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We report systematic calculations of the residual resistivity and the low-field Hall coe5cient of Al-
based dilute alloys with 3d and 4sp impurities, by self-consistently solving the linearized Boltzmann
equation. We employ the on-Fermi-sphere approximation, which allows us to combine the full anisotro-

py of the aluminum Fermi surface, obtained by the four-orthogonal-plane-wave method, with the phase
shifts associated with isotropic impurity scattering, evaluated by self-consistent local-density-functional
impurity-in-jellium calculations. Our results show that the anisotropic scattering increases the residual
resistivity, thus obtaining better agreement with the experiment. Moreover, a consistent interpretation
of the observed trends of the low-field Hall coeScient is presented.

I. INTRODUCTION

The transport properties of Al-based dilute alloys have
been investigated experimentally' ' and theoretical-
ly. " Aluminum is a trivalent simple metal with a
roughly spherical Fermi surface (FS), but there are strong
deviations from the spherical shape near the Brillouin-
zone boundaries. A satisfactory explanation of the vari-
ous transport properties such as residual resistivity, low-
field Hall coefficient, magnetoresistance, etc., in the low-
temperature limit where impurity scattering is the dom-
inant effect, requires the consideration of the full anisot-
ropy of the Al FS in the description of impurity scatter-
ing.

Nowadays, transport properties of metallic dilute al-
loys can be reliably calculated, using the self-consistent
computational formalisms developed in recent years.
The Korringa-Kohn-Rostoker (KKR) Green's-function
method, for instance, allows the evaluation from first
principles of the transition amplitude between two states
on the FS of a metallic host, due to impurity scattering.
Transport coefficients can then be determined by solving
the appropriate Boltzmann equation. ' ' This method
involves heavy computation and has not been applied so
far to Al-based alloys.

In the case of dilute alloys of simple metals, a weak
scattering approach has been used for the calculation of
transport coefFicients. In this framework, the four-
orthogonal-plane-wave (4-OPW) model with the relevant

pseudopotential parameters fitted to experimental de
Haas —van Alphen (dHvA) data ' is used for the Al
host. The effective potential of a point defect is described
by pseudopotential form factors to first-order Born ap-
proximation. ' ' This method can be used only for
weak scatterers, like sp impurities, where the Born ap-
proximation is justified.

As a generalization of the above procedure, an effective
t matrix is used to describe the scattering, and the transi-
tion amplitude between two states on the FS is then ob-
tained in terms of the phase shifts utilizing the so-called
"on-Fermi-sphere approximation. " Within this ap-
proach the phase shifts can be determined independently,
by some first-principles calculation for instance. 2'22

Thus, weak sp as well as strong d-resonance scattering
can be treated on the same footing.

Alternatively, Coleridge used a KKR scheme with
three phase shifts to fit dHvA frequencies in Al. The FS
dimensions and the anisotropy of the wave functions de-
duced from this fit were found similar to those obtained
by the 4-OP% approach.

The residual resistivity of transition-metal impurities in
simple-metal hosts exhibits a well-known parabolic
behavior. This behavior can be predicted by simple
models like the free-electron model, or the spherical-band
approximation, which takes into account some band-
structure effects in terms of spherical averages. ' ' In
the case of the Cu host, the spherical-band approxima-
tion yields residual resistivities in very good agreement

0163-1829/94/49(23)/16117(6)/$06. 00 49 16 117 1994 The American Physical Society



N. PAPANIKOLAOU, N. STEFANOU, AND C. PAPASTAIKOUDIS

with the experiment and with ab initio calculations. '

However, the case of 3d impurities in Al seems to be
more complicated since the residual resistivities calculat-
ed within the jellium model or the spherical-band approx-
imation are too small compared with the experiment. ' '"

Systematic experimental investigations of the low-field
Hall coefficient of 3d impurities in Al have been reported
by Papastaikoudis and co-workers. The experimental
results showed a parabolic behavior within the 3d series
and were analyzed using the concept of the 3d impurity
virtual-bound state moving across the Fermi level.

In this paper we study the eff'ect of anisotropic scatter-
ing on the residual resistivity and the low-field Hall
coefficient of Al-based dilute alloys with 31 and 4sp im-
purities. We have used the 4-OPW model for the FS of
Al together with the on-Fermi-sphere approximation and
obtained the scattering phase shifts by self-consistent
impurity-in-jellium calculations within the framework of
the density-functional theory. The linearized
Boltzmann equation is then solved self-consistently to ob-
tain the anisotropic transport relaxation time, which is
used to calculate the residual resistivity and the low-field
Hall coefficient.

for points k of the FS. 0 is the volume of the crystal and
v„—

I v„l.
The residual resistivity p is given in our case by

2

f12m. A' FS

and the low-field Hall coefficient is obtained from the ex-
pression

3 f (~ ')U i, djdSk
g0 FR

H 2f U g'ri dSk
FS

(7)

where (s. ') is the local mean curvature at point k of the
FS:

where the anisotropic transport relaxation time ~k does
not depend on the magnetic field. Therefore, within the
above approximation, Eq. (1) can be readily solved for
H=0, yielding the following integral equation for ~k.

Q dSk vk Uk dSk
kvk 3 P~ =Uk+ ~k Pkk

8~ FS %Uk 8~ FS Uk AVk

II. METHOD OF CALCULATION

The determination of transport properties like the
resistivity and the low-field Hall coefficient in dilute al-
loys requires the solution of the linearized Boltzmann
equation in the presence of homogeneous electric E and
magnetic H fields,

Bfi e
e (vi, E) +—(vi, X H) Vi,gk = — (gi, —

gi, )P„„d'k',
BE„

where gi, is the deviation from the Fermi-Dirac distribu-
tion function fi„v&=V&E&lfi is the group velocity of
Bloch electrons, and Pi,i,. is the scattering probability rate
between states Ik) and Ik' }. In the low-field limit and at
sufficiently low temperatures, the incoherent scattering of
conduction electrons from isolated impurity atoms is the
dominant effect. Therefore, assuming elastic scattering
we have

2m./c
I Ti;i I &(Ei —Ei, )

(~ ')=
—,'I(s., ')+(s'2 ')j,

with 1~i,vz being the local principal radii of curvature.
The Bloch functions of the Al host are calculated using

the 4-OPW model,

4

%k(r) = —g a„(k)e
fl „

where K„are the reciprocal lattice vectors: (000), (111),
(111), (200) in units of 2m. /a, a =4.032 A being the lat-
tice constant of Al. The expansion coefficients a„(k}are
evaluated from the corresponding 4-OPW secular equa-
tion, where the Fermi energy Ez and the pseudopotential
matrix elements are fitted by Cole et al. to the dHvA
experimental data of Coleridge and Holtham. The 4-
OPW mode1 gives a good description of the FS and also
yields accurate wave functions. '

We proceed further using the on-Fermi-sphere approx-
imation, according to which the crystal-lattice pseudopo-
tential is ignored during the scattering of the electrons by
the impurity atom. In this approximation Tkk is written

17,25

where X is the total number of atoms in the crystal, c is
the atomic concentration of impurities, and Tkk. is the T
matrix describing the scattering by a single impurity
atom.

In the low-field limit, the vector mean-free path Ak is
defined by the linear ansatz,

4&2m. A
T„„.=—.. . g e ' sin5, c, (k)c,* (k'), (10)

where 61 are the phase shifts at EI; describing the scatter-
ing of plane waves from a single impurity potential and
the coefficients c, (k) are given by

g = —eE.Ak k gE

and is in general not parallel to the group velocity. How-
ever, following Boning et al. "we assume

Ak Uk' ~

c, (k) = g a„(k)Y;* (k —K„},
n=1

YI being the spherical harmonics.
We obtain the scattering phase shifts by calculating the

electronic structure of a single impurity in a jellium hav-

ing the electron density of Al. Within this model, a sub-
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stitutional impurity is described by cutting off a spherical
hole in the jellium positive background equal to the
Wigner-Seitz sphere and putting a positive point charge
equal to the impurity atomic number at the center of this
vacancy. The electronic structure is calculated self-
consistently within the framework of the density-
functional theory. Exchange and correlation effects are
included using the local-density approximation with the
parametrization of Vosko, Wilk, and Nusair. A range
of impurity potential S = 10 a.u. and an angular momen-
tum cutoff /, „=3 are sufficient to obtain adequate con-
vergence in all the cases examined. The calculated phase
shifts satisfy the Friedel s screening rule within a few per-
cent. Details about our method of calculation can be
found elsewhere.

The FS of Al consists of the second-zone hole part and
a third-zone toroidlike electron surface. The second zone
is in most parts spherical and only in the regions of inter-
secting Brillouin-zone boundaries deviates from the
spherical shape. In order to perform the surface integrals
in Eqs. (5)—(7) a system of triangles is generated using
1000 points on the second zone and 656 points on the
third zone of the FS. Special care has been taken in the
highly curved regions of the surface using a more dense
mesh. The Fermi velocity at point k is calculated analyti-
cally from'

(12)

Within the so-called "three-group model, " the FS of Al is
divided into three parts according to their curvature: (i)
a free-electron-like portion in the second zone (S ) with
slightly negative curvature, which covers most of the FS;
(ii) holelike cylinders also in the second zone just below
the Brillouin-zone boundaries (S++ ) with high positive
curvature; and (iii) electronlike cylinders in the third zone
(S ) with high negative curvature.

We have tested the sensitivity of our results for the re-
sidual resistivity and the low-field Hall coefficient with
other 4-OPW parametrizations of the Al FS, and the
differences are very small. Moreover, we have calculated
some FS properties like the surface area, the density of
states, and the optical mass. Our results are essentially
the same with those obtained by other authors. The in-
tegral equation (5) is solved by an iterative procedure.
Using the Ziman's approximation as an initial guess for

29
+ks

0
+k 3 ~kk'

8m' FS

vk'vk dSk

VkVk AVk
(13)

we obtain an adequate convergence in wk in -5 iterations
in all cases examined.

III. RESULTS AND DISCUSSION

A. Residual resistivity

The results for the residual resistivity of the 3d and 4sp
impurities in Al are shown in Fig. 1. The overall agree-
ment between theoretical and experimental results is sa-

12
~O
+ 1O—
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Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As

FIG. 1. The residual resistivity p of 3d and 4sp substitutional
impurities in Al host. The squares show the theoretical results
and the triangles the experimental data (Ref. 38). The broken
line shows the results obtained by the jellium model [Eq. (14)].

p=abZ +PhZ+y, (15)

tisfactory. We obtain an important enhancement of the
residual resistivity as a result of the anisotropic scatter-
ing, thus getting much better agreement with the experi-
ment, compared with the free-electron model:p=, g (1+1)sin (5(+,—5(), (14)

4M c 2

Ze (2mEF)

where Z is the valence of the host (Z =3 for Al), or the
spherical-band approximation. ' ' This anisotropy-
induced enhancement was also reported by other authors,
who calculated the residual resistivity of sp impurities in
Al using multiple-plane-wave pseudopotential ap-
proach. ' As first pointed out by Fukai, the mixing
of the plane waves near the Brillouin-zone boundaries
causes an increase in the residual resistivity compared
with a single plane-wave treatment.

The parabolic behavior of the residual resistivity
within the 3d series is due to the d virtual-bound state
[p- sin (52)]. In the case of strong scatterers, i.e., im-

purities of the middle of the 31 series, the calculated
values of p are larger than the experimental ones. This
could be ascribed to the fact that we use the full, all-
electron scattering potential for the impurity, whereas
the host is described by a weak pseudopotential. This in-
consistency might overestimate the impurity scattering
for strong scatterers, thus leading to higher resistivity
values.

Boerrigter, Lodder, and Molenaar' calculated the re-
sidual resistivity of 3d impurities in Al using several mod-
els to investigate the importance of the choice of the
scattering potential in the determination of the phase
shifts. Since the anisotropy of the FS was not taken into
account in these calculations, the resistivities were too
small and the calculated values were multiplied by a con-
stant factor, accounting for Fermi-surface effects, to get
better agreement with experiment. In the case of the late
3d and the 4sp impurities, the agreement with experiment
is excellent and the residual resistivity can be described
by the generalized Linde's rule
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where AZ is the valence difference between impurity and
host atoms, as shown in Fig. 2.

B. The low-field Hall coefticient

Figure 3 shows our results for the low-field Hall
coefficient together with the experimental data of Papas-
taikoudis and co-workers, for the 3d impurities. The
overall agreement between experiment and theory is sa-
tisfactory.

Contrary to the residual resistivity, where the assump-
tion of a spherical FS yields the correct trends and the
anisotropy gives a more or less constant shift, the varia-
tion of the low-field Hall coefficient is entirely due
to the anisotropy of the FS. A spherical FS yields
RH=1 Inc(=RH ), where n is the free-electron density
of the host, independently on the considered impurity
(RH = —3.47X10 " m /C for Al host). This is shown
in Fig. 4, where R& is separated into three contributions
by splitting the integral in the numerator of Eq. (7) in
three surface integrals over S++,S,S . The sign of
each contribution to the low-field Hall coefficient is deter-
mined by the sign of the local mean curvature. It can be
seen from Fig. 4 that the variation of RH comes essential-

ly from the highly curved S++ and S. parts of the FS,
whereas S gives a constant contribution, roughly equa1
to the free-electron value RH .

As it can be seen from Fig. 3, the theoretical curve of
RH shows almost the same dependence on the impurity
atomic number as the experimental data. It exhibits a
parabolic behavior in the beginning of the 3d series with
the minimum at Ti and a subsequent monotonic increase
up to Cu, at which RH becomes positive. Then RH
abruptly decreases to a negative value for a Zn impurity.

It is reasonable to assume that the s and p phase shifts
remain constant within the 3d series and the impurity is
essentially screened by d electrons (see Fig. 5). Therefore,
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Sc Ti Y Cr Mn Fe Co Ni CU Zn

FIG. 3. The low-field Hall coefficient RH of 3d substitutional

impurities in Al host. The squares show the theoretical results

and the triangles the experimental data (Refs. 5 and 8).

S+S

and in order to isolate the effect of d scattering on the
low-field Hall coefficient, we keep fixed the s and p phase
shifts to a constant value (that of Cr impurity) for all the
3d impurities. We then calculate rz by solving Eq. (5)
self-consistently and evaluate RH by Eq. (7). The low-

field Hall coefficient calculated in this way exhibits a
monotonic behavior, increasing with the impurity atomic
number. Therefore, we conclude that the bending of the

RH curve at the beginning and at the end of the 3d series
is due to the anisotropic scattering of s and p electrons,
whereas the monotonic increase within the series is essen-

tially an effect of d scattering.
The behavior of RH can be discussed qualitatively in

terms of the symmetry of the anisotropic parts of the FS.
As reported by Pfandner, Boning, and Brenig, ' the
second zone S++ region has pd character while the S
region in the third zone exhibits more sd admixture.
Therefore, s scattering, for instance, is weak in the S++
anisotropic region. This means a long relaxation time in
the parts of the FS with highly positive curvature, result-
ing in a positive contribution to RH [see Eq. (7)]. Follow-

0.5 '--
Zn

0 ~ ' w . L

-1 0

IZ

FIG. 2. The residual resistivity p of 4sp substitutional impur-
ities in Al host vs the valence difference AZ. The squares show
the theoretical results and the triangles the experimental data
(Ref. 38). The broken line shows the interpolation based on the
generalized Linde's rule: p=ahZ +Pb,Z+y.

Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn

FIG. 4. Contributions of the different parts of the Al FS to
the low-field Hall coefficient RH of 3d impurities, normalized to
the free-electron value: RH = —3.47X10 "m /C.
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0.5—

TABLE I. The low-field Hall coefficient (in 10 " m /C) of
AlGe, calculated according to different phase-shift parametriza-
tions [A, impurity-in-jellium phase shifts; B, phase shifts ob-
tained from Heine-Abarenkov-Animalu form factors in the
Born approximation (Ref. 17)], together with the experimental
result (Ref. 8).

RH

A

B
Experiment

0.439
0.622

0.531
0.223

—0.043
0

—0.017
—0.008

—8.6
5.8
1.8

-0.5—
I I I I i I I I I I I I

Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge

FIG. 5. Scattering phase shifts 51 of 3d and 4sp substitutional
impurities in Al-jellium.

ing similar arguments for a p scatterer, we can say, as a
rule of thumb, that s scatterers give positive contributions
to the low-field Hall coeScient while p scatterers give
negative contributions. In the case of d scattering both
S++ and S regions are involved. As it turns out from
our calculations, the positive contribution dominates in
this case.

While RH slowly increases within the 3d series, the
case of the 4sp impurities seems to be more complicated.
For a Zn impurity, we find a decrease in RH when com-
pared with the continuous increase observed in the 31
series. This decrease is also observed by the experiment
(see Fig. 3). However, for the next 4sp impurities Ga and
Ge, we obtain negative values, far below RH, while the
experiment reports positive values. ' As it turns out
from our calculations, RH is extremely sensitive to the
choice of the phase shifts in the case of sp dominant
scattering, in contrast to the 3d impurities, where it is
quite insensitive to the phase shifts (see Figs. 3 and 5).
This is demonstrated in Table I, where two different
phase-shift parametrizations are used to calculate RH of
A16e. Using the impurity-in-jellium phase shifts we ob-
tain a strongly negative low-field Hall coeScient
(= —8.57X10 " m /C), whereas the phase shifts ob-
tained from Heine-Abarenkov-Animalu form factors in

the Born approximation' give a high positive value of
RH ( =5.78 X 10 "m /C). Thus, in order to obtain reli-
able RH values when sp scattering is dominant, it is essen-
tial to determine very accurately the distribution of the
screening charge between s and p. Therefore, experimen-
tal measurement of the low-field Hall coei5cient consti-
tutes a very sensitive probe to check the accuracy in
theoretical calculations of scattering properties of sp im-
purities in Al.

IV. CONCLUSION

We have calculated the residual resistivity and the
low-field Hall coefficient of Al-based dilute alloys with 3d
and 4sp impurities by self-consistently solving the linear-
ized Boltzmann equation. The FS of the Al host is calcu-
lated by the 4-OPW model while the impurity scattering
enters through the phase shifts obtained from a self-
consistent impurity-in-jellium calculation. Combining
the anisotropy of the FS and the phase shifts within the
on-Fermi-sphere approximation, we gain physical insight
on the effect that the anisotropic impurity scattering has
to the residual resistivity and the low-field Hall coefficient
of Al-based dilute alloys. Our calculations indicate that
the consideration of the anisotropic Al FS gives higher
values for the residual resistivity, and thus, we obtain a
better agreement with the experimental data. Moreover,
the overall agreement between the calculated low-field
Hall coefficient of the 31 impurities in Al and the experi-
mental data is satisfactory, although the theoretical
values are somewhat higher than the experimental ones.
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