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Effect of the Cu-Cu superexchange on the stability of Zhang-Rice singlets
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We solve exactly a Cu408 cluster with four and 6ve holes, for parameters for which the low-energy
physics of the three-band Hubbard model can be mapped exactly to a t-J model with J=O. When
a Cu-Cu superexchange J is included the mapping is no more exact. We investigate the quality of
the mapping and the amount of nonorthogonal Zhang-Rice singlets of each low-energy eigenstate as
a function of J. We also explain briefiy how to calculate a property of the three-band model (such
as the Cu and 0 photoemission intensity) using the t Jmod-el.

A central problem in the theory of high-T, cuprates
is to find the most appropriate model to describe the
low-energy physics and its limits of validity. After
the proposal that the three-band Hubbard model
can be reduced to the t-J model, there has been much
controversy about it. Recently a finite-size scaling
study of the t-J model suggests that its ground state
(for vanishing hole concentration) is a Fermi liquid, ~s

while marginal-Fermi-liquid behavior is obtained in a
renormalization-group study of the three-band model
for sizeable Cu-0 nearest-neighbor Coulomb repulsion
U„g. Also, spin-charge separation has been found in
an effective field theory constructed starting &om the ef-
fective Hamiltonian given by Eq. (1).

As in Refs. 5—8, 10, 13, our starting point is the second-
order effective Hamiltonian obtained after eliminating
the Cu-0 hopping t„p by means of a standard canonical
transformation, plus the Cu-Cu superexchange. When
only up to one hole is added to the undoped system and
repulsions at distances larger than the nearest-neighbor
Cu-0 one are neglected, we can write

H, tr = JJc) S; S;+s

+(tq +. t2) ) d,. d, p,.+s, ,p;+s
ibgb'crcr'

sentation of the three-band model if the parameters are
renormalized by a simple prescription2~ (a better result
for J, also &ee of finite-size effects can be obtained us-
ing a Cu20q cluster~s ~2). In particular, the photoemis-
sion and inverse-photoemission spectra at low energies
are well reproduced. For the calculation of these spectra,
it is necessary to have the expression of the original oper-
ators dt pl+& in terms of the effective ones gf pt+
When the appropriate transformation of the operators is
considered [Ref. 21 for H, tr, Eqs. (3), (5), and (6) below
for a further reduction to a t-J model, or, for example,
Ref. 14 for a reduction to a one-band Hubbard model),
the contradiction between the three-band model and its
low-energy equivalents mentioned by Meinders et al.
is resolved. Feiner has recently shown that the correct
transfer of spectral weight between low and high energy
scales can be understood in terms of an effective single-
band model. 2

O-O hopping tpp can also be included. However, its
effects and those of t~ were already discussed in Ref. 16.
Here, we start from the limit tpp t& J 0) J~ 2t2
(the Cu+ configuration is completely inhibited), in which
the mapping to the t-J model is exact ' and study how
the mapping deteriorates as J is increased.

Zhang considered the subspace Z of all local Zhang-
Rice singlet states for one added hole,

(2)

dt (p,.+& ) creates an effective hole on a Cu (0) atom at
site i (i + h). The four vectors connecting a Cu atom
with its nearest 0 (Cu) atoms are labeled by h (2h).
The expressions of the parameters in terms of those of
the three-band model are given in Ref. 13. Equation
(1) does not contain a correction to the Cu-Cu superex-
change when an 0 ion is in between. The effect of this
correction in the present study would only affect slightly
the fraction of states orthogonal to Zhang-Rice singlets
in the low-energy eigenstates.

We have shown that, for realistic values of t„g, while
the results of a canonical transformation up to order t„d
are quantitatively incorrect, Eq. (1) is still a good repre-

where

t 1 ).(p,'+std,'g —p,'~sgd,'t) I
& )2+2

d,'., I
o)

jwi

and n is a shorthand notation for the set of indices i, oj
with j g i. States

~
A„) which differ in a permutation of

the singlet and a nearest-neighbor spin have an overlap of
magnitude 1/8. The

~
A„) have also a finite overlap with

local triplet states or states in which the p,.+& enter into
a different linear combination than in @t. We call Pz the
projector on the subspace Z of Zhang-Rice states. Zhang
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has shown that, for tq ——J = O, J~ 2t2y

(4)

where Hq is the Hamiltonian of the infinite-U Hubbard
model (or t Jmo-del for J = 0) with t = t2 Th. us, in
spite of the fact that the

~
B„)are orthogonal while the

~
A„) are not, the eigenvalue problem of PzH, trPz in the

basis of the
~
A„) has the same form as the corresponding

problem of Ht in the basis of the
~
B„).The first line of

Eq. (4) implies that the
~
A„) form an invariant subspace

under the action of H,g, i.e. , (1 —Pz)H trPz = 0 and
then PzH, tr(1 Pz) =—0. Zhang also has shown that
(1 —Pz)H, tr = 0. Thus the spectrum of H, tr consists of
that of PzH, trPz (which is the same as that of Ht, —8t2)
plus a highly degenerate zero eigenvalue. This conclusion
has been criticized with the argument that the matrix
element of H, ff between neighboring triplet and singlet
states vanishes only for t2 ——J = 0 and J~ ——2t~ and
thus the mapping would be exact only in this limit. How-
ever, when the eigenvalue problem is formulated in terms
of matrix elements (rather than in terms of the expansion
coefficients a„),the overlap matrix enters explicitly and
has a diferent form for the basis of the

~
A„) extended

with triplet states and that of the
~
B„).Our numerical

results for the Cu408 cluster confirm that the mapping
is exact in the Zhang limit tg ——J = 0, J~ ——2t2.

To complete the description of the mapping, it is nec-
essary to specify how to calculate matrix elements of any
operator between any two eigenstates of H, ff in terms
of eigenstates and eigenenergies of the t-J model. This,
together with the transformation of the operators which
carries the low-energy part of the three-band model into
H, ff, allows one to calculate low-energy properties of
the three-band model using the (eventually extended) t
J model. The matrix elements between eigenstates of
H, tr

~
A„) can be expressed in terms of those of the cor-

responding eigenstates of the one-band model
~ B„),for

any number of added holes, using the operator

[(1 —n;)gt+n;]; n; =) dt d;,

which except for a normalization factor transforms the
state

~
B„) into the corresponding one

~ A„) (with the
same energy as

~
B„)except for an additive constant):

(6)

In the following, we take the case of only one added
hole and inodify only J from the Zhang limit ti ——J =
0, J~ ——2t2. When J is turned on, the spin-Hip part
of the last term in Eq. (1) mixes the Zhang-Rice states
with local triplet states. Using first-order perturbation
theory one can estimate that the amount of triplet states
in the low-lying eigenstates is of order J2j(8tz) and is not

negligible for the high values of J used in some numerical
calculations. However, since the local singlet and triplet
states are not orthogonal, this naive estimate is affected
by the superposition of triplet states at different sites,
and the wave functions should be multiplied by 1 —Pz
to quantify the amount of non-Zhang-Rice states. Since
the states

~
A„) are not orthogonal, it is difficult to define

the projector in terms of them, particularly for a large
system. In the present case, we can use the important
property that for J = 0, the spectrum of PzH~ffI'z lies in
the range —12t2 & E & —4t2 as can be easily shown using
Gerschgorin's theorem. From this and the discussion
following Eq. (4), we can write

v, Z„(0

where E„and
~ g„) are the eigenenergies and eigenstates

of H, ff in the Zhang limit and the sum is restricted to
the eigenstates of negative energy. As J is turned on, we
follow adiabatically each of the eigenstates

~ g„), clas-
sified according to their symmetry properties, 6 and
calculate the quantity of non-Zhang-Rice states

(8)

We also calculate for each value of J the optimum pa-
rameters of the modified t-J model H~qIq~ J, which best
fit the low-energy spectrum of H, ff and the mean square
deviation o' of the energy levels defined as in Ref. 16.

The modified t-J Hamiltonian is

Htt't«g —C + t ) c;~cicr + t ) c;+2s~cta

) C+ Ct~

%7cT

t") c, ,—c,. (- —2S, S; s)
i 8b'cr

J+—) S; . S,+2g.
incr

Here 2b (p) are the vectors which connect a point in the
square lattice with its first (second) nearest neighbors.
The term in t" is obtained from a canonical transfor-
mation of efFective one-band Hubbard models ' ' 5 or
perturbative calculations ' and improves considerably
the fitting of the levels when ti g O. is The fitting of the
levels of the undoped system requires that J is the same
in H ff and Hgg'g"J.

While the mean square deviation o. and the d„defined
in Eq. (6) are an inverse measure of the quality of the
mapping, the expectation value of the effective spin at
the 0 sites, ' is not. This expectation value is not nec-
essarily zero for linear combinations of the

~
A„). As an

example, one can easily check that, for a completely po-
larized ferromagnetic background, the linear combination
of the

~
A ) [Eqs. (2) and (3)] with wave vector (m, vr)

has no component of the effective 0 spin antiparallel to
the background. Thus, this linear combination, although
obtained &om local singlets, has maximum 0 efFective
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TABLE I. Percentage of states orthogonal to Zhang-Rice states 100d„[Eq. (8}]as a function of
J for each of the low-energy eigenstates of H, rr [Eq. (1)] for a Cu40& cluster with tz ——0, Jlr = 2,
and t2 = 1, and parameters of the modified t J-model [Eq. (9)] which best fit the corresponding
eigenenergies. The eigenstates are characterized by their symmetry (Ref. 29), total spin, and energy
of the t Jm-odel for t = 1,J = 0 [Eq. (9) with t = 1 and other parameters equal to zero].

Eigenstates

X4, 1/2, —~12
I'g, 1/2, —2

M4, 1/2, —2
I', 1/2, 2

W, 1/2, 2

X4, 1/2, ~12
I'3, 3/2, -4
X4, 3/2, 0
Mz 3/2, 4

t
t'
t II

J=o J =0.5
3.4x 10
5.8x 10
0.14
1.14
0
0.31
2.6x 10
0.23
3.18
0.101
0.968
8.1x10
—6.4x 10

0.13
0.23
0.50
3.64
0
1.26
0.11
0.95
10.00
0.213
0.922
8.0x 10
—1.2 x 10

J=2
0.66
0.88
1.59
9.18
0
5.69
0.48
4.49
22.26
0.480
0.812
1.2x 10
—2.P x1P-'

J=4
4.96
3.00
4.12
16.88
0
29.67
2.39
22.03
34.20
1.086
0.541
7.2x10
—2.9x1P-'

spin projection. It is an eigenstate of H,g in the Zhang
limit, and is a particular case of the solution of H,g for a
completely polarized spin background discussed from op-
posite points of view by Emery and Reiter and Zhang.

In Table I we represent the quantity 100d„of each
low-energy eigenstate of H,g for different values of J.
We also show the parameters which characterize the fit-
ting of these levels with Hqq q J. One can see that the
naive perturbative estimate neglecting the overlap be-
tween states, d„= Jz/(Stzz), is a large overestimation for
most of the states. In particular for the state of symme-
try Mz with total spin S = 1/2, we obtain d = 0. This
state can be described as a combination of eigenstates
of the Heisenberg model with S = 1 and an effective 0
hole. For J ( t2, the d„are approximately proportional
to (J/t2), but the coefficient is less than 1/100 for the
lower half of the low-energy states. As a consequence,
the quality of the fitting with the t-J model is good for
J ( t2, but it rapidly deteriorates for J/t2 ) 2, where the
mean square deviation cr becomes of the order of the opti-
mum value of t. The decrease of this value with increasing
J is consistent with the increasing amount of non-Zhang-
Rice states in the low-energy region, since these states do
not propagate [for J = 0, H,@(1—Pz) = 0.

Since the optimum values of t' and t" are very small,
there is no significant difference between the fitting with

the t Jmodel -or the modified version Eq. (9). This fact,
together with our previous numerical calculations, sug-
gest that the term in t" has its origin in the term in tq

in H,p. This conclusion also agrees with an analytical
derivation of a modified t-J model.

Our main conclusion is that the Cu-Cu superexchange
interaction J, for realistic values, does not afFect sensibly
the stability of nonorthogonal Zhang-Rice singlets. We
expect a larger effect on orthogonal singlets built using
orthogonal 0 Wannier functions n; with the same sym-
metry as the d;~ orbitals. ' ' A quantitative study of
the stability of these orthogonal singlets in our Cu408
cluster would be affected by important finite-size effects:
the Wannier functions a; in this cluster look different
from those of the infinite system and only three of them
are linearly independent. This is because the Fourier
transform nr, for wave vector k = (7r, vr) does not exist.
To avoid this problem one can first transform the Hamil-
tonian in terms of 0 Wannier functions and then take a
finite cluster. This study is done elsewhere.
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