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Why the local-spin-density approximation fails to predict the energy bands of Gd correctly

D. M. Bylander and Leonard Kleinman
Department of Physics, University of Texas, Austin, Texas 78712

(Received 12 August 1993)

All energy-band calculations of Gd show seven very-narrow minority-spin 4f bands just above the
Fermi energy. We show that this resonance is an artifact of the local-spin-density approximation and

suggest that it is the reason that all calculations have yielded electronic densities of states at the Fermi

energy larger than the experimental value.

The local-spin-density approximation (LSDA) for ex-
change and correlation (xc) often yields remarkably good
results, in spite of its many flaws. Occasionally, however,
these flaws are sufficient to cause results which differ
markedly from experiment. The LSDA potential V„,
tends to underestimate the xc-potential and this underes-
timate increases with the spatial localization of the eigen-
state upon which V„, is operating. Thus atomic total
energies are underestimated by more than crystalline, re-
sulting in overestimates of cohesive energies; core eigen-
values lie too close to the Fermi energy; energy gaps in
insulators and semiconductors are underestimated. Be-
cause of its nonlinear form, one cannot rigorously
separate the LSDA energy functional E„, [pt,pt) into
self-interaction and other-electron interaction terms.
Nevertheless if one makes the self-interaction correction'
(SIC)

E ' =E [p to ]—X [U[p ]+E [p 0]]

where U is the Coulomb interaction and p is the charge
density of a single occupied orbital with spin 0. and one
uses V„,' =5E„,' /5p, much itnproved results are ob-
tained. A second llaw of the LSDA is that it underesti-
mates magnetic energy. For iron it predicts the ground
state is paramagnetic face centered cubic rather than fer-
romagnetic body centered cubic. Although the correct
ground state has been obtained ' using gradient correc-
tions to the LSDA, we have pointed out that this flaw

arises directly from the nonlinearity of V„, . Consider
an expansion of V„" in the core region where

p„„»p„,i. Then (in Ry)

yLSDA 2(6/ )/1/3( +. )1/3
X, O' pcore o pval e

(2)

so that the exchange between valence electrons in the
core region is reduced by a factor of —,'(p„„ /p„„)
from the LSDA potential they would see in the absence
of core electrons. Since screening of valence-valence ex-
change interactions by core electrons is negligible, this
consequence of the LSDA is unphysical. But because the
total V„, seen by valence electrons in the core region
tends to overestimate the true xc potential, the effects of

this are unimportant except in ferromagnetic systems
where it causes a reduction of the magnetic energy.

All energy-band calculations7 ' of Gd of which we
are aware have seven narrow majority-spin 4f bands
passing through the bottom of the conduction bands and
seven narrow minority-spin 4f bands lying just above
Fermi energy. Their densities of states at the Fermi ener-

gy, N (EF ), range between 25 and 47 states/Ry, exceeding
the experimental value of 21.35 states/Ry. If many-
body contributions were included in the calculated
N(EF), the discrepancies would be expected to be even
larger. In particular, Singh recently obtained f band
manifolds centered 0.5 eV above and 4.5 eV below EF,
each of which has a width of 0.7 eV, but without spin-
orbit splitting the widths became 0.2 and 0.4 eV for the
occupied and unoccupied manifolds, respectively. He ob-
tained N(EF ) =27. 1 states/Ry of which about 5

states/Ry were due to minority 4f hybridization. Photo-
emission data shows' that the majority 4f bands lie 8 eV
below EF', this is just another example of a LSDA core ei-
genvalue lying too close to EF.

As far as we know, the existence of the minority 4f res-
onance bands just above EF has never been questioned
but we will show here that their existence is almost cer-
tainly an artifact of the LSDA. Singh s calculation indi-
cates that in their absence the calculated N(EF ) might be
very close the experimental value. The physical reason
for this artifact is very simple and is common to all multi-
plicative xc potentials. Consider the Hartree-Fock ex-
change potential for the (a, cr ) state,

tt (r)
I/H" (r) = —g f hatt. (r')p (r') „dr' . (3)

Slater' suggested multiplying this by p (r)/p(r) and
summing over a to obtain the multiplicitive potential,

~li* (r')~h (r') 6~ (r)ti/ (r)

~r —r'~ p(r)

where the AFA stands for averaged Fock approximation,
a designation we' have used to distinguish this from oth-
er Slater exchange potentials. Because of the p weight-
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ing, in the core region V " is essentially an average of
core V "'s and in the valence region an average of
valence V's. A core V "is larger in the core region
than a valence V ", if only because of the self-interaction
term. Thus V is too attractive for valence electrons
in the core region. V„ is —', of Slater's' local-density

approximation to V " and although it underestimates
the self-interaction, it is still too attractive for valence
electrons in the core region. For ordinary valence elec-
trons this excess attractiveness is of little consequence,
both because these electrons have only a small fraction of
their integrated density inside the core region and be-
cause they must remain orthogonal to the core electrons
of the same symmetry, which prevents them from col-
lapsing into the core region. The 4f electrons are a spe-
cial case. For a given potential they are corelike, higher
in energy than in Ss and Sp core electrons, but more lo-
calized. For a potential only slightly less attractive in the
core region they become Rydberg-like states, much
higher in energy and much more delocalized than the 6s
valence states.

We have solved the spin-orbit averaged' Hartree-
Fock-Dirac' equation for Gd in the 4f7&5d 6s&6s&

configuration as well as the spin-orbit-averaged' Dirac
equation in the I.SDA using von Barth-Hedin'8 correla-
tion with Hedin-Lundqvist parameters 'Th. e eigenval-
ues are listed in Table I. Because with the LSDA, unoc-
cupied states see the same potential as occupied ones, the
LSDA 4f t and Sd

&
states are well bound. In the HF ap-

proximation unoccupied states have no self-interaction
term and the 4f &

state is unbound. In order to bind the
HF 4f t state we occupied it in a 4f &4f &6s&6s&

configuration. Its eigenvalue of —0.866 eV is only slight-

ly below the —0.860 eV obtained for an occupied 5f
&

state. In Fig. 1, the HF potentials of 4f
&

and 4f &
elec-

trons from Eq. (3) are compared with the V, ". Be-
cause of the large 1(l +1)/r term in these radial poten-

TABLE I. Majority- ( f ) and minority- ( $) spin eigenvalues
of Gd (in eV) calculated with the LSDA and in the HF approxi-
mation. The atomic configuration is 4f t 5d t6s t6s i except that
the HF 4f i state, which is unbound in that configuration, has
been calculated in the 4f t 4f i 6s t 6s

&
configuration.

—50.845
—28.277
—10.802
—3.234
—4.587

LSDA

—47.595
—25.691
[—5.627]
[—2.077]
—3.972

5s —63.369
Sp —35.860
4f —22.838
5d —6.647
6s —5.761

HF

—58.327
—31.502
( —0.866)

—5.015

tials, there is only a narrow region in which they are
strongly attractive. The majority HF potential lies lowest
in this region. The majority LSDA potential lies higher
because of its underestimate of the self-interaction. The
LSDA potential for the unoccupied minority 4f state,
which should have no self-interaction, sees the same po-
tential as every other minority-spin state and therefore
has a large self-interaction component. Thus on the scale
of Fig. 1 it lies only slightly above the majority LSDA po-
tential. This, however, is enough to make the minority
4f eigenvalue lie 5.2 eV above the majority (in Table I),
demonstrating the relevance of atomic calculations to
crystalline calculations7 where the splitting of the 4f
manifolds was 5 eV. The minority 4f HF state was treat-
ed as occupied, but it is so diffuse that its self-interaction
is extremely weak and its potential much higher than any
of the other's in the attractive region. Finally, we note
that the majority 4f HF potential lies below all the other
potentials even at large r. This is merely a consequence
of the fact that V "(r)-+—oo as g (r)~0.

In Fig. 2 the majority HF and LSDA and minority
LSDA 4f eigenfunctions are plotted. They all look like
core orbitals and as expected their peak heights fall in the
same order as the depth of their potentials. In Fig. 3 the
HF minority 4f wave function (4f

& 4f
&
6s

configuration) is compared with the majority Sf wave
function (4f

&
5f t6s2 configuration). For large r the two
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FIG. l. Radial potentials seen by Gd 4f electrons. From
highest to lowest in the region of their minima they are HP
minority, LSDA minority, LSDA majority, and HF majority.
All potentials are in the 4f7t Sd t 6s configuration except for the
HF minority, which is in the 4f 7t 4f t 6s2 configuration.
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FIG. 2. In order of highest peak to lowest, HF majority,
LSDA majority, and LSDA minority Gd 4f eigenfunctions.
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FIG. 3. Comparison of occupied HF 4f minority and 5f ma-

jority Gd eigenfunctions.

functions are indistinguishable so that one should no
more expect 4f

&
resonances in the crystal than 5f

&
reso-

nances. One might argue that a HF potential is not ap-
propriate for electrons in a crystal because of the screen-
ing of the valence exchange interaction and we would
agree. However, the screening of the core exchange is
weak and in the direction to reduce the attractive poten-
tial in Fig. 1. Thus an improved potential for the valence
electrons in the crystal can be obtained by combining
Hartree-Fock exchange with the core electrons (with the
majority 4f electrons treated as core electrons) with ei-
ther a LSDA xc potential among themselves or an AFA
+correlation potential' among themselves. In either
case the potential will be less attractive than the HF po-
tential of the 4f t4ft6s configuration so that the 4f

&

wave function will not be sucked into the core. The
amount by which N(EF) will be reduced from Singh's
value is not just his 5 states/Ry due to minority 4f hy-
bridization but will depend in detail on the exact nature
of the calculated energy bands around EF. In fact, the
required reduction will be greater than 5 eV to account
for the many-body corrections to the band mass. A
second feature that the correct band structure must con-
tain is the two small pieces of Fermi surface observed in
de Haas —van Alphen (dH —vA) measurements. ' Singh's
bands have two small holes pieces around the K and M
points in the Brillouin zone (BZ). Singh argues that for
these pieces to be present hybridization with the nearby
4f minority bands is required. With a HF core potential,

the center of the minority 4f bands will be much higher
in energy but the bands will be much broader. Hybridi-
zation will remain, but it is unlikely that the position, rel-
ative to EF, of the two states at E and M will not be
changed significantly even though both these levels and
EF are expected to rise with respect to the bottom of the
energy bands. Note, however, that the dH-vA data have
not been interpreted to give the position of the two small
pieces of Fermi surface in the BZ or even if they are hole
or electron pieces. Singh's narrow minority 4f bands re-
pel bands from above as well as below so that it is quite
possible that new pieces of Fermi surface (either electron
or hole) will appear somewhere in the BZ.

We note that the 4f
&

HF eigenvalue appears much too
low relative to the 4f

&
LSDA eigenvalue since the calcu-

lated LSDA 4f T
bands are only 3.5 eV above the photo-

emission results. ' However e =5E /5f in the
LSDA where E is the total energy, e is the eigenvalue,
and f the occupation of the (tx, tr) state. As long as
BE/t)f is constant over the range 0~f ~1, e
represents an excitation energy. On the other hand the
HF e represents the energy to remove the (a, o ) elec-
tron when the other electrons are not allowed to
respond. Because of inherent difficulties in obtaining to-
tal energies from the spin-orbit averaged Dirac equation,
we estimated the relaxation energy by comparing the
nonrelativistic HF 4f &

eigenvalue of —28.456 eV with
AE=E(4f t5dt6s ) E(4f t5d—t6s )= —21.587 eV.
Adding this relaxation energy of 6.869 eV to the relativis-
tic eigenvalue of —22. 838 eV yields an estimated HF 4f

&

excitation energy of 15.967 eV which is 5.176 eV more
than the LSDA eigenvalue. Assuming this di8'erence car-
ries over to the crystal, our estimated crystalline 4f &

ex-
citation energy is 1.676 eV larger than the experimental
result.

In conclusion, we have shown that the 4f majority
bands that have been calculated by many workers " in

the LSDA lie too high in energy but are otherwise
correct while the minority 4f

&
resonance manifold that

they all find just above EF does not even exist. The remo-

val of this manifold is expected to greatly improve the
agreement between the calculated and measured N(EF ).
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