is known that with a large
number of atoms such monocyclic structures are more
stable than the corresponding linear forms. s %e suggest
some mention of short chain polymers which can be ob-
tained by cutting long chain polymers such as polyethy-
lene where the Hubbard model is known to apply.

D. Raman scattering

It is worth noting that the findings might be applicable
to the description of the frequency changes of phonons on
the ring in magnetic field (see Ref. 57). That is, as was
shown in Ref. 57, that the phonon or vibron &equency
changes for the atomic oscillation along the orbital cur-
rent repeats the Aharonov-Bohm periodicity of the loop.
Therefore the studies by high precision Raman scatter-
ing of vibron frequency changes on the carbon clusters
in the transverse magnetic field may be helpful to detect
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the predicted effect.
The effect of the fractional or 1/N periodicity is di-

rectly related to the phenomenon of the Coulomb block-
ade. The feature of both these phenomena is due to
many-body efFects associated with the interacting cur-
rent carriers. That is, the motion or a change of state of
a single electron changes the states of all other electrons.

If we put the ring of quantum dots in a transverse
magnetic field single electrons will have the tendency to
move along the ring. However, hops onto a dot already
containing two electrons are not allowed, since this will
cost energy equal to the charging energy. One may have
incoherent or independent hops. However, there is an-
other possibility. This is a process, which will not cost
the charging energy, in which all electrons on the ring
make coherent hops (cotunneling). In other words, this
is the simultaneous motion of all electrons on the ring. It
is clear that if we move all electrons together the charg-
ing energy is not important (U may be arbitrarily large)
and the total change in the phase of the many-body wave
function will be equal to 2+fN

From the gauge invariance of the ground state of the
ring we conclude that the equivalent state to f = 0 is
N f = 1. Hence the period of interacting electrons on the
ring is f = 1/N, in agreement with the results obtained
in this paper.

IX. CONCLUSIONS

In the present work we have studied the effects of the
electron-electron correlations on the Aharonov-Bohm ef-

fect in a quantum ring. We have shown that the correla-
tions result in a fractional Aharonov-Bohm effect, which
appears when the parameter n = Nt/IU is small. This
case may occur when U/t is large or in low density limit
when the filling N/I is small. The conclusion that the
low density limit of the Hubbard model is equivalent to
a strong coupling limit U/t )) 1 coincides with one ob-
tained by Shulz, a work which describes Luttinger liq-
uid properties in the framework of the bosonization ap-
proach. Using the Aharonov-Bohm effect we proved this
theorem far beyond the low-frequency limit of that the-
ory.

We have found also a very interesting scaling symme-

try, hold for the low density limit, namely, that the shape

of the ground and excited energy-fIux dependences de-
pend only on the parameter o. = &&. In other words,
when o, (( 1 the energy-Qux dependences obtained for
the different values U and L, provided that the parameter
o. =const is fixed, can be transformed one into another
by a scaling transformation of the energy scale. This
confirms the Lieb suggestion that the Hubbard Hamil-
tonian describing a system of the 6nite size has some very
nontrivial internal symmetries.

The &actional effect is not expected to occur for the
negative U model if the Zeeman term is neglected. If the
Zeeman term is not neglected the fractional effect may
occur even for negative U.

The density of electrons may be well controlled in many
experimental situations, for example, by doping, or by
applying the gate voltage to change of the position of
the chemical potential as it is used in quantum wells.
Therefore the predicted &actional Aharonov-Bohm effect
is a good challenge for experimentalists.

Note added in proof. Recently we have become aware
that in AuIn rings prepared by e-beam lithography, the
fractional 1/4 efFect has been observed. ss The effect has
been observed in the region of a superconducting transi-
tion, which is very broad, i.e. , where the phase separation
into superconducting droplets might occur. Therefore,
it seems that a system reminiscent of the quantum dot
chain ring is created. If the phase coherence between the
superconducting droplets is broken, the unpaired elec-
trons, which are created due to the parity effect in some
droplets and which number very few, may play an impor-
tant role in the creation of the fractional Aharonov-Bohm
effect, i.e. , our discovery of the fractional 1/N efFect may
be relevant.
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