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Product-basis method for calculating dielectric matrices

F. Aryasetiawan and O. Gunnarsson
Max-P/anck Ins-titut fur Festkorperforschung Heisenbergstrasse 1, 70M9 Stuttgart, Federa/ Republic of Germany

(Received 15 December 1993; revised manuscript received 24 February 1994)

We present a method for calculating dielectric matrices of periodic systems. Unlike the conven-
tional method, which uses a plane-wave basis, the present method employs a product basis, which, in
the linear-mufBn-tin-orbital formalism, consists of products of orbitals. The method can be used for
any system, including sp as well as narrow band systems. We demonstrate the applicability of our
method by calculating the energy-loss spectra of Ni and Si, including local-field effects that require
the full dielectric matrix. Good agreement with experiment is found. The small number of basis
functions makes the method suitable for self-energy calculations within the GR' approximation,
without making the so-called plasmon-pole approximation for the dielectric matrix.

I. INTRODUCTION

The response function of an electronic system has long
been recognized as a basic quantity to describe many im-
portant properties of the system, such as optical, trans-
port, electronic, and magnetic properties. In this paper,
we are concerned with the density-density response func-
tion P, i.e. , the function describing a change in the elec-
tron density bp due to an external perturbation bV'":

byextP
P is a basic ingredient in many-body perturbation the-

ory, which has proven to be very successful in atomic
physics. Its application to electronic structures in solid-
state physics, which is our main interest, has been very
slow due to a prohibitively large computational size in
obtaining P. Fortunately, ab initio many-body perturba-
tion calculations have become feasible over the last few
years, due to rapid progress in computer technology and
a better understanding of theory itself. With the inven-
tion of the linear method, we can now obtain single-
particle band structures of complex systems with rela-
tive ease. They define the zeroth order Hamiltonian in a
many-body perturbation calculation. A working approx-
imation for the evaluation of a perturbation series was
developed in the early sixties by Hedin and Lundqvist
known as the GW approximation (GWA), ' and it has
been applied to many systems with success.

In most GR' calculations, the screened potential W =
v, where e is the screening matrix and v is the bare

Coulomb potential, is calculated in a plane-wave basis.
This is a natural choice for systems that can be suitably
treated with pseudopatentials for twa reasons: first, the
single-particle wave functions, which are needed in the
evaluation of P, are expanded in plane waves, and sec-
ond, the Cou}omh potential becomes trivial, since it is
diagonalized by the plane waves. Other advantages of
the plane-wave basis are good control over convergence
with respect to the number of basis functions and pro-
gramming ease. There are, however, serious drawbacks.

(1) It is not possible to do all-electron calculations. In
many cases, it is important to include core electrons. For

instance, in the case of Ni, the exchange of a valence state
with the core states is —10eV.

(2) The number of plane waves becomes prohibitively
large for narrow band systems.

Moreover, the plane waves have no direct physical inter-
pretation.

To overcome these drawbacks, we use the linear mufBn-
tin-orbital (LMTO) method, 2 which allows us to treat
any system. The LMTO method uses a minimal number
of basis functions and we carry over the concept of min-
imal basis in band structures to the dielectric matrix e.
Instead of a plane-wave basis, we use a "product basis, "
which consists of products of LMTO's. As will become
clear later, the product basis constitutes a minimal basis
for ~ within the LMTO formalism. A method for invert-
ing the dielectric matrix using localized Wannier orbitals
instead of plane waves has also been used in the context
of local-field and excitonic effects in the optica1 spectrum
of covalent crystals.

Our method for evaluating e can be used for any sys-
tem, although our interest is in transition metals and
their compounds (e.g. , Ni and NiO). Due to a small num-
ber of basis functions, the method allows us to obtain the
dielectric matrices for these systems without making the
so-called plasmon-pole approximation, ~ whose valid-
ity in these systems is doubtful. We demonstrate the ap-
plicability of our method by calculating the energy-loss
spectra of Ni and Si, including local-6eld eKects, which
require the full calculation of the dielectric matrix. We
have also performed GS' calculations for these narro~
band systems, but this will be the subject of subsequent
papers. In this paper we concentrate on the numerical
machinery behind the calculations.

A different method for dealing with narrow band
systems has also been devised before, using a modi-
fied LAP%' method for the band structure and basis
functions. ' This method has been applied with success
for calculating the energy-lass spectra and seN-energy of
Ni. Due to a relatively large number of basis functions
needed in the LAP' method, extension to larger systems
is hampered by the computational size.
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The paper is organized as follows. In Sec. II we de-
scribe the theory and the method and in Sec. III we ap-
ply the method to calculate the energy-loss spectra of Ni
and Si. Finally, in Sec. IV we draw our conclusions.

II. THEORY

A. The dielectric matrix

The linear response function for a noninteracting sys-
tem is given by

P (r, r'; ur) = d(d'S (r, r'; ur')
0

1 1
X

tv —v'+ib tv+tv' —vbI'

where

occ unocc

S (r, r', (d) = ) ) gk„(r)Qk „(r)gk,„,(r')Qk„(r')
kn k'n'

XS((b ekrnr + ekrb) ~

gk„and ek„are the Bloch state and its eigenenergy of
the corresponding noninteracting Hamiltonian H . We
have made use of the time-reversal symmetry in the above
expression, i.e., for every Qk„ there is g' k„with the same
eigenvalue.

The inverse dielectric matrix, which determines the
screening properties, is given by

In simple metals and sp semiconductors/insulators, the
main plasmon excitation forms a well de6ned sharp peak,
with little structure and well separated &om the single-
particle-like excitations. The plasmon-pole approxima-
tion is expected to work well in these systems. In a
heavy alkaline metal (Cs), however, the plasmon exci-
tations form several peaks. In transition metals the sit-
uation is a lot worse because there are no well de6ned
plasmon peaks in the first place. The plasmon and
single-particle-like excitations merge, resulting in a com-
plicated structure with two main peaks separated by a
few eV, as can be seen in the energy loss spectra of Cu or
Ni. For these systems, the plasmon-pole approximation
is not expected to work well. Should one nevertheless try
to use the plasmon-pole approximation by having several
b functions instead of one b function to represent these
peaks, one would run out of sum rules, which are needed
to determine the positions and weights of these b func-
tions.

We would like to be able to treat not only 8p sys-
tems, but also d and f systems with narrow bands with-
out resorting to uncontrolled approximations such as the
plasmon-pole approximation. Already with the former
systems, it is a large undertaking to calculate e 1 without
the plasmon-pole approximation, even when the systems
are small. With the latter systems, we simply cannot
afford to use plane waves and therefore we have taken a
completely different approach, which we describe below.

B. The product basis

r (r, r';v) = b(r —r') + / d r"v(~r —r"~)P(r", r'; ), v

where P is the total response function which, in the ran-
dom phase approximation, is related to P by the in-

tegral equation

P=P +P vP. (4)

1st BZ

Calculating e in real space is not feasible because r and
r' are not restricted to a unit cell and e can be long
range. The usual procedure is to expand it in a complete
set of Bloch functions (Bk;) in the following form:

The method described in this section is quite gen-
eral, but we have applied it within the &amework of the
LMTO method, 2 which uses a minimal number of ba-
sis functions. For an accurate description of the valence
states, one needs typically 9 (spd) or 16 (spdf) I MTO's.
To calculate P, however, we need both the valence and
conduction states; the latter can be up to 50—100eV. One
expects that additional basis functions are needed for a
proper description of the conduction bands. In a previ-
ous paper, we described how the LMTO method could
be extended to handle both valence and high lying con-
duction states by having multiple orbitals with different
energies for a given L = lm channel.

In the multiple LMTO method, the basis functions are
of the form

(r, r';(d) = ) ) Bk;(r)e, (k, (d)Bk.(r'). (5)
k ij

XRLv 4 RLv + 4 R L'v' IbRr L'v', RI v

R'I 'v'
(6)

Similarly, P, P, and v may also be expanded in the
above form.

In almost all calculations, the basis functions are cho-
sen to be plane waves, which are appropriate for 8p
systems. Even for these systems, the computational
size is still too large and one resorts to a plasmon-pole
approximation ' where, in essence, each matrix ele-
ment of e is replaced by a b function, whose position
and weight are determined by the static and f-sum rules.
A more general form has also been proposed recently.

where Lv denotes the angular momentum and princi-
pal quantum number, PRL is a radial solution to the
Schrodinger equation inside a sphere centered on an atom
at site R for a certain energy e„, normally chosen at the
center of the band, and b))i is the energy derivative of p
at e . We have used the atomic sphere approximation
where the Wigner-Seitz cell is replaced by sphere(s) of
equal volume. An important point to note is that both b))~

and P are independent of k and band index n. Informa-
tion about the lattice structure and the scattering phase
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gi,„=) yRL, „(k)bRL,„(kn).
Rlv

(7)

Unlike the pseudopotential method with a plane-wave
basis, it is not clear anymore what basis functions should
now be used to expand e . Let us introduce a notation:

shifts (logarithmic derivatives of the wave functions at
the surface of the Wigner-Seitz spheres) is carried in Ii,
which therefore contains the k dependence when a Bloch
sum is performed. For more details, we refer to Ref. 19.
The wave functions are expanded in these LMTO's

For the correlated part, the Hilbert space is

(K') = (g„„@)u (P'), (16)

(pQ } (@occ@unocc}
(0core4 cond) + (4'vali/cond} ~ (17)

which also covers (E ) . (v) alone is also possible, but
this is probably more than is necessary.

Since it is unlikely that one can construct a small but
complete basis for expanding v = 1/lr —r'l in a separable
form as in Eq. (5), we proceed by considering the space
in Eq. (16). From Eq. (1) we have

(P ):—Hilbert space spanned by P (8)

To solve the problem, we first figure out what Hilbert
space is spanned by e . We expand Eq. (4)

P=P +P vP +P vP vP + (9)

Since v is always sandwiched between two P 's, it is clear
that (P}, is identical to (P }. Thus, from Eq. (3) we
see that (e i) is the union between (Po) and (v},

The first term is only necessary when core polarization is
important. In GTV calculations, one is usually interested
in the valence states and a few of the low lying conduction
states. Let us assume that (gg„) = (g ~), keeping in
mind that it might include some conduction states. Then
from Eqs. (16) and (17), the total Hilbert space required
1S

(~}= ((score + oval) (oval + Wcond)) .

(~ ') =(P')u(v) (10)

e '(q ~) = 1+v(q)((qlP'lq) + (qlP'»'lq) +

{11)

where lq) = 1/~Vexp(iq r) and v(q) = 47r/q . We can
read &om the above equations that the required Hilbert
space is

(12)

(2) The self-energy of a given state gk„ in the |WA
schematically has the form

~(kn, ~) = (4~-lclVI&k-)
=(&i &lvl@&i )+(@i @lvPvlAi ) (13)

The first term is the bare exchange and the second term
is the correlated part. The extra Q consisting of core, va-
lence, and conduction states comes from the Green func-
tion G,

«}-=«....}+«,)+«-- }
For the exchange term, the required Hilbert space is

(~*}= H~-(@--+&-i))

(14)

since the exchange part only involves summation over
occupied states. In principle we need only the overlap
between the above space and (v), but it is unlikely that
there exists a function f E (Z ), such that (flvl f) = 0.

In practice, however, we usually take matrix elements of
~, or use it in conjunction with other quantities so that

we may not actually need the entire space. We consider
two examples that are closely related to our area of in-
terest.

(1) The energy loss spectra which are given by

For practical purpose, the above equation is not very
useful because (g}depends on k. In the LMTO method,
however, the basis functions consist of P and P, which are
k independent. Schematically, from Eqs. (6) and (7), we

have

A = [44+ (00+ 44)h+ 4th'jb'

Since h and b are just coefficients, we may rewrite Eq.
(19) as

(» = («) + (&i}+(i&} (20)

This equation displays very clearly the Hilbert space
spanned by (Z). If we include all the possible prod-

ucts of PP, PP, and PP, then we have a complete basis
by construction. The number of products in Eq. (20)
can still be large. With nine Spd orbitals, excluding
core states, the total number of product functions is
3 x 9 x (9+ 1)/2 = 135. With 16 spdf orbitals we have

3 x 16 x (16i 1)/2 = 408.
We reduce the number of product functions in three

steps.
(1) We neglect terms containing P, since they are small

(P is typically 10% of P). This reduces the number of
product functions by a factor of 3.

(2) In Eq. (18), there are no products between conduc-
tion states. Therefore, in sp systems, products of PdPd
can be neglected and similarly in d systems, products of
$fQf may be neglected.

(3) The remaining product functions turn out to have
a large number of linear dependencies, typically 30—50%.
These linear dependencies can be eliminated systemati-
cally, a process which is described below.

In general, a product function is defined by

B;(r) = ynl, „(r)yn L, ~ (r); i = (RLv, R'L'v') (21).
With the simplification (1), the product function be-
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comes

B;(r)—:Prti, „(r)Prti, „(r)
—0'R/ (r)4Rl' (r)VI (r)VL (r) (22)

O,~
= (B;~B~), (24)

Oz=ez, (25)

and neglecting eigenvectors z; with eigenvalues e; ( tol-
erance. The resulting orthonormal basis is a linear com-
bination of the product functions:

TABLE I. The completeness test of the optimal prod-
uct basis for nickel. A product of two wave functions
is expanded in the basis: gi,„gi,e „r —— P, B;c; with
k = (0 0 0), eg„= —1.22 eV (the highest valence state at
the I' point) and k' = (0.5 0.5 0.5). The basis is complete
if g,. (c;) = ](@g ~@pe„e)] . The number of optimal product
basis functions is 101 and 82 with and without 3s, 3p core
states, respectively.

where i = (R, Lv, L'v') This function is only nonzero
inside a sphere centered on atom R. Thus, there are no
products between orbitals centered on diHerent spheres.
For a periodic system we need a Bloch basis and perform
a Bloch sum

Bi,;(r) = ) e'"' Pnl, ~(r —R —T)4RL'v (r —R —T).
T

(23)

The k dependence is in some sense artificial because the
function has no overlap with neighboring spheres, similar
to core states. After leaving out unnecessary products
[step (2)], we optimize the basis by eliminating linear
dependencies [step (3)]. This is done by orthogonalizing
the overlap matrix

B; =) B~z~;,
2

(26)

and typically we have 70—100 functions per atom with
spdf orbitals. The above procedure ensures that we have
the smallest number of basis functions. Further approx-
imations may be introduced to reduce the basis.

In Table I we show a completeness test for the basis.
The slight discrepancy for high lying states is due to the
neglect of P's in the product basis, which become more
important for the broad high lying conduction states, and
also because the optimization procedure puts less weight
on those products that have smaller overlap. This is
not crucial for two reasons: the matrix elements become
smaller for the higher states and, in relation to GW cal-
culations, there is a factor of 1/u that makes the higher
states less important.

III. APPLICATIONS: ELECTRON ENERGY' LOSS
SPECTRA OF NI AND SI

The electron energy-loss spectra measure the energy
loss swered by fast electrons when going through a thin
film by creating single-particle-like excitations and col-
lective excitations, mainly plasmons. It is given by the
imaginary part of the inverse dielectric function

Im e (q, te) = Im —f d rd r'e 'e'e rr, r';m)e'e' '.

(27)

In most calculations, e (g, u) is approximated by
1/e(rI, u), which corresponds to neglecting the local-field
arising from the nonhomogeneity of the induced charge
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FIG. 1. Loss spectra of ferromagnetic Ni obtained with in-
creasing number of LMTO basis: with 4s, 4p, 3d orbitals
(dash-dotted line); 4s, 4p, 3d, 4f orbitals (dotted line); 4s,
4p, 3d, 4f, 5g orbitals (solid line). All cases include core
excitations. The solid circles are the experimental results.
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density. A number of calculations have included the local
field effects in semiconductors ' ' and one calculation
for a transition metal (Ni). Most recently, local-field
effects have also been considered in the calculations of

plasmon dispersions in light alkali metals and heavy
alkali metals.

To calculate ~ we first calculate P in the product
basis:

occ unocc

I';;(&")=).).) (s 8'» l@~+ -)(6+ -IM~s~), , ,
—

) ('s)
k ~ n'

8(a)) -+ e (29)

with o = 0.2 Ry. The energy-loss spectra including local
field is given by

Im e '(q ~) = Im ).(qlBg') e,,'(q ~)(B~lq) (3o)

where (qlB~, ) is the Fourier transform of the product
basis and e, . (q, ur) is the matrix element of e in the
product basis.

We have made a systematic study of Ni energy-loss
spectra concerning the importance of high lying states
and the sensitivity with respect to the quality of the tran-
sition matrix elements. Our starting Hamiltonian for the
evaluation of P is the local density Hamiltonian

We must also calculate the Coulomb potential v in the
product basis, which is described in the Appendix. We
then use Eqs. (3) and (4) to obtain P and e

To calculate the energy-loss spectra, however, it is
more efficient to calculate So in Eq. (2) than to calculate
P directly. In the actual calculations, the b function is
replaced by a Gaussian

H =T+VH+V

We have calculated all spectra with and without local
field for q = (0.25, 0, 0)2x/a, a = 6.654 ao.

The loss spectra obtained with different sets of LMTO
orbitals are shown in Fig. 1. The double peak at around
25 eV corresponds most likely to plasmons. The sharp
edge at 67 eV is due to the onset of 3p core excitations.
Inclusion of the f orbitals is essential because the transi-
tion probability from the d to f is large, which is reflected
in the absence of intensity between 40 and 60 eV when
the f orbitals are neglected. Inclusion of the g orbitals
improves the spectra above 60 eV but there are still some
remaining discrepancies that suggest that the band struc-
ture and the transition matrix elements are not accurate
enough. Indeed, we have shown in a previous paper
that spdf or even spdfg orbitals are not sufficient for a
proper description of the high lying conduction states.
Inclusion of the second d orbitals, i.e. , 4d orbitals, in the
basis functions is crucial and they were found to change
the band structure above 30 eV dramatically.

In Fig. 2 we show the effects of adding the 4d orbitals
to the LMTO basis. The main improvements are the
shifting of the second main peak by 3 eV to lower energy
and the reduction in intensity in the region between 40

1.6

Q

I

E

0.0
0.0

I I I

50.0
si (e

100.0

0.0
0.0

I I I

50.0
ei(e

100.0

FIG. 2. The effect of including the 4d orbitals on the loss
spectra of¹:with 4s, 4p, 3d, 4f, 5g orbitals (dotted line) and
with 4s, 4p, 3d, 4d, 4f, 5g orbitals (solid line). Both cases in-
clude core excitations. The solid circles are the experimental
result.

FIG. 3. The effect of including an empty sphere on the loss
spectra of Ni. The empty sphere is located at (0.5 0.5 0.5)a.
The solid and dotted lines are the loss spectra obtained with
and without an empty spheres, respectively. Both spectra are
calculated with 4s, 4p, 3d, 4d, 4f, 5g orbitals including core
excitations. The solid circles are the experimental result.
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and 60 eV. The large peak at the onset of the 3p core
excitations is shifted to higher energy, but the magnitude
is still too large.

To further improve the band structure and the transi-
tion matrix elements, we add empty spheres. Although
they have little effect on the valence states, we found sig-
ni6cant effects on the high lying conduction states. The
result is shown in Fig. 3. A good agreement with exper-
iment is obtained; in particular, the positions of the two
main peaks are very close to the experimental peaks, with
a 1 eV shift to higher energy. The magnitude is some-
what too large, because it is sensitive to the choice of the
broadening used in the calculations, as may be seen in
Fig. 4 where the spectra are calculated with cr = 0.1 Ry
and e = 0.2 Ry. Increasing the broadening will reduce
the heights of the peaks further, but the structure in the
rest of the spectra is lost.

It is interesting to note that although the f-sum rule
is off by almost a factor of two when the f orbitals are
neglected, the static sum rule is given correctly. This
is due to the fact that the static sum rule is a ground-
state property. It has an important implication in the
GW calculations because the self-energy is given by an
integral of the form f du'W(u + u')/u'.

In our calculations, the local-field effects are found to
be small, except for energies above 50 eV, as may be seen
in Fig. 5. This result is surprising because the charge
density in Ni is very far &om homogeneous and one ex-
pects that the corresponding screened potential would
be highly inhomogeneous, resulting in a large local-6eld
correction. Since P itself must have high Fourier compo-
nents, the result suggests that the screened potential does
not have signi6cantly high Fourier components. Since the
objective of this paper is to describe the method of calcu-
lating dielectric matrices, we present a detailed investi-

IO

I

E

0.0
0.0

I ) I

SO.O
e(eV)

100.0

FIG. 5. The effect of local field on the loss spectra of Ni.
The solid and dotted lines are the loss spectra with and with-
out local field corrections, respectively. Both spectra are cal-
culated with 4s, 4p, 3d, 4d, 4f, 5g orbitals, including an empty
sphere at (0.5 0.5 0.5)a and core excitations.

gation of the local-field effects in a forthcoming paper.
We compare in Fig. 6 our present results with a previ-

ous work which used a modi6ed LAPW method for the
band structure and the basis functions. The second main
peak in the previous calculation is somewhat larger than
the present one but, on the other hand, the intensity at
high energies is better described than in the present cal-
culations. As shown in Fig. 4, the magnitude of the
peaks can be sensitive to the choice of broadening. The

1.6 2.0

1.5-

0

I

E

Q

i 1.0-

0.5—

0.0
0.0

I / I

50.0
a)(e

100.0
0.0

0.0
I I I

50.0
u(e

100.0

FIG. 4. The egect of Gaussian broadening on the loss spec-
tra of Ni. The solid and dotted lines are the loss spectra ob-
tained with cr = 0.2 Ry and a = 0.1 Ry, respectively. Both
spectra are calculated with 4s, 4p, 3d, 4d, 4f, 5g orbitals, in-
cluding an empty sphere at (0.5 0.5 0.5)a and core excitations.
The Gaussian broadening cr = 0.2 Ry.

FIG. 6. Comparison between the loss spectra of Ni ob-
tained with a modified LAPW method (dotted line) and
the present method (solid line). Both spectra are calculated
with u = 0.1 Ry and the solid curve is calculated with 4s,
4p, 3d, 4d, 4f, 5g orbitals, including an empty sphere at
(0.5 0.5 0.5)a. Both cases include core excitations.
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6.0

4.0—

2.0—

0.0
0.0

I

16.0
si (eY)

32.0

FIG. 7. The loss spectra of Si with local field (solid line)
and without local field (dotted line), calculated with 3s, 3p,
3d, 4f orbitals and with a Gaussian broadening cr = 0.1 Ry.
Core excitations are included. The solid circles are the exper-
imental results.

IV. SUMMARY AND CONCLUSIONS

agreement is nevertheless satisfactory considering that
the two methods are very different.

To show that our method also works for sp systems, we
have calculated the energy-loss spectra of Si which have
been the subject of several investigations. ' ' The re-
sult is shown in Fig. 7. A large reduction in the mag-
nitude of the plasmon peak due to local-field effects is
observed, which has also been reported elsewhere. The
calculated spectra correspond to k = (0.25 0 0)2vr/a =
0.3 L, which is larger than the wave vector in the ex-
perirnent (0.067 A. i). This explains the smaller magni-
tude of the calculated plasmon peak, which results in a
larger width. Another interesting feature is the splitting
of the plasmon peak, as also found by Engel and Farid,
whose origin may be assigned to local-field effects. How-

ever, the separation between the two peaks is quite large
(2.5 eV), significantly larger than the experimental res-
olution ( 0.8 eV), and therefore it is not likely that
the experiment has missed this splitting, unless there are
other broadening effects such as those due to impurities.
On the other hand, the peak structure can be sensitive
to the quality of the wave functions.

states and the computational effort is about the same as
for Si. This is not the case in methods based on a plane-
wave basis. A very large number of plane waves would
be needed to describe the rather localized d states, not
to mention the core states, which makes the computation
very expensive, if at all possible.

The relatively small number of basis functions al-
lows us to perform GTV calculations without making a
plasmon-pole approximation. Nevertheless, it is still very
demanding computationally and an ef6cient way of cal-
culating P is needed without sacrificing too much accu-
racy. It is one of the objectives of the present work to find
such an efEcient scheme, but in order to have a controlled
scheme, one must be able to do the full calculations for
the purpose of' comparison.

As applications of the method, we have calculated the
energy-loss spectra of Ni and Si. A good agreement with
experimental results is found in both cases. We have done
a systematic study regarding the importance of high lying
states and the quality of the transition matrix elements
in Ni. It was found that inclusion of the 4d orbitals is im-
portant for a good description of the energy-loss spectra.
This is consistent with the band-structure calculations
described in a previous work, where it was found that
the 4d orbitals dramatically changed the band structure
above 30 eV.

Local-field effects are found to be small in Ni but large
in Si. The origin of local-field effects is an interesting
subject, but has not been studied in detail so far. In a
forthcoming paper, we investigate in detail the origin
of the local-field effects and offer an explanation of why
the local-field effects in Ni are small whereas in Si they
are large.
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APPENDIX: EVALUATION OF THE COULOMB
MATRIX

We consider one atom per unit cell for simplicity.
Extension to several atoms is straightforward. The
Coulorab matrix is given by

We have developed a method for calculating the di-
electric matrix of a periodic system using a product ba-
sis. The method is applicable to any system, sp as well
as narrow band systems, as the examples on energy-loss
spectra have shown. Our method has several advantages
over methods based on plane waves. The main advan-
tages are that there is a small number of basis functions,
core polarization can be easily incorporated, and there is
no restriction to any particular system. In the Ni case,
for instance, there is no difBculy in including all the core

] s,B*,.(r)B~(r')
u,, (q)= — d r d r' (A1)

where B~; is normalized to unity in the unit cell. The
integrations over the whole space may be reduced to in-
tegrations over a unit cell 0 by using the property

Bu,.(r+ T) = e'u Bu;(r) (A2)

and noting that the integration over r' is independent of
the origin of r. This gives
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"(y) = f d"f d' s: (.)s.(,)s ( ),
where

eiq- T
Eq(s, r) = )

T

4 —(q+G) /4a ,'(q+&) ( —.)
0 (q+ G)2

T erfc(o. ~s —r —T~)+n e'q
n/s —r —T/T

(A3)

(A4)

P (s T) =ne'qT d'r B (r).
cl s —r —T

(A8)

1 4~ r,', y~(s) y~(r) (Ao)

It is straightforward to calculate P~(s, G), since it is a
Fourier transform of B~(r). To calculate Pq;(s, T), we
use the following expansion formulas

Pqi(s) = ) Pq;(s)z (A5)

with z given by Eq. (26) and

The Ewald method has been used to obtain the above
decomposition into summations in the reciprocal and real
space. erfc is the complementary error function equal
to (1—erf), and n is an arbitrary constant whose value
is chosen to give a fast convergence in the number of
reciprocal lattice vectors and the number of neighbors.
The essence of the Ewald method is to add and substract
a Gaussian charge distribution which breaks the Coulomb
potential &om a point charge into a short and long range
part. The short range part is done in real space and the
long range part is done in reciprocal space. The main
task is to calculate the potential

and

erf(cx(s —r~) . 47r

n[s —r[ - 2t+ 1
= ) gl(r, s)yL, (s)yr. (r)

L
(AIO)

Ps, (s, T) = rrs's' ) rss(sy)yr(sy) f doys, ys. ys
L

(Ail)

The coefficients gt(r, s) are determined by numerical in-
tegrations using special directions.

At the central sphere, Bq, (r) has no q dependence and
is given by Eq. (22), so that

where

Ps;(s) = f dsrss;[r)ss(s, r)

=) P..(,G)+):P..(,T),

4x e-(q+c) /4~
p .(s G) s(q+G) s

0 (q+ G)2

x dre ' + 'Bir

(A6)

(A7)

where sT ——s —T and

rsvp(sy) = drr —g~(r, ))sBy;(r).2l+ 1 0 p~+~

(A12)

We note that the sum over L is cut ofF by Lq and L2 in
the product function B. The final integration over s is
easily done with special directions.

I. Lindgren and J. Morrison, Atomic Many-Body Theory
(Springer-Verlag, Berlin, 1986).
O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
L. Hedin, Phys. Rev. 139, A796 (1965).
L. Hedin and S. Lundqvist, in Sohd State Physics, edited
by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic,
New York, 1969), Vol. 23.
M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390
(1986).
M. S. Hybertsen and S. G. Louie, Comments Condens.
Matter Phys. 13, 223 (1987).
R. W. Godby, M. Schliiter, and L. J. Sham, Phys. Rev. B
37, 10159 (1988).
F. Aryasetiawan, Phys. Rev. B 48, 13051 (1992)
J.C. Phillips and L. Kleinman, Phys. Rev. 118,287 (1959);
118, 880 (1959); see also V. Heine, in Solid State Physics,
edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Aca-

demic, New York, 1970), Vol. 24.
W. Hanke and L. J. Sham, Phys. Rev B 12, 4501 (1975).
W. von der Linden and P. Horsch, Phys. Rev. B 37, 8351
(1988).
M. S. Hybertsen and S. G. Louie, Phys. Rev. B 35, 5585
(1987).
G. E. Engel and B. Farid, Phys. Rev. B 47, 15931 (1993).
F. Aryasetiawan, U. von Barth, P. Blaha, and K. Schwarz
(unpublished).
See, e.g. , A. L. Fetter and J. D. Walecka, quantum Theory
of Many Particle Sys-tems (McGraw-Hill, New York, 1971).
D. Pines, Elementary Ezcitations in Solids (Benjamin, New
York, 1963).
F. Aryasetiawan and K. Karlsson (unpublished).
L. A. Feldcamp, M. B. Stearns, and S. S. Shinozaki, Phys.
Rev. B 20, 1310 (1979).
F. Aryasetiawan and O. Gunnarsson, Phys. Rev. B 49,



16 222 F. ARYASETIAWAN AND O. GUNNARSSON 49

7219 (1994).
S. G. Louie, 3. R. Chelikovrsky, and M. L. Cohen, Phys.
Rev. Lett. 34, 155 (1975).
R. Daling, VT. van Haeringen, and B. Farid, Phys. Rev. B
45, 8970 (1992).
A. A. Quong and A. G. Eguiluz, Phys. Rev. Lett. 7D, 3955

(1993).
P. Hohenberg and W. Kohn, Phys. Rev. 136, 8864
(1964); W. Kohn and L. J. Sham, ibid. 14D,
A1133 (1965).
F. Aryasetiawan and O. Gunnarsson (unpublished).


