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Covalency contributions to the electronic polarizability in dielectric compounds
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The electron covalency contributions to the polarizability in oxide dielectric compounds are studied in

the electron-lattice coupling model by means of the exact diagonalization technique. These contribu-
tions originate from the charge transfer between the anion and the cation sites which produces an elec-
tric dipole moment extended over the anion-cation bond distance. When a strong on-site Coulomb
repulsion between electrons is included, the electronic system is found to undergo a transition between
the ionic and Mott insulating phases, and the covalency contributions to the polarizability are largely
enhanced near the phase boundary. It is suggested that the present results may explain the high indices
of refraction observed in the titanium oxides and the birefringence in the ferroelectric compounds.

I. INTRODUCTION

It is well known that the additivity assumption of the
electronic polarizability is invalid even in the alkali
halides and is further pronounced in the oxide com-
pounds. ' The values of the polarizability of the oxygen
ions in oxides are widely distributed from 0.5-3.2 A, ac-
cording to the difference of the crystal structures and the
kinds of cations involved. ' In order to explain the lack
of the additivity in the polarizability, one of the present
authors proposed the covalency mechanism where the
electron covalency virtually induces an electronic dipole
moment. Since the induced dipole moment is extended
over a cation-anion bond distance, even if an amount of
the hopping charge is small, the large polarizability is ex-
pected. The authors used a perturbational approach for
treating the electron covalency on the pair of an anion
and a cation and applied the theory to the mono-oxides
where systematic changes of the electronic polarizabili-
ties are observed. Independently, Pantelides proposed
the interionic mechanism and derived in a perturbational
sense a simple formula of the dielectric constant which
depends on the interatomic spacing. On the other hand,
Phillips and co-workers presented a simple model to
describe the static dielectric constant in the heteropolar
covalent system based on the bang scheme. They used a
generalized single oscillator model originated from the in-
terband transition, where the band gap has covalent and
ionic contributions. The authors applied this model to
zinc-blende, wurtzite and rock-salt-type crystals and
presented a relation between the dielectric properties and
the crystal structures.

Although several approaches were proposed from the
different points of view as mentioned above, the nature of
the polarizability on the transition-metal oxides has not
been adequately described as shown in the following. A
recent photoemission experiment' ' performed in Ti02
showed that the Ti ion is considerably hybridized with

the surrounding 0 ions, suggesting a significant amount
of reduction of the Ti valence from the formal value. The
large covalent characters are also reported in BaTi03. '

Thus the perturbational approach for the electron co-
valency seems to be inadequate in these compounds. On
the other hand, the oxides have ionic characters. For ex-
ample in Ti02, its static dielectric constant
(so=173).' ' is considerably higher than the optical
dielectric constant (e„=7.2), ' indicating a strong ion-
ic character. It seems to be inadequate to apply the sim-
ple formulas for the dielectric constant and the energy
gap which are not as successful even in the rock-salt-type
alkali halides. For the purpose of describing the polari-
zability in the transition-metal oxides, it is necessary to
use an approach without a perturbational approximation.

In the present paper, we study the covalency contribu-
tions to the electronic polarizability in dielectric com-
pounds, based on the microscopic electron-lattice model
in a linear chain system. The ground-state properties in
this model have been studies in the previous papers'
where the two phases were found by changing the energy
parameter, and a dimerization-type lattice distortion was
found to decrease greatly the ground-state energy near
the phase boundary. In this paper, we introduce an elec-
tric field into the model and study the covalency contri-
butions to the polarizability using an exact diagonaliza-
tion method. Numerical calculations show that consider-
ably large covalency contributions arise in the electronic
polarizability. This mechanism is expected to be dom-
inant in the transition-metal oxides, particularly in the ti-
tanium oxides. From the polarizability calculated as a
function of the lattice displacement, we also expect that
the covalency contributes to the birefringence.

In Sec. II, we describe a simple model Hamiltonian for
the electron and lattice coupled system and discuss the
interaction between the electric field and the covalent
charge. We briefly review the previous results without
the electric field in this section. In Sec. III, we present
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numerica1 results of the electronic dipole moment and
polarizability calculated by the exact diagonalization
technique as a function of the lattice displacement. Sec-
tion IV is devoted to concluding remarks and discussions.

II. MODEL AND FORMULATION

In order to investigate the covalency contributions to
the dielectric properties, we set up the following model
Hamiltonian which describes the electron and lattice sys-
tem in a electric field. We consider two kinds of atoms in
the unit cell located in a one-dimensional chain and only
one electron orbital on each atom. These orbitals are re-
ferred as A and B orbitals hereafter which correspond to
one of the 3d orbitals in the transition-metal ion and the
2p orbitals in the oxygen ion, respectively. As for the lat-
tice system, we consider the static dimerization-type lat-
tice distortion and introduce the electron-lattice interac-
tion as a modulation of the electron transfer intensity.
We apply the electric field parallel to the chain along the
z axis. The model Hamiltonian consists of two parts

H =Ho+HE . (2.1)

The first term is the electron and lattice Hamiltonian
without the electric field and the second term is the in-
teraction term with the electric field. Ho is given by

Ho= pe„a (i)a (i)+ gezb" (i)b (i)

+y Ug tn(i)n, i(i)+ y Usnbt(i)nb)(i)

+g t+a (i)b (i)+ g t a" (i+1)b (i)+c.c.
l, 0'

+g V[n, (i)n&(i) +n, (i +1)n (bi)], (2.2)

where a (i) and b (i) are electron creation operators of
the Wannier states on A and B sites in the ith unit cell,
respectively. The subscript o. is the electron-spin index.
The first line on the right-hand side of Eq. (2.2) describes
the one electron terms, and e„and ez are the level ener-

gies on A and B sites, respectively. We define the energy
level separation as 6=@~—ez which is kept as a positive
value. In the second line, U~ and U~ are the Coulomb
interaction energies on the same orbital and n, (i) and

nb (i) are defined by

n, (i)=c (i)c (i) (c=a or b) .

t+ represents the hopping intensity for the intradimmer
(intracell) orbitals and t is for the interdimmer (inter-
cell) orbitals. Signs in front of the right-hand side in Eq.
(2.4) come from the phases of the wave functions. The
last term represents the intersite Coulomb interactions
between the nearest A and B sites. The number operator
is defined as

n, (i)=n, &(i)+n, &(i) (c=a or b) . (2.6)

The total electron number is fixed as 2% where S is the
number of the unit cell.

Before discussing HE, we briefly review the previous
results for the system of Ho. At first when we consider
the limiting case as t =0, 5t =0, and V=O, the electronic
states is described as follows. .The ground-state proper-
ties are qualitatively interchanged by changing parame-
ters U~ and A. For the 5& U~ case, two electrons in

each unit cell are located in the B site and the system be-
comes the ionic state described as A +B . On the oth-
er hand, for the 6 & U~ case, each A and B site possesses
one electron and the system is transferred to the Mott in-

sulating state described as A '+B' . The many-body
Hamiltonian including t and 5t is solved by the exact di-

agonalization method in the finite-size chain system. The
above two phases are still found even in the finite t case
and significant changes in the spin and charge characters
are observed by crossing the phase boundary. The criti-
cal value of Uz, at which the system changes from. one
phase to another with a fixed value of 5, is termed as Uz .

C

A dimerization-type lattice distortion strongly decreases
the total energy around the crossover region. A similar
phase change is investigated intensively in one-
dimensional organic compounds of the charge-transfer
type, termed as the neutral-ionic transition. ' De-
tailed results and implications to the ferroelectrics are
presented in the previous papers. '

Let us consider the second term in Eq. (2.1). The in-

teraction between the electronic charge and the electric
field parallel to the z direction is represented as follows:

HF =eE g f dz g (z)zg (z), (2.7)

where e is defined as the positive value. Since we consid-
er a higher-frequency component in the electric field than
the vibration of the ion, the interaction with the electron-
ic charge is only taken into account in Eq. (2.7). f (z) is

an electron field operator which is expanded by the Wan-
nier functions and we rewrite HE as follows:

The third line describes the electron hopping processes
including the lattice distortion effects between the
nearest-neighboring A and 8 sites. t+ and t are defined

by

(2.4)

H =H»g+H'F E E

H~"I is a site-diagonal part defined by

HF" =eE g [z,'a (i)a (i)+z,."b (i)b (i)) .

(2.8)

(2.9)

where 6t is the contribution from the lattice distortion
which is assumed to be proportional to the lattice dis-
placement (5a )

5r=P6a .

This site-diagonal part is interpreted as the usua1 interac-
tion between the on site electronic charge n, (i) (c =a or
b ) and the electric-field potential eEz,'. When the
electric-field potential is smaller than the energy gap, we

introduce the electrochemical potential AM@(z) defined by
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pE(z) =p,o e—Ez, (2.10) III. NUMERICAL RESULTS

where po is the chemical potential in no electric field. We
assume that the electron energy levels e„and ez in the
Eq. (2.2) are measured from the electrochemical poten-
tial.

The second part in Eq. (2.8) is a site-off-diagonal part
given by

HF' =eE g [v+(i)a (i)b (i)

+u (i)at(i+1)b (i)+c.c. ] . (2.11)

v+ and v in Eq. (2.11) are the site-off-diagonal matrix
elements of the position z defined by

a+ a+
v+ f dzfg z+ zgb z (2.12a)

and

V = Z g Z zPb z+ (2.12b)

where P, (z) and Pb(z) are the Wannier functions on A

and B sites, respectively. a+ and a are the distances
between the A and 8 sites given by

a
a~ =—+5a,

2
(2.13)

a being the lattice constant. We assume that the correc-
tion on u+ due to the lattice distortion is small and
neglect 5a dependence of v+ in this paper, so that we ob-
tain the following relation between v+ and v

=v+ . (2.14)

In Eq. (2.11},v+ is interpreted as the interaction intensity
between the electric field and the intracell covalent
charge a (i}b (i), and v is the interaction with the in-

tercell covalent charge at(i+1)b (i), both having the
same sign as shown in Eq. (2.14}. Since 5t also has the
same sign in the interunit and intraunit cells shown in Eq.
(2.4), Ev+ is expected to play a similar role with 5t on the
electronic system.

In order to study a response to the electric field, we
adopt the exact diagonalization method for a finite-size
chain system; a one-dimensional three unit cell
(3A +3B} chain with the periodic boundary condition.
The ground-state energy and the wave functions are ob-
tained by the modified Lanczos method with good pre-
cision. ' In the present one-dimensional small chain,
we interpret E in Eq. (2.7) as the local electric field in the
crystal and the polarization p and the polarizability a per
molecule are given by

(a} o
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In this section, we present numerical results obtained
by the computational calculation. We consider the fol-
lowing two cases. The first case is for 5a=0. In the
second case, the lattice is deformed in the static sense and
we calculate the electronic polarizability as a function of
5a.

Let us present numerical results for the 5a =0 case.
b,EG is a reduction of the ground-state energy due to the
electric field defined by EEa=Ea(E) EG(—E=O). The
electric-field dependence of b,Ea are shown in Fig. 1 for
several U~ cases. Parameter values are chosen as 6=2
eV, t =1 eV, U„=5 eV, and V=1 eV, and the critical
Ue value (Us } is about 4.7 eV. Figure 1(a) is for the

C

Ue & Us region (the ionic region) and Fig. 1(b) is for the
C

Ue & Uz region (the Mott region). With increasing Ue

in the ionic region, the b Ea curve becomes gradually
steep and at last the system is transformed to the Mott
phase where the curvature is gradually reduced with in-
creasing Ue. Although for all values of Uz the electric
field decreases the ground-state energy, the energy reduc-
tion becomes prominent near the phase boundary. The
decrease in the energy originates from the interaction be-
tween the electric field and the electronic polarization
which is easily induced by the electron hopping near U~ .

C

To calculate the electric polarization (p) and the electric
polarizability (a), we interpolate the numerical data us-

ing the spline method. In Fig. 2, the electronic polariza-
bility is presented as functions of Uz. The parameter
values are chosen as b, =2 eV, t =1 eV, and U„=5 eV,
and the critical Ue values Ue are approximately 3.2 eV

C

and

1 a&H)
p = —lim—

E ON BE
(2.15a)

—0.01—

(2.15b)
1 8'&H)a = —lim-

s 0 N BE~

where & H ) is the ground-state energy as a function of E.

0.005
eEv+ (eV)

0.01

FIG. 1. Deviation of the ground-state energy from the E =0
case. (a) is for the ionic phase and (b) is for the Mott phase.
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In the present paper, we studiedied the covalency effects
in the dielectric com-on the electronic polarizability in e
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pounds by using the electron-lattice coupling model in-

cluding the electron covalency and the electron correla-
tions. The virtual electron hopping induces the electric
dipole moment extended over the interatomic distance
which interacts with the electric field. This interaction
induces a similar effect on the electronic system with the
alternative modulation of the electron transfer intensity
due to the lattice dimerization. The numerical results are
summarized as follows. Without the electric field, the
system undergoes the phase change between the ionic in-
sulating phase and the Mott insulating phase when the
energy parameters are changed. Near the phase bound-
ary, the system becomes barely stable against a small per-
turbation like the electric field, so that the electronic po-
larizability is strongly enhanced. By introducing the lat-
tice distortion the system ceases to be sensitive to the
e1ectric field, and the electronic polarizability smoothly
decreases as the distortion increases.

There are important implications for the present re-
sults. First, large refractive indices and electronic polari-
zabilities were observed in the titanium oxides. Tessman
and co-workers ' have estimated the electronic polariza-
bilities of the oxygen ion in the several oxides from the
experimental refractive indices and shown that the oxy-
gen polarizabilities (a,„) were found to be strongly
dependent on its surrounding. In Be, Mg, Ca, Sr, and Ba
mono-oxides, a,„shows a linear dependence on the oxy-
gen volume in the crystal. The linear dependence of a,„
has been explained by the volume dependence of the in-
traatomic oxygen polarizability evaluated from the
Hartree-Fock wave functions for 0 ion in a potential
well. On the other hand, the values of a,„estimated
for CaTi03 and Ti02 by using the Lorentz-Lorenz formu-
la are about 80 percent higher than the line of the volume
dependence in the mono-oxides. Since this formula is not
rigorously valid for their crystal structures, we reexamine
a,„ for the perovskite-type titanium oxides by adopting
the Slater formula including the Lorentz corrections. It
was found that the deviation from the Lorentz-Lorenz
formula is smaller than a few percent. The higher values
of a,„compared with the case of the mono-oxides suggest
that the existence of additional contributions to the elec-
tronic polarizability in the case of the titanium oxides. In
the present paper, U~ dependence of the polarizability
are shown in Fig. 2. While only one orbital is considered
on A and 8 sites in the present calculation, the effect of
the orbital degeneracy in the titanium oxides contributes
to the polarizability. From the small energy gap in the
actual titanium oxides, for example 3.0 eV for Ti02, 3.2
eV for BaTi03, and 3.4 eV for SrTi03, it seems
that the actual titanium oxides are not situated in the re-
gion as far away from the phase boundary in the ionic
side where the perturbational approach tends to become
inadequate as discussed in Sec. III. The numerical values
for the polarizability presented in this paper evaluated by
assuming that U =0.03 are a/(4meo)=1. 03 A at Us =3
eV, 1.59 A at U&=3.4 eV, and 2.83 A at U&=4.0 eV
for V=1.0 eV. These values are comparable to the atom-
ic ion contributions estimated from the experimental re-
fractive indices, for example 0.24 A for Ti, 1.68 A for

Ba +, and 0.51 A for Ca + by Ref. 33 and 2.45 A for
0 in BaTi03 by present authors. It is concluded from
the above that the covalency mechanism is a dominant
contribution to the observed large electronic polarizabili-
ties in the titanium oxides. Long ago, van Santen and de
Boer and Shockley qualitatively discussed the high re-
fractive index observed in the titanium oxide. van Santen
and de Boer assumed the small distance between the exci-
tation and ground levels. In contrast, Shockley stressed
the large oscillator strength due to the Ti 4s and 4p orbit-
als. On the other hand, we propose that the induced di-
pole moment extended over the cation-anion distance due
to charge transfer plays an important role on the high re-
fractive index.

Varma and co-workers proposed that the charge-
transfer excitation enhances the electronic charge fiuc-
tuations in high-T, cuprates. They predicted the large
charge fluctuations occur in a metallic phase near the
charge-transfer instability. The barely stable electronic
state due to the Coulomb interaction is important for the
enhancement of the electronic polarizability commonly in
both Varma's case and our case for the insulating phase.

Also, our calculation has an implication with respect
to a change in the refractive index due to the ferroelectric
transition, which is experimentally evaluated by the
birefringence. The measurements of the temperature
dependence of the refractive indices 6 show that with
the ferroelectric transition in BaTi03 from the cubic to
the tetragonal phase, the refractive index in the a direc-
tion n, shows no measurable anomaly at the Curie point.
On the other hand, n, rapidly decreases below T, and
n, /n, becomes 0.97 in the tetragonal phase. This is
called the negative birefringence. Also, a similar temper-
ature dependence of the refractive indices is observed in
several ferroelectric compounds. In this paper, we
present the 5a dependence of the polarizability in Fig. 4,
where the polarizability smoothly decreases with increas-
ing 5a. Since the calculated polarizability in the finite 5a
case is considered the refractive index in the direction of
the spontaneous polarization, the present mechanism
contributes to the negative birefringence. The decreasing
rate of the polarizability, defined as

[a(P5a =0.0 eV ) a(P5a =0. 1 e—V)]/a(P5a =0.0 eV),

is about 40.3% at U~=3. 8 eV, 21.0% at U~=3.4 eV,
and 10.3/o at U& =3.0 eV. Kinase, Kobayashi, and Ya-
mada ' theoretically evaluated the birefringence from the
atomic ion approach in the tetragonal BaTi03 taking ac-
count of the actual lattice distortion. The refractive in-
dices were computed from the electronic polarizability
data of each ions and the Lorentz Geld corrected by the
lattice distortion, however, their result shows n, & n, in
the ferroelectrie phase which is inconsistent with the ex-
perimental results. Kinase, Kobayashi, and Yamada at-
tributed the discrepancy to the contribution from the
electro-optic effect. The negative birefringence may also
be explained from the present covalency mechanism.
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