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A Hubbard model is solved exactly to characterize confined, intermediate-dimensional excitons for the
full range of electron and hole hopping and interaction strengths. Finite systems with periodic boundary
conditions model unconfined excitons. Finite systems with terminated ends model confined excitons.
Exciton energies, oscillator strengths, and electron and hole distributions are determined. Oscillator
strengths and electron-hole distributions of confined intermediate-dimensional excitons exhibit anoma-
lous, nonmonotonic, nonuniversal dependences on the electron-hole interaction strength and hopping
that are counter to the conventional behavior for quantum-confined excitons and free excitons. Pertur-
bation theory is used to clarify the weak and large interaction limits. In the large-interaction limit, an
exciton dead layer occurs near the boundary of the system because electron-hole correlation is
suppressed near the boundary. Second-order perturbation theory determines the surface potential bar-
rier caused by the suppression of pair correlation near the surface and determines the hopping rate for
tunneling into this barrier. In the weak-interaction limit, on-site correlation of a confined electron-hole
pair is suppressed by asymmetry in the electron and hole hopping. For large asymmetry in the electron
and hole hopping, the oscillation strength of the confined intermediate-dimensional exciton can be less
than the oscillator strength of an uncorrelated, noninteracting pair.

I. INTRODUCTION

Excitons in confined systems have been studied inten-
sively in recent years. ' In the limit of comp/etc quantum
confinement, the splitting between confined single-
particle levels is so large that the electron and hole occu-
py definite independent single-particle states of the
confinement potential, and electron-hole correlation in
the confined dimensions is quenched. In the bulk limit,
the exciton has free center-of-mass motion, determined
by the exciton total mass, and internal excitations, deter-
mined by the pair reduced mass. The center-of-mass
motion is separable from the internal excitations. A sim-
ple understanding is possible in each of these limits be-
cause the exciton behaves as a composite of two indepen-
dent particles: the electron and hole for the quantum-
confined exciton and the free center-of-mass particle and
the bound reduced-mass particle for the unconfined, bulk
exciton. Neither simple picture provides a good under-
standing of excitons confined in systems, such as thin
films, wide quantum wells and superlattices, microfabri-
cated quantum wires and dots, ' large nanocrystallites
and clusters, ' and long chain polymers, which are nei-
ther bulk nor quantum-confined systems. In these
intermediate-dimensional systems, confinement strongly
couples the center-of-mass and relative motion, correla-
tion strongly couples the electron and hole motion, and
the intermediate-dimensional exciton is a composite of
two strongly coupled particles.

Progress toward understanding confined intermediate-
dimensional excitons has been made by use of variational
calculations ' ' and configuration-interaction calcula-
tions. ' Specially constructed variational wave func-
tions have been used to study specific effects, such as
electron-hole asymmetry *' ' and the formation of exci-

ton dead layers near the boundary of the system. ' '

However, no variational wave function has been
developed that can model the full range of exciton states.
Excitons confined in dots and c1usters can be studied by
use of configuration-interaction approaches because these
systems have discrete energy spectra. Configuration-
interaction calculations are numerically exact if enough
configurations can be used. However, these calculations
are numerically intensive and have only been done for
specific systems.

In this paper, I use a Hubbard model to study excitons
in confined systems. This simple model is used for three
reasons: (l) the exciton states can be determined exactly
by numerical diagonalization of this model; (2) one model
can be used to represent many qualitatively different
confined systems, such as quantum dots, wide quantum
wells, superlattices, and polymers; and (3) the same model
can be used for the full range of electron and hole hop-
ping and interaction strengths needed to completely
characterize exciton states in confined systems. As a re-
sult, a complete and consistent qualitative understanding
of the effects of correlation and quantum-confinement on
intermediate-dimensional exciton states can be obtained
from one model. This has not yet been achieved by use of
variational calculations or configuration-interaction cal-
culations.

The properties of free excitons exhibit universal
behavior since the properties do not separately depend on
the electron mass, the hole mass, or the electron-hole in-
teraction strength U( U-1/E, where s is the bulk dielec-
tric constant). Energies vary as pU, and properties that
depend on the exciton wave function, such as oscillator
strengths and pair distribution functions, vary as pU.
The interaction strength U and the reduced mass p can-
not be determined separately unless both energy levels

0163-1829/94/49(23)/16129(12)/$06. 00 49 16 129 1994 The American Physical Society



16 130 GARNETTW. BRYANT 49

and wave-function properties are known. The electron
and hole masses cannot be determined separately unless
the exciton center-of-mass motion, which depends on the
exciton total mass, is also probed. The properties of free
excitons vary monotonically with pU. Binding energies,
electron-hole correlations, and oscillator strengths in-
crease as the interaction strength or the reduced mass is
increased.

Intermediate-dimensional excitons exhibit nonmono-
tonic, nonuniversal dependences on electron and hole
masses (hopping rates in the Hubbard model) and in-
teraction strengths, arising from the interplay of con-
finement and correlation, that are not exhibited by free
excitons. The properties of intermediate-dimensional ex-
citons depend separately on the interaction strength, the
electron hopping, and the hole hopping because the
confinement strongly couples the center-of-mass motion
to the reduced-mass motion. This insight is key for de-

veloping accurate models of excitons in real confined sys-
tems. A Hubbard model for an interacting electron-hole
pair in a finite system (a lattice with a finite number of
sites) is solved in this paper to exhibit, identify, and clari-
fy this nonmonotonic nonuniversal behavior. To correct-
ly identify this nonuniversal behavior, it is important that
one model, which can be applied to the entire range of
electron and hole hopping and interaction strengths, be
used. If different models were used to study different pa-
rameter ranges, then it would not be clear when the
nonuniversal nonmonotonic behavior is real and when it
arises from differences in the models.

The Hubbard model, described in Sec. II, is solved ex-
actly by numerical diagonalization for finite systems.
Three special cases are considered. For systems with
periodic boundary conditions, the Hubbard model is
transformed from a site representation to a momentum
representation. In this representation, it becomes clear
that the ground-state exciton in a periodic system exhib-
its the same universal behavior as a free exciton. Results
are obtained for finite systems with periodic boundary
conditions and with terminated ends to distinguish the
universal and monotonic behavior of free excitons from
the nonuniversal nonmonotonic behavior of confined
intermediate-dimensional excitons. To clarify this
behavior, I use second-order perturbation theory to ana-
lyze the weak and large interaction limits.

Results for energies, oscillator strengths, and electron
and hole distributions for periodic and confined systems
are presented in Sec. III to show how the nonuniversal
nonmonotonic behavior of intermediate-dimensional ex-
citons arises. The energies of intermediate-dimensional
excitons depend monotonically on hopping and interac-
tion strengths just as do the energies for (free) excitons in
periodic (bulk) systems. This paper focuses on properties
such as oscillator strengths and distribution functions
that are determined directly from the exciton wave func-
tion and clearly exhibit the nonuniversal nonmonotonic
behavior for intermediate-dimensional excitons. The fol-
lowing picture arises from these results (see Fig. l for the
behavior of an exciton in a confined two-dimensional sys-
tem) Two possib. ilities occur depending on whether the
electron and hole have similar masses (in the context of
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FIG 1. Physical picture for confined intermediate-
dimensional excitons.

H. THE HUBBARD MODEL
FOR INTERMEDIATE-DIMENSIONAL KXCITONS

Hubbard models are often used to describe interacting
many-electron systems on a lattice of sites. Typically, a
one-band model is used to describe the hopping and the

the Hubbard model to be defined in Sec. II, if the electron
and hole have similar nearest-neighbor hopping rates
T5, =T, ) or the electron and hole have very different
masses (there is a large asymmetry in the hopping rates
T5, « T, ). In the limit of weak interaction (the
quantum-confinement limit with U«T„,T, ), the elec-
tron and hole occupy the uncorrelated single-particle
states defined by the confining potential. As the
electron-hole interaction increases, the electron and hole
contract in the potential defined by the distribution of the
other particle. If the electron and hole masses are simi-
lar, the electron and hole contract similarly as U in-
creases and the pair becomes strongly correlated with the
exciton center of mass confined by the boundary of the
system. If the masses are very different, then the heavier
particle contracts more than the lighter particle and the
electron-hole overlap can be reduced by the asymmetry in
the electron and hole distributions, even as their motion
becomes more strongly correlated. In the limit of very
large electron-hole interaction, the exciton moves freely
inside a confined system with dead layers near the boun-
daries. The dead layer arises because the exciton cannot
fully correlate near a surface. The effect of this dead lay-
er is determined by how strongly the exciton can tunnel
into the layer. Conclusions are presented in Sec. IV.
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electrons partially fill the band. In these models, holes
occur as unoccupied states below the Fermi level of the
band. The bound excited-electron —hole pairs are deter-
mined by taking into account all other electrons. To
model a semiconductor, a two-band model must be used.
The conduction band contains a few electrons; the
valence band contains a few holes. The appropriate
Hubbard-like model is a two-component model with only
a few particles in each component. In this paper I con-
sider confined intermediate-dimensional systems with one
electron-hole pair. The Hubbard Hamiltonian I use to
model a single exciton is

N N
H= g (T,c c/+T&d, *d )+g Uc,'c, d,'d,

N

+ g UNNct»cldj dj
i j =NN

The system has N sites. Here site is used loosely. A site
could be a well or dot in a superlattice of wells or dots, '
an atomic site in a polymer chain, or a fictitious site
defined by a local basis used to represent states in a dot or
nanocrystallite. Only nearest-neighbor electron (hole)
hopping T,(T„),is included. The electron (hole) creation
operator at site i is c;* (d;*). The on-site electron-hole in-
teraction is U. I consider longer-range electron-hole in-
teractions by including a nearest-neighbor interaction
with strength U&z. A simple interaction is used so that
the model can provide qualitative insight that is common
to many different confined systems. For most of the re-
sults presented in this paper, only the on-site interaction
is included. The results are qualitatively the same when
nearest-neighbor interaction is included, and the results
are qualitatively similar to results obtained for specific
systems by use of variational approaches and
configuration interaction approaches with the full
electron-hole Coulomb interaction. Electron-electron
and hole-hole interactions can be included to study mul-
tiexciton states. Linear chains and finite, square two-
dimensional arrays are considered here. Confined sys-
tems are modeled by systems with terminated ends. Sys-
tems modeled with periodic boundary conditions are also
considered. As shown below, excitons in systems with
periodic boundary conditions exhibit the same universal
behavior as bulk excitons. One-exciton wave functions
and energies are determined by diagonalization of Eq. (1}
and by perturbation theory in the appropriate limits.
The nonuniversal, nonmonotonic behavior of confined ex-
citons is most clearly revealed by properties that depend
on the exciton wave function. To understand this
behavior, I determine electron and hole distributions,
electron-hole separation, and oscillator strengths for
transitions from the no-pair state to lth one-exciton state,

N 2

(2)

for finite systems using periodic and twisted bound-
ary conditions to model extended systems. Results
presented in this paper provide complementary insight
about pair correlations in finite systems with terminated
boundaries.

Three special cases are treated analytically for addi-
tional insight. First, I show that excitons in systems with
periodic boundary conditions exhibit universal behavior.
For simplicity, I consider an ¹ite linear chain with
periodic boundary conditions (a ring} and with on-site in-
teraction ( U~~ =0}. First, the electron site operators are
transformed to a plane-wave basis by use of transforma-
tion

H =2 g cos(k)( Tech,'ci, + Tqdq dq )
k

+ — g 5k~ ~g3 gi+g4cg~ci, dg di, . (4)
k), k2, k3, k4

The hopping terms conserve the single-particle momenta.
The interaction conserves the pair state total momentum
(E=k, +ki, ). Thus the pair eigenstates of Eq. (4) must
have definite total momentum. The site operator that
determines the oscillator strength can also be rewritten in
the plane wave basis, g+c d =pi, c& d'

i, Just as .in the
bulk case, only E=0 pair states contribute to the oscilla-
tor strength. The E=0 Hamiltonian is

Hx 0=+2(T, +Ti, )cos(k)ai', ai, + g (U/N)ai, ai,
k k, , k&

where ak =d &ck is the annihilation operator for a pair
with k, = —

kh =k. The properties of the X=0 exciton
in a ring scale with U/(T, +Ti, ). For a bulk exciton,
T, +T& is proportional to the exciton inverse reduced
mass, so the K=O ring exciton has the same scaling
properties as a bulk exciton.

The behavior of intermediate-dimensional excitons can
be determined in the limits of weak and strong interac-
tion by the use of second-order perturbation theory.
First consider the weak interaction limit. For simplicity,
consider an ¹ite linear chain with only on-site interac-
tion. %rite

H=HO+ V, (6a)

where the nearest-neighbor hopping Hamiltonian is

1
cj. g 8 Cg

N k

where the sum is over k=k =2mm/N, for
m =1,2, . . . , N. A similar transformation is used for the
hole site operators. Equation (1), for a system with
periodic boundary conditions, is rewritten in the electron
and hole plane-wave basis

This negative U, attractive Hubbard model has been
used extensively to understand many-body states of
high-temperature superconductors and one-dimensional
organic superconductors. Calculations have been done and

N
Ho=+ T,c cj+g Ti, d dj (6b)
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V=U pc c;d;*d; . (6c)

and the energies are E„=T,e„+T&e„.
e h

Consider the exciton ground state. The unperturbed
ground state is gg(i„ih)=P&(i,)$~(iI, ) with energy

Eg = ( T, + Tz )e, . To second order in perturbation theory

The eigenfunctions of Ho form the basis for perturbation
theory. Let P„(i)be the eigenfunction at site i for the nth
eigenstate (n=1,2, . . . , N) with eigenvalue e„ofthe
single-particle hopping Hamiltonian Hsp =g; c;*c .
The pair eigenstates of Hp are [n =(n„nz) is the index
for the electron and hole single-particle hopping eigen-
states]

g„(i„il,) =p„(i,)p„(iz),

The sums include all unperturbed pair states except the
ground state. The first term gives the second-order mix-
ing of the unperturbed excited states. The last term
arises from the (second-order) change in the wave-
function normalization due to the first-order change in
the wave function. This term is critical for correctly
determining oscillator strengths.

Recall that

N

Og= g gg(i, i)

where the sum extends over all sites i. %riting
Og

=
I Ap+ A 1+ A ~, then

N

Ap= g g (i,i)=1,

Wg =Wg+4g+4g

where

. &. Ivlg&
4g X li'n

(Ep —Ep)nAg g n

and

~n &n I Vlm &&m I Vlg &

(Sa)

(Sb)

&n„n I
Vll 1&

, p p
i =1n&g ne'nh

& n„n„lvl1, 1 &5„„(EP EP )nag g n, nh

(the wave functions are taken to be real)

(T, +Tg)„,, , (e, —e„)
&glvlg&&. Vlg&

(Eg E„)—and

32= 32M+ A2N, (1 la)

(Sc) where the contribution from second-order mixing is

U2 N

„),( T, + T„)(e,—e„)
P'„(j)P (j )P (j )P (k)P (k)Pf(k)

[T,(e, —e )+Tz(e, —e )]

n)1

N N

g $)(j) Q $„(k)Pf(k)
j=1 k=1

(T, +T&) (el —e„) (1 lb)

and the contribution from the second-order change in the
normalization is

N

g p„(j)p„(j)p~(j)
1 j=l

„~g[T,(e& —e„)+Tz(e& —e„)]
Since A 1

)0 for an attractive electron-hole interaction,
O~ increases for increasing interaction strength in first-
order perturbation theory. The correlation induced by
the interaction increases the oscillator strength to first or-
der. The sign of A2 depends on the relative contributions
of A2~ and 32N. The second-order change in the wave-
function normalization gives a negative contribution that

H=H0+ V,
where

(12a)

Hp = U g c,'c,d,'d, , (12b)

decreases 0 . As I will show in Sec. III, nonmonotonic
variations in the oscillator strength occur when the asym-
metry between the electron and hole is large so that the
contribution from the wave-function renormalization be-
comes important.

To understand the large interaction limit, again consid-
er an ¹ite linear chain with on-site interaction. For the
large U limit, write
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and

N N

V=+ T,c c +g Ti, d,'d (12c)
17J E7J

(2) & i, i I V'jI,j )
J U

(14)

For ~i
—j~ &1, H, ', '=0. For ~i

—j~= 1, H,' '=2T, T7, /U,
since there are two ways for the pair to sequentially hop
between adjacent sites. For i not at the end of the chain,
H, ', '=2(T, +Ti, )IU. For i at the end of a terminated
chain, H; '= ( T, + Ti, )IU. The end sites i = 1, N have an
energy barrier of height —

( T, + Ti, )/U relative to the in-
terior sites on the chain because the electron and hole can
hop in only one direction away from end sites. The
correlation energy that the pair can gain by hopping is
reduced at the end of the chain. As I will show in Sec.
III, this barrier creates a dead layer for the exciton at the
ends of the chain.

III. RESULTS

To characterize the effects of confinement and
electron-hole interaction on intermediate-dimensional ex-
citons, I consider terminated chains, rings, and 6nite
square two-dimensional arrays. In this paper, I focus on
results obtained for terminated chain and rings. Results
for two-dimensional arrays are qualitatively similar.
First, I discuss the energies, oscillator strengths, and
charge distributions for the one-exciton ground-states of
10-site chains and rings. Results are presented for equal
electron and hole hopping ( Ti, /T, = 1), intermediate
asymmetry in the electron and hole hopping
(Ti, /T, =0.1) and large asymmetry in the electron and
hole hopping (T7, /T, =0.001). Results are presented as
a function of U/T, for UNN =0 to show the transition
from noninteracting, independent-particle pair states
(U/T, =0) to strongly correlated Frenkel-like excitons
(~ UIT, ~

&&1). Then I discuss how these results change
for different chain lengths. The effect of nearest-neighbor
interaction is presented to show that including a longer-
range interaction does not change the results qualitative-
ly. Finally I discuss the one-exciton excited states of 10-
site chains and rings.

Exciton ground-state energies E for 10-site terminated

The eigenstates of Ho are the states ~i,j ) with the elec-
tron at site i and the hole at site j with energy E;J = U 5;i.
For U & 0, the ground state is N-fold degenerate
(the states ~i, i ) with energy U). The degeneracy is pre-
served in first-order degenerate perturbation theory
because first-order hopping does not couple the
~i, i )(&i,i

~
V ~j,j ) =0 for all i,j). Second-order perturba-

tion breaks the degeneracy. The eigenstates of H are
found to second order in the hopping by diagonalizing

& i, i
~ V~k, l ) & k, i~ V~j,j)

lJ
Eis Eki

For nearest-neighbor hopping, the matrix elements van-
ish unless ~k —

1~ =1. Thus, Eki =0 for terms that con-
tribute and

—1.0—
Th/Te

—2.0—
I

—4.0
—50.0 —40.0 —30.0

U/TB

—20.0 —10.0 0.0

FIG. 2. Exciton ground-state energy for 10-site terminated
chains. Tz/T, =1 (solid curve), 0.1 (dotted curve), and 0.001
(dashed curve). The energy is shifted by the pair interaction U.

chains with on-site interaction [UNN=O] are shown in
Fig. 2 (the energy is shifted by the pair interaction U).
Exciton ground-state energies for rings are nearly identi-
cal to the energies shown for terminated chains. ~E~ in-
creases monotonically as

~ U~ increases. In Fig. 2, U has
been subtracted from the ground-state energy to show the
residual pair correlation energy due to the hopping. The
correlation energy gained by hopping decreases monoton-
ically as the interaction strength increases and as the hole
hopping decreases. When the ground-state energy is
scaled by 1/( T, + Ti, ), rather than 1/T„and plotted as a
function of U/( T, + T7, ), rather than U/T„ the energies
for Ti, /T, =1, 0.1, and 0.001 lie on the same curve. The
universal behavior exhibited by the ground-state energy
of the confined exciton is the universal behavior expected
for the ground-state energy of an exciton on a ring and
for unconfined excitons (see Sec. II). Confined-exciton
states are often found through variational approaches to
solve the Schrodinger equation that determine the
ground-state wave function by minimizing the ground-
state energy. Variational wave functions should be
chosen carefully since the ground-state energy is not al-
ways sensitive to the qualitative differences between ter-
minated chains and rings.

To identify the qualitatiue difFerences between excitons
on rings and excitons on terminated chains, one must
consider properties that depend directly on the exciton
wave function, such as the oscillator strengths and the
charge distributions. Exciton ground-state oscillator
strengths Oax for terminated chains and rings [UNN =0]
are shown in Fig. 3. For rings, Oax increases monotoni-
cally as ~UIT, ~

increases and as T&IT, decreases. For
U =0 (see Fig. 4), 0Ex = 1, as expected for a
noninteracting-pair state. For large interaction, OEX =N
in rings, as expected for a tightly bound electron-hole
pair with equal amplitude for being at each site. The
three curves for rings shown in Fig. 3 become the same
universal curve when they are plotted as a function of
UI( T, + Tq ).

OEx for terminated chains is qualitatiuely difFerent
from OEX in rings. For terminated chains, OEx is a non-
monotonic and nonuniuersal function of U, Tz, and T, .
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FIG. 3. Exciton ground-state oscillator strength for chains

with terminated ends and rings. N=10. Tz/T, =1 (solid
curves), 0.1 (dot-dash curves), and 0.001 (dotted curves).

—50.0 —40.0 0.0

For small U, OEx initially increases as
~

U~ increases from
zero for all T), (this is not visible in Fig. 4 for Th & 0.01).
For T„=T„OEXcontinues increasing monotonically
with increasing interaction. For TI, &( T„OEXincreases,
decreases, and then increases with increasing interaction.
For small U, the confined-exciton oscillator strength
varies nonmonotonically with Th/T, . For large U, the
confined-exciton oscillator strength decreases monotoni-
cally with decreasing T&, opposite to the behavior in a
ring. The large U limit for OEX is significantly less than
X for a confined system.

The initial increase of OEx as U~ increases from the
noninteracting-pair limit can be understood by the use of
first-order perturbation theory for small U [Eq. (10)].
When U=O, the exciton ground state is the product

of electron and hole single-particle ground states
(n, = nh = 1). Interactions mix in higher energy pair
states. In first-order perturbation theory, mixing in pair
states with n, =nh ) 1 enhances OEx (A, )0 for both
terminated chains and rings, as shown in Fig. 5). Mixing
in pair states with n, Wn), does not contribute to OEx in
first-order perturbation theory. In second-order pertur-
bation theory, the normalization of the exciton wave
function is modified by all of the pair states that are cou-
pled by the pair interaction, including states with n, 4n),
that do not contribute to OEX. The amplitudes for pair
states with n, =h&, which contribute to OEX, are reduced
if states with n, Wnz, which do not contribute to OEx, are
also mixed in by the interaction. For rings, the pair in-
teraction does not strongly couple states with n, Wn„ to
the noninteracting-pair ground state. Pair states with
n„=nI, are preferentially included, and OEx increases
monotonically with increasing interaction ( A ), A z )0,
see Fig. 5). For terminated chains, pair states with

n, =nz are preferentially included when T& = T, . In this
case, OEx increases monotonically with increasing in-

teraction. When Th &0.2T„pair states with n, Wn& are
preferentially included and OEX is reduced by the renor-
malization of the wave function [T, A &/( ~

U~ A, ) &0, as
shown in Fig. 5]. In this case pair states with the hole in
an excited level (n„)1, n, =l) are nearly degenerate
with the noninteracting-pair ground state and can strong-
ly mix with the noninteracting-pair ground state without
contributing to A, or 32M. For Tq &0.2T„A2~makes
the dominant (positive) contribution to A 2. For
Th &0.2T„A2)vmakes the dominant (negative) contribu-
tion to Az for linear chains [see Fig. 5; A2)v for rings is

small, comparable to Az~ for terminated chains when

Th = T„].This second-order reduction is strong enough
for weak hole hopping that OEX decreases for a range of

N 2.0

1.5—

tg
Q

N

0.5—

~ M

0.0
1

I 1

-0.6 -0.4
U/T,

1

—0.2 0.0

FIG 4 EG. 4. Exciton ground-state oscillator strength for terminat-
ed chains (solid curves) and rings (dashed curves) for weak in-
teraction. N = 10. Tz /T, = 1 (circles), 0.1 (crosses), 0.01
(squares), 0.001 (triangles), and 0.0001 (pluses). The dot-dash
curve is the exciton oscillator strength for the electron in its
single-particle ground state for T& /T, =0.0001.
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x
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FIG. 5. First- and second-order perturbation contributions
to the ground-state oscillator strength for 10-site terminated
chains and rings in the weak interaction limit: T, A

& I~ U~ for
terminated chains and rings (dot-dashed curve), T, A z /(

~
U

~
A

~ )

for terminated chains (dotted curve) and rings (long-

dash —short-dashed curve), and T, A, ~-/(
~
U~ A, ) for terminated

chains (dashed curve).
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increasing pair interaction and is reduced below the
noninteracting-pair limit for 10-site chains. In this range
of parameters, interaction suppresses the exciton oscilla-
tor strength because the interaction mixes in many
configurations that have no oscillator strength. The
first-order contribution is dominant until

~ U/T, ~

=[—
~ U~ A, /(T, A2)]'~ . Because Az/A, varies as

(1/T„) for small T& [see Eqs. (1 lb) and (1lc) and Fig. 5],
the first-order increase in OEx is dominant for a range of
U that vanishes as Tz decreases. For weak hole hopping,
this initial increase in OEx near the noninteracting-pair
limit becomes difBcult to see.

One can obtain a physical explanation for the non-
monotonic variation of the oscillator strength in confined
systems by considering how the electron and hole localize
to form the exciton in confined chains and in rings. First,
consider the root-mean-square electron-hole separations
in the ground-state exciton of 10-site rings and terminat-
ed chains shown in Fig. 6. The pair separation decreases
monotonically with increasing interaction and decreasing
Tz /T, . For large interaction, the pair is strongly corre-
lated and the pair separation in the ground-state exciton
is the same for rings and terminated chains. For weak in-
teraction, the pair separation is smaller in terminated
chains since the confinement forces the pair closer to-
gether. In addition, for TI, «T„the pair separation de-
creases more rapidly with increasing interaction in the
weak interaction limit for terminated chains than for
rings. These results suggest that the pair is more strongly
correlated in a terminated chain than in a ring. One
would expect the oscillator strength to be enhanced in
terminated chains since the pair separation is less in ter-
minated chains. In fact, trends in exciton properties do
not always follow closely the trends in the pair separa-
tion. The exciton ground-state energies for rings and
chains are nearly the same in the weak interaction limit
even though the pair separation for rings and chains are
difFerent. For large interaction, the pair separations on

rings and terminated chains are the same, but rings have
larger pair oscillator strengths. For intermediate and
weak interaction, both the pair separation and the oscilla-
tor strength are larger on a ring than on a chain.

The electron and hole are distributed uniformly on a
ring, so decreasing the electron-hole separation increases
the electron-hole on-site correlation uniformly on the
ring and increases Oax. Pair distributions in terminated
chains are difFerent. To distinguish the effects of
confinement, one must consider the electron and hole dis-
tributions separately. The electron and hole root-mean-
square displacements D from the middle of the terminat-
ed chain center are shown in Fig. 7. For weak interac-
tion, the electron (hole) contracts toward the chain center
in the attractive potential defined by the hole (electron)
distribution. [This self-localization of the intermediate-
dimensional exciton explains, for example, the three-
dimensional- two-dimensional crossover that occurs for
excitons in superlattices of shallow quantum wells as the
barrier height is decreased (~U/T, ~

and ~U/Tz~ in-

crease). ] On-site correlation at the center of the chain is
enhanced, but pair occupation of other sites is suppressed
for small ~U~ and T&/T, &&1 because the hole contracts
more than the electron. aux is suppressed, even though
the electron-hole separation is smaller, because fewer
sites are occupied. Ozx is enhanced at larger ~U~ be-
cause the electron continues to contract while the hole
begins to expand to increase on-site correlation away
from the chain center.

Exciton states in dots with Tz « T, have been
modeled previously by the assumptions that the electron
collapses in the potential of a hole fully contracted to the
center of the dots' '~o and the hole collapses in the poten-
tial of the electron fixed in its lowest-energy single-
particle subband. As Figs. 4 and 7 show, the latter
model is more appropriate for the smallest

~
U ~. OEx cal-

culated for Tz/T, =0.0001 by use of the latter model is
shown in Fig. 4. The model is adequate only for a small
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FIG. 6. Root-mean-square electron-hole separation in the
ground-state exciton (N = 10). For a terminated chain:
TI, /T, =1 (solid curve), 0.1 (dotted curve), and 0.001 (dashed
curve). For a ring: Tz /T, = 1 (dash-dot curve), and 0.001 {long-
dash —short-dashed curve).
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FIG. 7. Root-mean-square displacement of the electron (solid
curves) and hole (dotted curves) in the ground-state exciton
from the chain center {N = 10). T& /T, = 1 (circles), 0.3 ( X ), 0.1

(squares), 0.01 (triangles), and 0.001 (+).
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range of
~
U~. The first model becomes more appropriate

as the interaction increases.
The electron and hole distributions on a chain expand

as the pair interaction increases, becoming nearly equal
with the pair tightly bound for large interaction. The ex-
citon center of mass has the same distribution as the elec-
tron and hole in the large interaction limit. The electron,
hole, and exciton distributions are contracted relative to
electron and hole distributions for no interaction, indicat-
ing that there is a dead layer at the chain ends where
the exciton is excluded. The dead layer can be under-
stood in the large interaction limit by use of the second-
order degenerate perturbation theory developed in Sec.
II. The pair correlation energy is reduced near a surface,
creating a surface potential barrier that repels a tightly
bound pair from the chain ends. The pair can still tunnel
onto the chain ends because the tightly bound pair can
hop, TEx =H'J ' =2—T, Ti, /UAO Exc.lusion from the
ends becomes complete as TEx(T, or Tz } decreases. The
dead layer increases monotonically with decreasing
Tz /T, . Because of the dead layer, the exciton has fewer
sites where it can recombine. OEx is less than N and de-

creases with decreasing Ti, /T, for large
~ U~ in terminat-

ed chains.
The root-mean-square displacement of the quantum-

confined single-particle ground state from the center of a
one-dimensional, infinite-barrier well with width I. is

Dqc =L [1/12—I/(2m' )] =0.1808 L. For a single
particle in a terminated chain with N =10 (see Fig. 7 for
U=O), D =1.9876, so D/0. 1808=11. The 10-site chain
has an effective length of 11 units between the positions
where the single-particle ground state would vanish if the
chain were a quantum well. In the large interaction limit,
D & l.808. The efFective chain length is no more than 10
units, so the exciton dead region is at least one unit.

The normalized oscillator strength, OEx/N, in a ter-
minated chain, determined by second-order perturbation
theory for large

~
U ~, is shown in Fig. 8 as a function of N

and Tz/T, . For a tightly bound electron-hole pair with
its center of mass confined in a one-dimensional well of
length L, OEx/L =8/~ . This limit is shown in Fig. 8.
The condition OEx/N&8/m provides a criterion for
having a dead layer that is different from the criterion
that D & D&c. The dead-layer criterion based on the os-
cillator strength is not satisfied for all N or all Ti, /T, .
For TI, /T, = 1, OEx /N & 8/n for all N. For Tz /T, & 1,
OEx/N=1 for N=2, decreases as N increases until

OEx/N &8/m, and then monotonically increases, ap-
proaching 8/n for large N.

In a quantum well or wire, confinement enhances exci-
ton oscillator strengths because the electron-hole overlap
is increased by confinement. For example, the exciton os-
cillator strength in a narrow quantum well, where the
quantum confinement quenches motion across the well, is
enhanced by decreasing the well size, because the in-
creased pair binding increases the lateral overlap of the
pair (in the limit of complete quantum confinement, the
pair overlap in the well direction cannot be changed by
changing the well size}. For intermediate-dimensional ex-
citons, the pair overlap in the confined dimension can be
modified by changing the confinement. In that case, as
Figs. 4 and 8 show, there is no simple relationship be-
tween the degree of confinement and the pair oscillator
strength that applies for all N, U, or T„/T, .

The nonmonotonic, nonuniversal behavior of
intermediate-dimensional excitons on 10-site terminated
chains occurs for other chain lengths as well. Ground-
state exciton oscillator strengths for rings and terminated
chains are shown in Figs. 9-11 as a function of the num-
ber of sites N for T„/T,=l, 0.1, and 0.001 and for
U/T, = —50, —5, and —0.5. The oscillator strength for
excitons on rings varies monotonically with Th/T, and

U/T, for all N. In the large interaction limit (Fig. 9,
U/T, = —50), OEx=N on rings for all N. For inter-
mediate interaction (Fig. 10), OEx increases linearly with
N (OEx =aN) for rings, but full coherence is not achieved
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FIG. 8. Normalized ground-state oscillator strength for a
chain in the large interaction limit. Tz /T, = 1 (circlesp, 0.5 ( X ),
0.3 {squares), 0.1 (triangles), and 0.001 (+). The dashed curve is
the large N, large interaction limit. The curves are drawn as a
guide.

FIG. 9. Exciton ground-state oscillator strength for strong
pair interaction (U/T, = —50) on terminated chains (dotted
curves) and on rings (solid curves): TI, /T, =1 (circles), 0.1 (tri-
angles), and 0.001 (+). The dashed lines show the limits

OEx =N and 0« = 1. The curves are drawn as a guide.
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FIG. 10. Exciton ground-state oscillator strength for inter-
mediate pair interaction (U/T, = —5) on terminated chains
(dotted curves) and on rings (solid curves): Tq/T, =1 (circles),
0.1 (triangles), and 0.001 (+). The dashed lines show the limits
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FIG. 11. Exciton ground-state oscillator strength for weak
pair interaction (U/T, = —0.5) on terminated chains (dotted
curves) and on rings (solid curves): Tz /T, =1 (circles), 0.1 (tri-
angles), and 0.001 (+). The dashed lines show the limits
OEX =N and OEx

(a&1). For weak interaction (Fig. 11}, Oux shows
finite-size effects, increasing monotonically for even N
and for odd N with nonmonotonic variations between
even and odd N. The magnitude of this finite-size effect
decreases as N increases and as the pair correlation in-
creases (U/T, increases or Tz/T, decreases). Finite-size
effects are smaller for terminated chains, since the pair
correlation is stronger on terminated chains. The finite-
size effects for rings and terminated chains are out of
phase. For terminated chains, Ozx is determined by
where the hole localizes. For odd (even) N the hole local-
izes to the one (two) central site(s) of the chain. Ozx is

greater for even-site chains because the exciton is local-
ized in a larger region. For rings, each site is equivalent,

so Ozx is determined by how strongly the pair can corre-
late. For odd (even) N, the hole localizes to the one (two)
site(s) nearest the electron. OEx is greater for odd-site
rings because the pair overlap is larger.

The same effects of dead layers for strongly interacting
pairs and of electron-hole asymmetry for weakly interact-
ing pairs occur for all terminated chains. The dead layer
(OEx) increases (decreases) with decreasing hole hopping
for all N in the strong interaction limit. The reduction of
OEX due to the dead layer is only weakly dependent on
the chain length. In the weak interaction limit, OEx is
suppressed by the asymmetry in the charge localization
for Tz«T, for all chain lengths [OEx(T&«T, )

&OEx(T&=T, ) for all N] For. short chains, Ozx is

suppressed below the noninteracting pair limit (OEx =1)
when Tz ((T, . For longer chains, Ozx is still suppressed

by the asymmetry when T& ((T„butOEX & 1 because
there are more sites where the pair can recombine. For
intermediate pair interaction on terminated chains (Fig.
10), OEx shows a crossover from normal (bulklike} to
intermediate-dimensional behavior as the chain length
changes that occurs for different N depending on the in-
teraction and hopping. Define the crossover point to be
the chain length N, (U, Tz), where OEx(U, T&)
=OEx(U, T& =T, ). For large interaction, N, marks the
crossover where dead layer effects become important.
For weak interaction, N, marks the crossover where hop-

ping asymmetry becomes important. For Tz =T„N,
shifts monotonically to shorter chain length as the pair
interaction decreases. For Tz «T„the crossover point
shifts monotonically to shorter chain length as the pair
interaction strength decreases when the pair interaction
is large and dead layer effects are important. The cross-
over point shifts back toward larger chain length as the
pair interaction strength becomes weak and the asym-
metry effects become important. As a consequence, the
exciton on a terminated chain behaves as an
intermediate-dimensional exciton for all chain lengths in
the large and weak interaction limits and can cross over
to bulklike for intermediate interaction strength.

I have obtained the results discussed so far by ignoring
nearest-neighbor and longer-range pair interaction. For
an electron-hole pair on a polymer chain or in a superlat-
tice of quantum wells or dots (where each well or dot is
represented by a site), nearest-neighbor interactions may
not be important. For a pair in a single dot (where the
sites represent difFerent sites in the same dot) the real pair
interaction will be longer range than an on-site interac-
tion. To show how the results presented so far change if
a longer-range interaction is included, I have investigated
excitons on 10-site terminated chains with a nearest-
neighbor pair interaction (UNN =0.25 U}. No qualitative
change and only small quantitative changes occur when
the nearest-neighbor pair interaction is included. OEX
calculated with and without U&N are compared in Fig.
12. For large pair interaction, including the nearest-
neighbor interaction suppresses OEX because the dead
layer is wider for a longer-range potential (the pair is con-
tracted more toward the center of the chain) and because
the on-site pair correlation is reduced (for large U} when
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FIG. 14. Oscillator strengths for the 10 lowest-energy pair
states (index 1) of a 10-site terminated chain, TI, /T, =0.001:
l = 1 (ground state, solid curve), l =3 (dotted curve), I =5

(dashed curve), l=7 (dash dot curve), and l=9, 10 (long dash
short dash curve). States 1=2, 4, 6, and 8 are optically inactive.

there is a nearest-neighbor attractive interaction. For
weak pair interaction, including the nearest-neighbor in-

teraction enhances the contraction of the electron and
hole toward the center of the chain and reduces the pair
separation. For T„«T, ( Tz = T, ) the oscillator strength
is suppressed (enhanced) by this additional contraction.
For intermediate pair interaction (the region in Fig. 7
where the electron and hole distributions begin to expand
as the pair interaction increases and the pair crosses over
from the quantum-confined limit to the tightly bound
limit), the pair is less contracted when UNN is included,
because UNN reduces the on-site pair correlation of a
strongly bound pair.

Excited pair states exhibit the same behavior displayed
by the ground state. The excited-state energies vary
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FIG. 13. Oscillator strengths for the 15 lowest-energy pair
states of a 10-site ring: Tz /T, =1 {solid curves) and 0.001 (dot-
ted curves). Only one excited state has a finite oscillator
strength.

monotonically with the interaction strength and hopping
both for rings and for terminated chains. Excited-state
oscillator strengths on rings (see Fig. 13) also vary mono-
tonically with U/T, and Tz/T, and follow a universal
curve when plotted as a function of U/(T, + T& ). For
terminated chains (see Fig. 14 for the case with large
asymmetry in the electron and hole hopping) the
excited-state oscillator strengths are nonmonotonic and
nonuniversal. The oscillator strength lost by the ground
state due to the confinement is shared among several ex-
cited pair states. In particular, only the ground state on a
ring is optically active in the large interaction limit. On a
terminated chain several pair states remain optically ac-
tive in the large U limit. The excited states (state index
1=9, 10) with the largest oscillator strength in the large
interaction limit are the two states with the pair localized
at either end of the chain. These states are trapped in the
dead layer but they remain optically active. In the weak
interaction limit the first two optically active excited
states are the pair state with the electron and hole con-
tracted to the sites next to the middle of the chain (for
l =3) and the pair state with the electron and hole con-
tracted to the sites second from the middle of the chain
(for 1=5).

IV. CONCLUSIONS

In summary, a Hubbard model has been solved exactly
to characterize intermediate-dimensional excitons for the
full range of electron and hole hopping and interaction
strengths. The Hubbard model provides an excellent
qualitative model for intermediate-dimensional excitons
that is generally applicable to a wide variety of systems,
including wide quantum wells, quantum dots and rnicro-
crystallites, multiple quantum wells, quantum dot arrays,
and polymers. However, the model is too simple to be a
realistic model for all of these systems.

The intermediate-dimensional exciton is a composite
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particle made from two strongly coupled particles: the
electron and hole strongly coupled by the pair interaction
or the center-of-mass particle and the reduced-mass par-
ticle strongly coupled by the confinement. In contrast,
the free exciton is a composite particle made from uncou-
pled center-of-mass and reduced-mass particles, and the
quantum-confined exciton is an uncorrelated electron and
hole pair. The energy of intermediate-dimensional exci-
tons and bulklike free excitons are qualitatively the same
in the Hubbard model. To clearly identify the charac-
teristics of confined excitons, one must consider exciton
properties that depend directly on the exciton wave func-
tion. Oscillator strengths and electron-hole distributions
of intermediate-dimensional excitons exhibit anomalous,
nonmonotonic, nonuniversal dependences on the
electron-hole interaction strength and hopping that occur
due to asymmetry in the electron and hole distributions
and to dead layers induced because the interplay of
confinement and correlation strongly couples the parti-
cles that form the intermediate-dimensional exciton.

For strong pair interaction, the intermediate-
dimensional exciton is a tightly bound pair repelled from
the boundary of the system because pair correlation is in-

hibited at the boundary. The exciton ground-state oscil-
lator strength is suppressed because the pair in the
ground state cannot recombine in the dead layer at the
boundary. For weak pair interaction, the electron and
hole each contract in the distribution of the other parti-
cle. Large asymmetry in the localization of the electron
and hole results when there is a large asymmetry in the

electron and hole hopping. The oscillator strength is
suppressed in this case because the slowly hopping parti-
cle is localized to the middle of the distribution of the
other particle, drastically reducing where the pair can
recombine. By solving for the full range of interaction
strengths and hopping, the transition between these two
regimes and the anomalous, nonmonotonic, nonuniversal
behavior arising from these effects can be identified. The
key qualitative results are independent of the number of
sites on the chain and of the inclusion of longer-range
pair interactions beyond the on-site pair interaction. Ex-
cited states of the intermediate-dimensional excitons ex-
hibit similar anomalous behavior arising from the dead
layers and asymmetry in the electron and hole distribu-
tions.

Finite-size efFects occur in small systems (systems with
a few sites in the Hubbard model, i.e., a short chain poly-
mer, a multiple quantum well system with only a few
wells, etc.). There are anomalous variations between
even-member systems and odd-member systems that can
be attributed to the effects of asymmetry in the charge lo-
calization of intermediate-dimensional excitons. These
finite-size effects could provide a simple, direct signature
for excitons in the intermediate-dimensional regime.
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