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Flux-trapping phenomena in sintered tubes of high-7. superconductors
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The remanent magnetic flux density trapped in the cavity and in the wall of sintered tubes of Y-Ba-
Cu-O and Bi-Sr-Ca-Cu-O was measured as a function of H,, the axial magnetic field present during
field cooling and then removed, and of Hy.., the axial magnetic field impressed and removed after zero-
field cooling. For both procedures the two specimens exhibit very different behavior. A simple critical-
state model which takes into account the return field of the magnetized grains quantitatively reproduces
all of our observations and the corresponding data reported by others.

I. INTRODUCTION

Since magnetic flux permanently trapped in the cavity
of hollow cylinders of type-II superconductors can pro-
vide a useful environment for experiments in steady mag-
netic fields, this property has attracted great interest.! 2
In some circumstances this setup offers a simple substi-
tute for a wire-wound superconducting solenoid and may
be much easier to fabricate. Also, an axially magnetized
superconducting tube can serve as a permanent magnet
almost as effective but lighter than one using a solid rod
of the same material and outer dimensions,”!%17:21:24

(B, )1o» the remanent magnetic flux density trapped
in the cavity of hollow cylinders of sintered high-7, su-
perconductors, exhibits a variety of behavior as a func-
tion of the magnitude of H, the axial magnetic field
which has been applied to magnetize the tube. Two
different modes of behavior have been reported. (a) In
some cases, the steep rise of (B, )y, versus H | traces a
“knee” or “kink” which is followed by a broad region of
slow monotonic growth and then a plateau."? (b) In oth-
er cases, (B, ), Vs H y forms a peak also followed by a
plateau.>!® In some instances, the descent of (B, )y
from the summit of the peak can traverse zero and lead
to a reversal of the sign of the trapped flux.>*

Several workers have indicated that the magnetic flux
of the magnetized grains “returning” (i) through the cavi-
ty and (ii) through the “matrix” joining the grains can ac-
count for the different behaviors just described.'™>!°
The latter is thought to have a strong effect on I, the
critical intergranular current induced to circulate azimu-
thally around the tube by the removal of H,, and hence
on the magnetic field trapped in the cavity.

An important feature in our investigation is that we
monitor not only (B, ). vs H, but also (B, ),,;, the
spatial average of the magnetic flux density in the wall of
the tube, vs H,. The combination of these two sets of
data enables us to assess the magnitude of the magnetiza-
tion of the grains and its effect on I.

Further, we exploit two standard procedures for trap-
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ping magnetic flux in the tubes. These are denoted H
and H procedures. The complementary data ob-
tained by using these two different procedures enable us
to evaluate the dependence of j,, and j, the intergrain
and intragrain critical current densities on the magnetic
field in the low-field range.

We report on measurements on tubes of two different
high-T, materials which display the two different types of
behavior described above under (a) and (b). We apply the
ideas just mentioned to the analysis of our observations in
a simple framework which not only quantitatively ac-
counts for our results but also reproduces data already re-
ported in the literature.! > 1°

II. EXPERIMENTAL ARRANGEMENT
AND PROCEDURES

(B, )pote and (B, ). are continuously monitored us-
ing two pickup coil systems which separately feed
amplifier integrators which drive the Y axis of XY recor-
ders. The X axes are driven by a signal proportional to
H| provided by the voltage across a shunt in the circuit
of the solenoid generating H.

The inner pickup coil monitoring B, )}, the spatial
average of the axial flux density threading the cavity, ex-
tends along the central half of the length of a tube speci-
men. The determination of (B, )., the axial magnetic
flux density permeating the wall of the tube, is a compos-
ite measurement obtained as follows. A pickup coil inti-
mately embracing the waist of the tube specimen records
A®, ,,,, the change in the total axial magnetic flux
threading this pickup coil. Since, by definition,

Qz,total = <Bz )totalTrRoz
=0 +o

z,hole z,wall

=(Bz >hole7TRi2+(Bz)wallﬂ-(Raz_Riz) (1)

(where R; and R, are the inner and outer radius of the
tube), we can determine (B, ), by subtracting the sig-
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nal generated by the inner pickup coil, which detects
A®, ., from that of the outer pickup coil, either elec-
tronically or digitally.

The signal from the inner pickup coil monitoring
(B, ) ol 1s calibrated by applying H with the tube main-
tained in the normal state. The signal from the outer
pickup coil is calibrated in two steps. First we determine
the low range of H, over which the magnetization of the
tube is linear. In this weak-field range, no magnetic flux
is entering across the outer surface of the tube except into
the relatively minute penetration-depth region. Now H,
is applied to the virgin (zero-field-cooled) tube to a value
well below the limit of this linear range and then main-
tained fixed. Then the sample tube is driven into the nor-
mal state by means of an electric heater. The signal S,
detected at this juncture by the outer pickup
coil/integrator/amplifier corresponds to the entry of axi-
al magnetic flux A®, .., into the wall and cavity, hence,

Sa @ (Dz,totalznu’(}HH 77-Roz . 2

The electric heater consists of a single layer coil of 38
B&S Manganin wire bifilarly (noninductively) wound and
uniformly and directly embracing the entire external sur-
face of the tube specimen. A thermal barrier of a few lay-
ers of masking tape wrapped around the specimen (out-
side the outer pickup coil) minimizes the heat input need-
ed to attain temperatures above T..

The axial magnetic field H provided by a copper wire
solenoid 18 cm long with inner and outer diameters of 4.0
and 5.5 cm for the winding (generating 37.7 mT/A) is
uniform within a few percent over the volume of the
specimens. The solenoid and the specimen bathe in
liquid nitrogen at atmospheric pressure.

Two standard procedures, denoted H ., and H
procedures, were exploited to trap a remanent flux in the
tubes. In the H_,, procedure, the tube is allowed to cool
from above T, to the ambient 77-K temperature in static
axial field H , denoted H ,, (i.e., the tube is field cooled).
Then H =H_,, is slowly reduced to zero. In the H
procedure, the tube is first zero-field cooled from above
T, to 77 K. Then H| is slowly raised to a selected value
denoted H ., which is then gradually removed. In both
procedures, the magnetic flux density trapped in the cavi-
ty and in the wall, denoted (B, ), and (B, )., are
measured simultaneously by recording the signal from
the inner and outer pickup coils/integrator/amplifier sys-
tems when the tube is driven into the normal resistive
state by raising its temperature through T, by means of
the electric heater. This causes the inter- and intragranu-
lar persistent currents which sustain the remanent mag-
netic flux to decay quickly and thereby release this
trapped flux.

TABLE I. Dimensions of tubes.

Inner diameter Outer diameter Length
Sample (cm) (cm) (cm)
BiSCCO 1.40 1.72 3.70
YBCO 1.50 3.00 5.00
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We report on flux-trapping behavior at 77 K in hollow
cylinders of two different high-7, superconductors,
namely, 2223 phase (BiyoPbg),Sr,Ca,Cu;0,y and
YBa,Cu;0,_,, where x =0.15. These will be denoted
BiSCCO and YBCO for brevity throughout this paper.
Table I lists the dimensions of the two tubes in cm.

III. RESULTS AND DISCUSSION

A. General comments

Figures 1-4 display our data on flux trapping by the
H, and H . procedures for the YBCO and BiSCCO
tubes. A quick inspection of these figures reveals that the
two tubes exhibit two different modes of flux-trapping
behavior in the cavity. For the BiSCCO tube, (B, ).
rises monotonically to a plateau whereas in the YBCO
tube (B, ), describes a peak followed by a decline to a
low-lying plateau. Examples of these two regimes have
already been reported by other workers.! “>>1°  We pro-
pose a simple model that generates a “‘spectrum” of
behavior which includes our results and encompasses the
behavior previously reported.!”*>!° This phenomeno-
logical model is based on concepts put forward and exam-
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FIG. 1. YBCO tube at 77 K. (a) Data points are experimen-
tal and display {B, )0, the magnetic flux density trapped in the
cavity of the tube after field cooling in and removal of H .
The solid (dashed) curve is calculated including (neglecting) the
contribution of the return flux of the magnetized grains which
threads the cavity. (b) Data points display (B, ).y, the magnet-
ic flux trapped in the wall of the tube after removal of H .-
The solid curve is theoretical and takes M, and H, into ac-
count as described in the text. Parameters for the calculations
were poH ¢ =pol ¥(0)=1.1 mT, n=0.5 for matrix, uoH, =12
mT, n =0 for grains, Cyy =0.45, f,=0.6, and f,, =0.4.
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ined by many workers.?? %

The removal of H ., and the to-and-fro swing of H
induce an intergranular critical current I, to circulate az-
imuthally around the wall of the tube. To simplify the
analysis we will assume throughout this paper that the in-
tergranular critical current density j,,(r) is uniform
along the length Z of the tube and varies only with the
radial coordinate r. Thus we write

RO
L=1.Z=Z [ "jou(r)dr . 3)

B. Monolithic homogeneous tube

Before we proceed to examine the complicated situa-
tion encountered in our work, where the tubes are finite
in length and consist of weakly coupled high-critical-
current-density grains, it is useful to outline the behavior
for the simple idealized scenario, where the tube is
infinitely long and homogeneous. Thus we first ignore
the granular structure and neglect end effects.

The profiles of the magnetic field H,, (r) which ensue
from the H,, and H. procedures for this tube of
idealized geometry and homogeneous composition are
sketched in Fig. 5. Also, for simplicity, we consider sur-
face barriers to entry or exit of magnetic flux to be negli-
gible and take B(r)=u,H(r), and hence let H,,=0.

< Bz>hole (mT)

FIG. 2. YBCO tube at 77 K. (a) Data points are experimen-
tal and display (B, )y, after application and removal of H -
The tube is zero-field cooled before each cycle. The solid
(dashed) curve is calculated including (neglecting) the return
flux of the magnetized grains returning through the cavity. (b)
Data points display (B, )y vs Hgyqe. The solid curve is
theoretical. Parameters used in the calculation are the same as
listed in Fig. 1.
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1. H_, case

First we focus on the flux-trapping behavior in the low
range where H ., is less than a threshold value denoted
a- Over this range of H_,, all of the magnetic flux
initially threading the cavity and permeating an annular

volume of cross section
A,=m(r}—R}) @)

remains undisturbed, and hence trapped, upon the remo-
val of H_,, [see Fig. 5(a)]. The flux-retaining critical
current I, induced to circulate azimuthally by the remo-
val of H_,, occupies the annular volume between 7; and
R,.
The position of the boundary r; depends on j,,,(r) and
the magnitude of H_,, and migrates from R, to R; as

H_,, approaches the threshold value HZyg. From
Ampere’s law
fPLdL:Ienclosed ’ (5)
we obtain
6 T T IDRABEAN
P S tainlal Sl i, atatai.
5 £ = e®8e ¢ 3
a ]
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FIG. 3. BiSSCO tube at 77 K. (a) Data points are experi-
mental and display (B, )y, after field cooling in and removal of
H,,. The solid (dashed) curve is calculated including (neglect-
ing) the contribution of the return flux of the magnetized grains
which threads the cavity. (b) Data points display (B, )., after
removal of H_,,. The three curves are theoretical. The dashed
curve shows f,{(H,(r)), the contribution of the matrix
currents, and the dash-dot curve the net contribution of the
magnetized grains (hence, f,M, —f, CuyyM,) to the total
magnetic flux in the wall (solid curve). Parameters for the cal-
culations were poH «,, = ol *(0)=4.0 mT, poH, =35 mT, n=1
for the matrix, n =0 for the grains, Cy,=0.16, f,=0.5, and
fm=0.5.
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FIG. 4. BiSCCO tube at 77 K. (a) Data points display
(B, o> after application and removal of H,,.. The tube is
zero-field cooled before each cycle. The solid (dashed) curve is
calculated including (neglecting) the contribution of the return
flux of the magnetized grains which threads the cavity. (b) Data
points display (B, ). vs Hc,c.. The three curves are theoreti-
cal. The dashed curve shows f,,{H,(r)), the contribution of
the matrix currents, and the dash-dot curve the net contribution
of the magnetized grains (hence, f, M, — f, Cupy My, ) to the to-
tal magnetic flux in the wall (solid curve). Parameters used in
the calculations are the same as listed in Fig. 3.

(Bz >hole=.u‘0Hcool=.u'OIc (6)

over the range 0 < H ool = <H!.

When H_, = H!7 is removed, the critical current I,
fills the entire cross section of the wall. We refer to this
as a saturated critical state and let 1(0) denote I, in
these circumstances. Here the zero in parentheses indi-
cates that magnetization of the grains is ignored since the
wall is regarded as monolithic. Ampere’s law then yields

<Bz >;ole:“0H:o'gl:/LOIc*(O) 7

and (B, ), traces a plateau for the range H ., = H7,.

The evolution of (B, ). and (B, .. vs H., is
displayed schematically in Fig. 5(c). The detailed struc-
ture of the rise of (B, ), is determined by the depen-
dence of j,,, on B. The ratio (B, .1/ B, 0. depends
on r;/R, and the details of the profiles of j_,(r) hence
Jem(B).

2. Hy. case

During the application of H . smaller than a thresh-

old value denoted H? 7)., magnetic flux penetrates into
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the wall but no flux enters the cavity [see Fig. 5(b)]. A
critical current I, opposing penetration of magnetic flux
into the wall is induced to circulate azimuthally during
the upsweep of H .. This critical current occupies the
annular volume between 7, and R, when H . <H 7.
The position of the boundary r, depends on j,, (r) and
the magnitude of H . and migrates from R, to R; as

H .. approaches the threshold Hg 7. From Ampere’s
law,
:y'gle_ *(O)—— cool . 8)

Some of the flux which has entered the wall during the
upsweep of H . is released during its downsweep, as il-
lustrated in Fig. 5(b). After the removal of
H . <HZJg., two equal countercirculating critical
currents I, and I, exist, where I, occupies the annular
volume r, =r <r; and I, the annular volume r; <r <R,.

For the monolithic, isotropic wall under consideration,
the remanent H,, (r) profiles are symmetric with respect
to r; when H . < H: 7, and hence

r,+R
r= % 9)
and
__R;*+R, 10
= > (
when Hcycle :yrgle'

For the intermediate range of H . between the first
penetration field H 7. and a second higher threshold
field, denoted H (¢, the magnetic flux trapped in the
cavity after the downsweep of H . is determined by
Jem(r) and the magnitude of H . according to the ex-

pressions
< Bz > hole

R,
Lo :—Hcycle‘ fR Jemr(r)dr

—fr jcm2(r f .]cml(r
=Ic2— cl - (1n

oyele 18 also referred to as the double penetration field
since this field, applied to a “virgin” tube, would cause
full penetration of flux across a wall of thickness
2(R,—R;).

Although the magnetic flux in the cavity and in the
wall rises monotically as H. is raised above H g, this
additional flux is released during the downsweep of
H_ .. Consequently, in the higher-field range where

H . > HE4, (B, ) pole traces a plateau, where
(Bz ) hole

RO
— gy*¥km ;
cycle fR. ]cml(r)dr
Ho i

—f Joma(F)Ar=I*(0)=HZ*" . (12)

The evolution of (BZ Yhote VS H oycje OVer these three re-
gimes is displayed schematically in Fig. 5(d). The de-
tailed structure of its rise from zero to the plateau is con-
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trolled by the dependence of j,, on B. In the Bean ap-
proximation, where j,,, is taken independent of B, and
hence is a constant, the rise of (B, }yqc VS H .y is linear

over the range Ho G\, < H e < Htie, and can be written

<Bz >hole

=H :y'gle=Hcycle_Ic‘(0) . (13)
Ho

cycle

The evolution of (B, )., vs H cycle 18 also illustrated in
Fig. 5(d). The detailed structure of the S-shaped rise to
the plateau is determined by the dependence of j,,, on B.
The ratio (B, )y./{B, )10 at the plateau is the same as
that for the H,, procedure.
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C. Granular multiply connected tubes

1. General framework

We now examine the effects of the magnetization of the
grains of sintered materials on the density of trapped flux
in the cavity and the wall of infinitely long tubes. The in-
tergranular current can be regarded as circulating azimu-
thally along an intricate but continuous three-
dimensional network or skeleton with a density denoted
Jem(r). This network consists of the surface volume of
grains and of the links and interfaces between the grains.
The intergranular current occupies only a superficial por-
tion of the volume of the grains, because the intragranu-

1<B_>; 5, /1 H_(r)
L h:h_:___m § - . <Bz>hole Mo
= i Beool, 4 Lot
|
l 1 Beoct, 3 = Hom= o= Lo ®
| ' ™ <Bg >yt Mo
1
; Heool, 2
! \ '
|
' Heool, 1
|
! 0 [ —+-
/] R, r R, 0 *m

i i (] H H

(a) (C) cool . cool
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H
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~ oy
: P _ Heycle, 4 ~H »2m= Heyele R .
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| // _ NBete, s Lo
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m d P m
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FIG. 5. Schematics for an infinitely long, homogeneous, (nongranular) tube. (a) The series of solid curves display H(r), the
remanent magnetic-field profiles in the wall and cavity of the tube after an axial H.,, of different intensities has been removed. The
horizontal solid and dashed curves represent the profiles after field cooling (intrinsic Abrikosov diamagnetism is ignored, i.e.,
H;,=0). (B,)yoiec/to=Hoo, When H o <H,,. The initial (B,),./uo decreases to Hy,, =HZX7=I% (0), the saturated flux-
retaining critical current (per unit length of the tube) when H oo > H o013 =H jom =H 4, is removed. Thus the remanent (B, ), and
(B, ) trace a plateau vs H ;> H,,,. (b) Schematic of initial and final H(r) profiles with H.,. of different intensities present
(dashed curves) and after its removal (solid curves). The tube is zero-field cooled before each cycle. When H eycte <H :;L"le, (B, 10 =0
since the front of the initial field profile 7, >R;, but magnetic flux is trapped in the wall. Flux enters the cavity when
Heyoe > Heyere g =Ham =Hoyde. Now, the initial and final (B, )ync/po rises as H,y, is augmented above H,,. When
Heyoe=H i s =Hyxm =H3%uo" has been removed, the remanent profile is a duplicate of that encountered after the removal of

coot =Heool,3 =H um =H 3oy = I, (0). Consequently, the remanent {B, ), and B, ), trace a plateau of the same height as in (a)
VS Hoyje > Hy . Also, we note that the remanent H,,(r) profile is now the image of that initially existing at H.y,, . (c) The evolu-
tion of (B, Yo and (B, )uay vs H oo €xpected from (a). Note that (B, )poc/{ B, )yan > 1 and the ratio at the plateaus is determined by
the dependence of j,,, on B and by (R,—R;)/(R;+R,). (B, )1 is expected to rise linearly to its plateau but the details of the rise of
(B, }wan are determined by j,,,(B) and its approach to its plateau is smooth. The thresholds of the two plateaus, denoted HX™, are
the same and correspond to I.*(0)=Hy,,,. Also, (B, )po./to=1"(0) at its plateau. (d) The evolution of {B, )., and {B, ), Vs
H_,. expected from (b). Note that (B, )} rises above (B, ),.; when H._,, is in the range between H,, =1*(0) and Hyxx,,. The
height of the corresponding plateaus is the same as in (c). The ratio for the onset of the plateaus,
H&or /H G =H g /Hypm =Hyxm /I1*(0), and the “structure” of the rise of (B, ) and (B, ).y are controlled by the depen-

dence of j.,, on B. Further, (B, ), begins its rise when H oy, =HEm. =H,, =HXm=1I1%(0).
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lar critical current density j, is orders of magnitude
greater than j,,.

It is useful to introduce the sponge analogy proposed
decades ago by Mendelssohn®""*> and Mendelssohn and
Moore.’? Now, however, we associate the body or matrix
of the sponge with the intergrain network of weak critical
current density j,, and view the pores or voids of the
sponge as filled by the interior volume of the grains cap-
able of sustaining large critical current densities j,.

Now the removal of H,, or the swing of H . in-
duces (a) a critical current I, to circulate azimuthally
around the tube through the network or “matrix” and (b)
flux-shielding or flux-retaining persistent Amperian
currents to circulate azimuthally around the periphery
and the interior of the individual grains. Consequently,
we can exploit the classical textbook treatment of a mag-
netized medium consisting of the juxtaposition of mag-
netic dipoles that consist of closed Amperian current
loops. Let M, denote the magnetization of decoupled
grains viewed on a quasimacroscopic scale encompassing
several grains. Although the grains are anisotropic and
vary in size, shape, and orientation, the spatial average of
the magnetization of an appropriate number of grains can
be regarded as directed along the applied magnetic field.
M, may vary as a function of the radial coordinate r.
Such a quasimacroscopic variation will arise when groups
of grains have experienced different changes of ambient
field, and hence possess a magnetization Mg which will
differ in magnitude and perhaps also in polarity. In our
work however, for simplicity, we will neglect these com-
plications.

2. Effect of M, on the critical current in the wall

Many workers have reported that the critical conduc-
tion current in granular high-7,. superconductors de-
pends on the magnetic history of the specimen.® ™% I,
when H, has ascended after zero-field cooling is observed
to be appreciably smaller than I, in a corresponding H,
which has descended from a large value. Here the arrows
1 and | indicate that H, has ascended or descended.
This behavior has been attributed to the return field of
the magnetized grains, which threads through the “ma-
trix” or “sponge” where the intergrain current density
Jem(r) is flowing. Let H,(r) denote the return field of the
magnetized grains averaged over the dimension of the
space between several grains. When H, has ascended
(descended), H,(r) of the diamagnetically (paramagneti-
cally) magnetized grains is expected to aid (oppose) H,.
Consequently j_,, (r) flows through a larger (smaller) total
field

H o (r)=H,tH,(r), (14)

where the positive (negative) sign applies to H, ascending
(descending).

We now exploit this generally accepted model to exam-
ine the behavior of I¥, the saturation critical current in-
duced to circulate circumferentially in the wall of the
tubes of sintered type-II superconductors after removal

of H ., or H,,. Since the grains are paramagnetically
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magnetized after removal of H ., we write

H o (r)=H, (r)—Hy(r), (15)

where H,,(r) and H,(r) denote absolute values. Here,
the subscript 7 is introduced to denote a remanent or re-
sidual H, (r). We note that H,(r) may be greater than
H,,(r) when the paramagnetic magnetization generated
by the flux-retaining currents circulating inside the grains
is strong.

To fix ideas and for simplicity we exploit dependences
of the intergrain (“matrix”) critical current density on
H, ., of the “standard” form,

a

o (F)= = (16)
! [Htotal(r)}"

We stress that H,,, (7) denotes the absolute value, and
hence

Hyou(r)=H,,(r)—Hg(r) when H,,(r)>H,(r) (17a)

and

Htotal(r):ng

(r)—H,(r) when H, (r)>H,(r).
(17b)

For idealized (i.e., infinite) cylindrical tube geometry,
Maxwell’s equation VXH=j together with the critical-
state assumption reads

de(r) a

= —Jom(r) ==

_— (18)
dr {Htotal(r)}n

Even in the idealized situation, where the grains are
identical in size, shape, orientation, and composition, the
magnetic moment of the grains, after removal of H
and H .., will generally vary with r. Indeed, the ensuing
magnetization profile M, (r) will be uniform only if (i) the
removal of H,, and H,, extends over a sufficiently
large range so as to induce a flux-retaining critical
current density in the entire volume of all the grains, and
(ii) the intragrain critical density is independent of B (i.e.,
obeys the Bean approximation where j,, is a constant).

For simplicity, however, we will regard the final M,(r)
profiles as spatially uniform. This simple picture will
therefore become less valid when H ., and H . are not
appreciable compared with H,,, and H,,,,, respectively.
Here H,,, and H,,,, denote the first and double penetra-
tion fields across the wall of the tube when the magnetiza-
tion of the grains plays a negligible role.

In this simple framework of uniform remanent M, (r)
profiles, denoted M,,, we need to envisage only two re-
gimes of behavior subsequent to the removal of H,, or
H. .- In the “high”-field regime, Hy,, the return flux as-
sociated with M, is larger in magnitude than H,(r)
over the entire thickness of the wall [see Fig. 6(a)]. In the
“low”-field regime, although assumed uniform,
H, <H,(r) over a volume R;<r=r, and Hy, >H,(r)
over a volume r, <r <R, [see Fig. 6(b)]; hence here two
zones must be considered in the analysis.

First we consider the high-field (one-zone) regime. In-
troducing Eq. (17b) into (18) and regarding H,, uniform
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FIG. 6. Schematics of H,,(r), the magnetic-field profiles gen-
erated in the matrix of a long tube of a weakly linked granular
type-I1 superconductor by persistent currents of density
Jem =a/[H a(r)]" (Where n > 0), circulating azimuthally in the
matrix around the axis of the tube after removal of
HeiZHyp,=1I.,(0) or Hoye > Hyxm [Eqgs. (20) and (28)]. In
every case, (B, )poe/tto=H,(R;) and H,(R,)=0. In (a) and
(b) the grains magnetized by the removal of H,, and H . gen-
erate a return field H,, in the matrix which is directed opposite
to H,,(r); hence H,(7)=Hy —H,(r) in the region 7, <r <R,
and Hyo(7)=H,(r)—H, in the region R; <r <r,. For sim-
plicity, H,, = Cpy M, is taken uniform and the parameter Cyy
is taken independent of M,,, the remanent magnetization of the
grains. The evolution of M, vs H.,, and H . is developed in
Appendix A. M,, and H,, attain saturation values M, and H,
at the plateaus of (B, )yoi and (B, )yan VS Hoq and Hyq. For
our YBCO tube and that of Yunhui Xu (Ref. 3),
H g*, >>H,, =I%(0) and the plateaus correspond to the lower
curves depicted in (a). In these specimens, the profiles evolve
from that labeled (1) through (6) in (c) and (d) as H,, and H.
are augmented. Consequently, (B, ), displays a prominent
peak which then descends to a plateau. The lower profile shown
in (a) also corresponds to the observation of Eberhardt, Hibbs,
and Campbell (Ref. 4) that the flux-retaining persistent current
appears to be concentrated in the vicinity of R; instead of R,.
(We note that j., = —dH,, /dr.) In our BiSSCO tube and the
specimens studied by Willis et al. (Ref. 1) and Jingrong Wang
et al. (Ref. 2), H}, ~H,,, /(2)"/"*1, hence the H,,(r) profile
displayed in (b) is encountered at the plateau of
(B, )pote/to=I*. In these specimens, H,,(r) evolves only from
the curve labeled (1) through (2) to (3) as H,,, and H,. are
augmented.
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leads to
RO
— [ “lH,—H,(r)]"dH,,(r)
RO
=] "Hy—H,(r)"d{Hy—H,(r)}
RO
=af ‘dr. (19)

Upon integration, and noting that H,,(R,)=0, since
H,, and H . have been removed, this yields

(R.—p) |V/ntD
H,(r)=Hg,— {HI*! _H:;I_—_(R:—Rn , (20
where
H '=a(n+1)R,—R;)=[1}(0)]" ! 1)
and
I1X(0)=H,,,=(B,)}./to (22)

are the critical current, the penetration field, and the
magnetic field trapped in the tube when the grains are not
magnetized. The magnetic field in the cavity is then
given by

<Bz >hole

=H, (R;)
Ko

Il

ng_{ng+l _H:;l}l/(n+l)
ng—{H;r+1 _[Ict(o)]n+l}l/ln+1) . (23)

Combining Egs. (17b), (18), and (20), we note that the
current density j,, is largest along the inner surface of
the tube. This corresponds to the result reported by
Eberhardt, Hibbs, and Campbell* who offer no explana-
tion for this observation. In our model, this distribution
occurs because the total magnetic field in the matrix is
weakest along R; when the grains carry a saturation
paramagnetic magnetization.

In the low-field regime, Eq. (20) also describes H,,(r)
in the outer zone, r, <r <R, where, although assumed
uniform, H,, > H, (r). At the boundary r, between the
outer and inner zones,

H,(r)=H,(r,)=H, (24)

since, here, H,(r)=H, (r)—H,(r)=0. Hence from
Eq. (20) we obtain

n+1
R,—r, _ H, ’ 25)
R,—R; |H,,

which describes the migration of the zone boundary r,
from R, to R; as H,, is made to increase in magnitude
from zero to H,,,. We note that the maximum matrix
current density j,,(r) is encountered along the zone
boundary r=r,. In the limit of zero magnetization of the
grains, H, =0, then r,=R,, and thus the outer zone
vanishes and the maximum matrix current now appears
along the outer radius.

For the inner zone where, although assumed uniform,
H, <H,(r), introducing Eq. (17a) into Eq. (18) leads to
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r

[ °1H,,(r—H1"dH,,(r)
= [ “[H,(r)—H1"d{H,(r)—H,)
=—a [ dr. (26)

Integrating and noting again that H,=H,(r,) since
H 1, =0 at r=r,, this yields
1/(n+1)

(r,—r)
, 27

H (RO_RI)

(r)=Hy,+H,,

m

which applies over the volume R; =r =r,. Introducing
Eq. (25), this reads

(R,—r)

H,(r)=H, + R —R))

n+1
H*m

1/(n+1)
—ng“} . (28)

Consequently, for the “low-field” regime, we find from
Eq. (28) that

( Bz >hole
Ho

=H,(R;)

m 1

:ng+{HZ:;1_Hrgtr+l }l/(n+1}
:ng+{[1c*(0)]n+l_ng+l}1/(n+“- (29)

As required, {B, )40 /o=H,,, =1}(0), when the grains
are not magnetized, and hence H or =0.

The dashed curves in (a) of Figs. 1-4 were obtained us-
ing Egs. (23) and (29). The linear rise of { B, )1,y VS H ool
over the range 0<H ,, =I1}(0)=H,, is independent of
the magnetization of the grains for the infinitely long
tube [see Figs. 5(a) and 5(c)]. For the H . procedure we
ignore the effect of M, on (i) the threshold for first
penetration of flux into the cavity and (ii) the structure of
the rapid rise of (B,)yoe Vs H, in the range of

oyae SH oye SH G [see Figs. 5(b) and 5(d)], since the
assumption of a uniform M,(r) is not valid in this range.

It is remarkable that the simple model which leads to
Eqgs. (23) and (29) qualitatively and quantitatively repro-
duces the two very different modes of flux-trapping
behavior displayed by the YBCO and BiSCCO tubes.
Indeed, these two equations predict a wide “spectrum” of
flux-trapping behavior. It is useful to identify the key ele-
ments in this model which control the resulting variety of
behavior.

The crucial parameters which control the resulting
variety of behavior are the relative magnitudes of

(i) H,,,, the first penetration field across the wall of the
tube,

(ii) H ., the first penetration field into the grains, and

(iil) H ;,, the return field in the matrix at M ;r, the satu-
ration remanent magnetization of the grains.

The first of these three parameters characterizes the
matrix, the second characterizes the grains, and the third
is determined by the structure of the grain-matrix mosa-
ic. H,,, will depend on the thickness of the wall, the in-
tergrain (matrix) critical current density j.,, and its
dependence on magnetic flux density. H,, will depend
on some ‘‘effective” dimension of the idealized average
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grain, the intragrain critical current density j.,, and its
dependence on magnetic flux density. For grains of sim-
ple idealized geometries and standard dependences of j,,
on B, we can readily calculate the ratio M, /H,,, as
shown in Appendix A.

The development of a relationship between the return
field inside the matrix and the magnetization of the grains
is a formidable challenge.?’ 343376 We assume, for sim-
plicity, that the ratio of the return field H gr tO the corre-
sponding grain magnetization M, does not vary appreci-
ably as M, is varied. Consequently, we take

Hy, Hy
Mgf M ;r

where Cy,, is a constant for a given specimen and fixed
temperature. Thus Cpy,, serves as the adjustable parame-
ter for modeling the flux-trapping behavior of a specific
tube.

The critical-state model is taken to dictate the evolu-
tion of M,, as a function of H, and H .. This evolu-
tion is developed in Appendix A for simple idealized
geometries and various dependences of j, on B. This
analysis shows that the curves of M, vs H,, and H
are ‘‘generic,” that is, not sensitive to the choice of
geometry or of dependence of j,, on B when the pertinent
quantities are normalized with respect to M, and H .

In the calculations of (B, )y V8 H oo and H, using
Egs. (23) and (29) we have exploited the simplest expres-
sions for M or from Appendix A, namely, that where the
grains have idealized slab geometry and the intragrain
critical current density is independent of B, hence
Jjeg =ap (i.e., the Bean approximation). Good agreement
with observations is obtained taking the adjustable pa-
rameter Cyy =H, /M, =0.16 and 0.45 for the BiSCCO
and YBCO tubes respectively.

The evolution of the H,, (r) profiles generated by Eqgs.
(20) and (28) when applied to the YBCO tube is illustrat-
ed in Figs. 6(c) and 6(d). Here H; ~2.3H,,,, and hence
the entire spectrum of profiles displayed in these two
figures is encountered as the augmentation of H,, and
H,. causes the remanent magnetization of the grains
M, to grow to the saturation level Mg,.

{B, ) pole =oH (R;) first rises to a peak vs H ., and
H., as the H,,(r) profiles are made to evolve from that
labeled (1) through (2) to (3) in the sketches of Fig. 6(c).
The summit of the peak is attained when

ng:(%)l/(n+1)H*m :(%)1/(n+l)1:(0) , (31)
which follows from Eq. (29), and

dH,,(R;)/dH, =0. At the summit,
<Bz >hcle
Ho

solving for

=I*

¢, max

=2n/(n+1)1t(0)=2n/(n-+-1)H

*xm

(32)

which follows from introducing Eq. (31) into Eq. (29).
The summit is encountered when H,,,(r)=0 at the
midradius
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R — R;+R,
m 2 ’
and hence H,,=H,,(r) at r=R,,. The saturated circum-
ferential matrix current is maximized in these cir-
cumstances.

For the YBCO tube, the descent from the summit is
traced as further augmentation of H,, and H ., and
hence of H,,, causes the H,, (r) profiles to evolve beyond
that labeled (3) in the sketches of Figs. 6(c) and 6(d). The
plateau is attained when H, and H . are sufficiently
large so that their removal generates M, the saturation
remanent magnetization of the grains and the corre-
sponding saturation value, and hence maximum value,
H, =Hg. The remanent H,(r) profile for the YBCO
tube is then “frozen” in a configuration represented by
the curve labeled (6) in Fig 6(d). The removal of H_, of
magnitudes greater than (H;+H,,) and of H
greater than (H,*+H,,,) causes no further increase of
M, and H, and hence no changes in the resulting
H,, (r) profile and no further decline in

Hm(Ri)ZIc*(H;r)=<Bz )hole/#‘o .

Consequently, a plateau is now observed in the latter
quantity as a function of H, and H_,. The corre-
sponding remanent {B,),,; also ceases to evolve with
H,, and H . and also traces a plateau.

For the BiSCCO tube, the saturation remanent magne-
tization of the grains is attained when Hg ~0.707H,,,,
which is in marked contrast to the situation encountered
with the YBCO tube where H; ~2.3H,,. As a conse-
quence, the saturated remanent H, (r) profiles in the
BiSCCO tube evolve from the low-applied-field
configuration labeled (1) through that labeled (2) in Fig.
6(c), but “terminate” or “freeze” at a configuration like
that labeled (3). The configurations of the H,,(r) profiles
in Fig. 6(d) are not generated because M, the saturation
magnetization of the grains, and hence H, =Hg,, are al-
ready attained when configuration (3) of Fig. 6(c) is estab-
lished. Therefore the plateaus of (B, ). vs H,y, and
H,, are traced with (B, ), at or in the vicinity of its
maximum value.

According to our model this is also the situation which
prevails in the observations of (B, ), Vs H,qe reported
by Willis et al.! and Jingrong Wang et al.? on YBCO
tubes at 75 and 78 K, respectively. These workers ob-
serve a plateau for (B,),,. Where the ratio
I /H,,,~2.0 and 1.8, respectively. (We note that
the quantity they denote H, corresponds to our H,,,.)

As illustrated in Fig. 7, the large enhancement of
(B, )1oe/Mo With respect to H,, observed by Willis
et al.! and Jingrong Wang et al.? can be reproduced by
increasing the sensitivity of j,, to H. This is readily
achieved by choosing a large value for n in the prescrip-
tion j,,, =a/H ., and hence in Eq. (32). Alternatively,
as shown in Appendix B, this can be accomplished by
choosing appropriate values for the /parameters Jeo and
H, in the prescription j,,, =j.e “HMo  We note that
I} ax/H,,, =2 is the maximum enhancement ratio pre-
dicted by our model for both prescriptions for j.,, (H).

(33)
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FIG. 7. Behavior generated by our model [Eq. (29)] for
{B, )note> the magnetic field trapped in the cavity of a long tube
of a weak-link granular type-II superconductor vs H,. for
specimens where the matrix current density j,, is rapidly de-
creasing with B and the saturation return field in the matrix
HY=~H,,/(2)/"*V=~0.93H,,,. Both (B,)u,e/m and Hy
are normalized to the initial shielding field H,,, =I*(0). This
theoretical curve should be compared with the data of Willis
et al.! (their Fig. 2) and the data of Jingrong Wang et al.? (their
Fig. 3). Here, jon, =a/[Hoa(r)]" with n=8, Hy; =2.5H 4,
and Cyy=0.75, and H,,, is ignored since k, is negligible [our
Eq. 42)]. M, vs H. is taken from Appendix A for a thin-
slab grain where j, is a constant (Bean approximation).

Yunhui Xu® reports flux-trapping behavior in the cavi-
ty of a hollow tube of YBCO at 77 K very similar to that
exhibited by our YBCO tube. To illustrate the versatility
and validity of our model we display theoretical curves in
Fig. 8 which reproduce his observations in the format he
employed in his Fig. 3. In these calculations we intro-
duce the dimensions and properties [i.e., H,,, =I1*(0)] of
his specimens.

+—4 Hl PRI W
A

-1.5 F——+++++ i
0.1 1 10 100
1 H (mT)

cycle

FIG. 8. Behavior generated by our model [Egs. (23), (29), and
(42)] for the two YBCO tubes studied by Yunhui Xu (Ref. 3).
These two theoretical curves are displayed in the same format
he used and should be compared with his corresponding data
displayed in his Fig. 3. The dimensions of his long and short
tubes lead to k;=0.12 and 0.29 [see our Eq. (42)] and his data
indicate that the trapping fields poH ,, =pol (0)=1.2 and 0.25
mT, respectively. Hence these quantities were used in our cal-
culations for our upper and lower curves, respectively. For
both theoretical curves we took jo, =a/[Higa(r)]'/?, Hye, =18
mT, f,=f,=0.5, and M, vs H,, (from Appendix A) for a
thin-slab grain where j, is uniform (Bean approximation). We
let the adjustable parameter Cyy =H, /M,,=0.30 and 0.136
for the long and short tube, respectively.
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3. Effect of My, on {B, ) g

An inspection of the data displayed in Figs. 1-4 re-
veals that the remanent magnetic flux density trapped in
the wall of the tubes rises appreciably above that trapped
in the cavity. This feature is opposite to the behavior ex-
pected for a tube with a homogeneous (nongranular) wall
and illustrated in Figs. 5(c) and 5(d). The fact that
(B, ) rises well above (B, )}, provides clear evidence
that j,,, the critical density of the persistent currents in-
duced to circulate inside the grains by the removal of
H, or H, is much larger than j,,, the critical
current density in the matrix. As a consequence, the
grains trap a larger remanent magnetic flux density in
their interior than can be trapped by the matrix alone.

The values of H,,; and H . for the onset of the pla-
teaus observed in the locus the (B, ). and (B, ), in
Figs. 1-4 provide a direct measure of H,, and H,,,, the
first and the double penetration fields into the grains.
Further, the ratio H,,,/H,, yields information on the
dependence of j., on B in the low-field range.

Our simple model also qualitatively and quantitatively
accounts for the behavior of (B, ), the magnetic flux
density trapped inside the wall of the tubes after the re-

moval of H,, and H .. We can write

<Bz )wall —
Ho

applicable when H o, >H,,, and H.g. >2"""VH,, .
Here, f, is the fraction of the volume of the wall occu-
pied by the grains. Since H, (r) and H,, both permeate
the matrix network supporting j,, and the voids, we re-
quire that

fetfm=1. (35)

feMy—fmHy+fn(H,(r)), (34)

Since the return magnetic flux cannot exceed the
remanent flux trapped in the grains, the choice of f, and
the parameter Cy,, must satisfy the condition that

feMo> frnHg=fn CapyMg=(1—f)Cyy My, . (36)

For simplicity, we consider f, and hence f,, independent
of B over the range of B under consideration. Our ap-
proach is equivalent to that exploited by many workers
who choose to introduce an effective permeability as the
adjustable parameter in the treatment of (B ) versus the
history of the applied field H,,; and H .

(H,,(r)), the spatial average of the magnetic field gen-
erated by the circumferential matrix current, can be writ-
ten
2

Rm
‘——Rz—)f&- H, (r)rdr. 37)

(H,(r))= R—

This definition assumes that the matrix fills the entire
volume of the wall. Following standard practice this
average is “corrected” by introducing a field-independent
factor f,, <1in Eq. (34).

Introducing Egs. (20) and (28) into Eq. (37), the evolu-
tion of (H,,(r)) vs Hy =Cppy M, is calculated using the

same expression for M, vs H.,, and H,, employed
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earlier and developed in Appendix A. The crucial feature
which emerges from this analysis and is illustrated in Ap-
pendix C is that the locus of (H,,(r)) vs H,, (and hence
vs M gr) traces a peak. For a thin-walled tube, where
n =1, this summit is attained when

172

H,,=0.383H,, , (38

_V2
4

Hy=Hj=

1
2

and hence well before the corresponding locus of (B, )y,
has reached its summit. Consequently, the contribution
of, (H,(r)) to (B,),. traces a peak while the com-
ponent associated with M,, monotonically rises to a pla-
teau as a function of H,, and H .. These contribu-
tions are displayed separately and in combination in Figs.
1-4. In these calculations we have taken f,=f,, =0.5
for the BiSSCO tube and f, =0.6, f,, =0.4 for the YBCO
tube.

4. Effect of finite geometry

In the foregoing we have exploited idealized geometry
and hence regarded the length L of the tube to be large
compared with the outer diameter D,. The situation for
“short” tubes is considerably more complicated. First,
Maxwell’s equation VXH=j together with the critical-
state assumption that j=j,,, (H ) now reads

0H, dH

z

Jem dz or

Hence, the H,,(r) profiles and related formulas developed
above must be regarded as approximations which become
less appropriate as the aspect ratio L /D, diminishes.
Further, now a fraction of the return flux of the magnet-
ized grains threads the cavity of the tube. Let Hy
denote the spatial average of this return magnetic field
threading the midplane of the cavity. To obtain an esti-
mate of H,,, we continue to regard M, as uniform over
the volume of the wall. Consequently VXM=0 and the
basic textbook formula

K, =/f,M, X7, (40)

(39)

where 7 is a unit radial vector, and the “filling” factor f,
is explicitly taken into account, leads to the simple results
that

K, (R,)=¢f;M,=—K(R,) . 41)

8

Here, K, is an equivalent (pseudo-) surface current flow-
ing along the inner and outer circumferences of the wall
of the tube. K, arises from localized currents confined to
circulate within the individual grains, but their juxtaposi-
tion is viewed as equivalent to a continuous current flow-
ing circumferentially along the inner and outer boun-
daries of the wall. The collection of magnetized grains in
the wall is then replaced by two “thin” solenoids of equal
length L, carrying countercirculating currents of equal
magnitude K, = f, M, per unit length of the tube.

Introducing Eq. (41) into the formula for thin solenoids
of finite length, the resulting return magnetic field at the
center of the tube reads
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L L
# TElVDI+L? VDI+L?
=—kuf M, , (42)

applicable when H ,,>H,, and H., >2"""VH_ .
Here the negative sign in front of the curly brackets indi-
cates that H,,, is directed opposite to the magnetization
of the grains. For the YBCO and BiSCCO tubes,
k;=0.10 and 0.028 respectively. The solid curves in part
(a) of Figs. 1-4 display the results calculated when H
[Eq. (42)] is taken into account. For the very short
YBCO tube studied by Yunhui Xu,? this return field is
the dominant contribution to (B, ). The lower curve
in Fig. 8 displays our calculation of (B, )y vs H .y for
his short specimen, exploiting our model and the parame-
ters listed in the figure caption.

IV. SUMMARY AND CONCLUSION

We have reported on measurements of {B, ). and
(B, ) wan» the remanent magnetic flux density trapped at
77 K in the cavity and the wall of tubes of two different
weakly coupled granular high-T, superconductors of
different aspect ratios. The magnetic flux was trapped us-
ing two standard procedures denoted H,, and H .
The data curves for (B, )y, Vs Hop and H .y, exhibit
dramatically different behaviors for the two materials.
Examples of both modes of behavior have already been
reported in the literature.! =3

We exploit the prevailing concept that some of the re-
turn flux of the magnetized grains threads the continuous
intergrain matrix or network and affects I, the circum-
ferentially circulating critical current which this matrix
can support. We assume for simplicity that H,,, the spa-
tial average of this return flux in the volume of the ma-
trix, is uniform and proportional to M,,, the remanent
magnetization of the grains. The variation of M, vs
H_,, and H, is developed in Appendix A in the frame-
work of the critical-state model for idealized grain
geometries and standard dependences of the intragrain
critical current density j,, on B.

The critical-state concept is also exploited to derive
simple expressions for H,,(r), the profile of the magnetic
field permeating the matrix of infinitely long tubes after
removal of H ., and H .. These expressions generate a
spectrum of behavior for (B, ),o.=uoH,,(R;) vs H
and H ., and satisfactorily describe our observations
for (B, ), as well as the data reported by other work-
ers.! 7351 The model also accounts for the feature noted
by Eberhardt, Hibbs, and Campbell4 that the current
density supporting the trapped flux in their measure-
ments exhibited a maximum near the inner radius rather
than along the outer radius as they expected.

A significant fraction of the return field of the magnet-
ized grains will thread the cavity of short tubes and is
denoted H,,. Assuming M, to be uniform over the
volume of the wall, we estimate H,,, at the center of the
cavity and take the effect of this component into account
in weakening the magnetic field trapped in the cavity of
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our YBCO tube. This contribution is shown to play a
major role in the flux-trapping behavior of the very short
(i.e., annular) YBCO tube studied by Yunhui Xu.}

Introducing a parameter f,, the fraction of the wall
volume occupied by the grains, we also apply our simple
model to the successful description of the evolution of
(B, )yan V8 Heoo and H .. We note that the model
“predicts” the appearance of a “hump” in these curves.
This feature is evident in our data for the BiSCCO tube.

Our model provides a simple, self-consistent frame-
work for estimating (i) H,, and H,,,, the first and dou-
ble penetration fields into the grains, (ii) the dependence
of the intragrain critical current density j, on B in the
low-field range, (iii) the dependence of j,, the critical
current density in the matrix, on B in the low-field range,
and (iv) the magnitude, inside the matrix, of the return
flux of the magnetized grains from data on (B, ). Vs
H,, and H .. The volume fraction of the grains, and
hence of the matrix, can be estimated from the corre-
sponding data on (B, ) ..
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APPENDIX A

For completeness, we develop expressions for the
remanent magnetic flux density trapped in isotropic
grains of idealized geometry by the H,, and H . pro-
cedures. We consider a specimen (a grain) of uniform
rectangular cross section 4ab. The homogeneous applied
magnetic field H, and the infinite length of the specimen
are directed along the z axis. We neglect surface barriers
and reversible Abrikosov diamagnetism, and hence let
H=B/u,.

Some special cases of these results have been published
earlier.8>% To scan the expected behavior we display
curves for infinite slab and cylinder geometry for two
standard but very different dependences of the critical
current density j.on B, namely the simple Bean and Kim
approximations where

. . _ Gk

Je=ap and Je = H
where ap and ay are temperature-dependent parameters
characterizing the specimen.

The field-shielding and flux-retaining critical currents
circulate in concentric rectangular loops in the x-y planes
with a current density

(A1)

|£Rj | =129j,|=J. » (A2)
which is uniform along a loop whose sides situated at
+x, and ty, are equidistant from the boundaries x =*a
and y ==xb of the specimen. A quarter of such a loop,
where

d,.=a—x;=b—y,, (A3)
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is displayed in Fig. 9. To fix ideas we let b = a.
By symmetry,

H(x,y,z)=2H,(x,y) . (A4)

Using Ampere’s and Biot-Savart’s law, several workers
have shown that in the circumstances under considera-
tion the magnetic-field configurations H,(x,y) are uni-
form along the current contours defined above.®” 7
Consequently the H profiles can be viewed and expressed
in terms of one variable.””7* We refer the reader to Fig.
10 for sketches of the profiles and displays of the symbols.

In the outer volume x; <x =g, filled with flux-retaining
critical persistent currents after the removal of H_ or
H ., Maxwell’s equation VXH=j and the critical-state
assumption that j =j, =a/H" lead to

dH a

= 5

dx H (A5)
Integration yields

n+l y—pn+l X

H; " (x)=HY, 1—;] , (A6)
where

H, '=(n+1)aa . (A7)

Although we retain the subscript g for grains, the model
developed here applies also to homogeneous bulk speci-
mens.

In the H_, procedure,

Hl(x )=Hcool (A8)
in the inert inner volume 0 =x <x;. Since H,(x;)=H
when0<H ,, <H,,, then

n+1
X; H
_5_:1 cool (A9)
a H,,

The inert region vanishes when H ,,, 2 H .

In the H . procedure, the inner region x, <x <x; is
filled with shielding critical persistent currents. Here, in-

'

dy:d P

0 dx a X
FIG. 9. Schematic of contours of constant magnetic flux den-
sity at a distance d,. from the surface of an isotropic rectangular
grain of thickness 2a along the x axis, width 2b along y (with
b2a), and infinite length parallel to a homogeneous applied
field along the z axis. From conservation of current,
Jex Ay Az = j, Ax Az with j . = j., for isotropic grain.
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FIG. 10. Schematic of H(r) profiles between the center and
the surface x =a =X, =R, of the isotropic grain depicted in
Fig. 9. (a) Profiles after field cooling and after removal of H,,,
(horizontal dashed curves and solid curves, respectively). (b)
Profiles when H . is present (dashed curves) and after removal
of H.. (solid curves). x;(r;) denote the intersection of the ini-
tial and final profiles. x,(r,) denote the surface of penetration
of the profiles.

tegration of Eq. (A5) with a change of sign yields

- X
a

H P (x)=Hlul —H} ! (A10)

cycle

The requirement that H,(x;)=H,(x;) at the intersection
of two profiles [Egs. (A6) and (A10)] gives

H n+1
—Sydle , (A11)

X _, 1
a 2 | H

*g

which applies until x; =0. The field-shielding region van-
ishes when

Hcycle221/(n+”H*g=H:y::le=Httg . (A12)
The condition that H;(x )=0 at x =x, leads to

x H n+1

TPy |2 : (A13)

a H,,

applicable over the range 0<H_ . <H,,. The field-
shielding inner region shrinks from a width a /2 to 0 as
H,,<H,<H,,, is removed, where

H,l=2H,'=2(n+1)aa . (A14)

*x%g

Equation (A 14) follows from letting H,(x)=H ,, at x =0
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in Eq. (A10).

The element of area d A threaded by a uniform magnet-
ic flux density is depicted in Fig. 9. The infinitesimal
width of dA’, the horizontal segment of dA in the
sketch, is written dx since the H(x,y) profiles depend on
the variable x. Consequently, we write

dA=dA'+dA"={(b—a)+2x}dx , (A15)
where

dA'=xdx , (A16)

dA"=ydx=(b—d,)dx={b—(a—x)}dx . (Al7)

The spatial average of the trapped magnetic field is ob-
tained from the definition

(H)ab=[" [ H(x,y)d4
=f0""Hl(x){(b—a)+2x)}dx

+ ["Hy(x){(b—a)+2x)}dx . (A18)

Introducing the expressions for H,(x), H,(x), x,, and
x; developed above and integrating leads to the following
formulas for M, = (H) for the cases where n =0 and 1
for the H_,, and H . procedures. For brevity we write

Hcool — Hcycle (A19)
H,, H,,

cycle

u=
g

H . procedure

For the Bean approximation (n =0),

M 1 1
gr __ a 2 a 3
—=u——|1+—= += |-
H,g u 2 b u 3 1% ]u , (A20)
which simplifies to
M
st _
H., =u—1ly? (A21)
for an infinite slab where b — «, and to
M
—E =y —u2+ L3 (A22)
H,,

for a square and a cylinder. For the Kim approximation
(n=1),

M 1 1
gr __ a 3 a 5
=y —— 1+ [P+ |5 |4, A2
H,g“31b“5b“ (A23)
which reduces to
M
g _ 3
—E‘—g——u—§u (A24)
for an infinite slab, and
M
g _
H., —u—-%u3+%u5 (A25)

for a square and a cylinder.
Equations (A20)-(A25) apply over the range 0<u <1.
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H . procedure

As indicated earlier in this Appendix, two ranges of the
variable u=H . /H,, need to be considered in this
procedure. For the Bean approximation,

M 1

gr _ 2,42 3
= 2 S (- : A2
H,, 4 u b(u u )] (A26)

applicable over the range 0<u <1, and

M 1 2 1 2 3

gr _ u a u u
by |-+ |, (A27
H, 2 “" 47 b6 4 T1z| A

applicable over the range 1 <u <2. The reader can readi-
ly verify that the two expressions correspond when u =1
and extract the formulas for the infinite slab and the
square (and hence the cylinder) by letting b-—  and
a=b.

For the Kim approximation,

My _v2

% 3 (A28)

u3+%(u3—u5)] ,

*g

applicable over the range 0<% <1, and

M \/_2' — a
e _ YL 3_‘/2 2__1 3/2+_ 3_..5
H,, 3 [u (u ) b(u u’)

+ V2

a
5 [b

(1+4u4)(u2—1)3/2], (A29)

applicable over the range 1<u <V'2. Again the reader
can readily verify that Egs. (A28) and (A29) correspond
when u =1 and extract the formulas for the infinite slab
and square (cylinder) from these expressions.

Equations (A20)-(A29) are displayed in Fig. 11 for the
limiting geometries [infinite slab and cylinder (square)].
In the displays M, is normalized to the corresponding
saturation (i.e., plateau) value since that is the appropri-
ate reference ‘“level” in the analysis and comparison of
measurements. We note that the “structure” of the
curves is not very sensitive to the choice of geometry or
of dependence of j. on B.

For the calculations of (B, ), and (B, ), displayed
in Figs. 1-4, we exploit the expressions for infinite slab
geometry and the Bean approximation. We assume, for
simplicity, that all the grains in the wall of the tube are
initially immersed in the externally applied H.,, and
H.. We note that Egs. (20)-(29), (34), and (37) only
apply after removal of H ,=H,, and H
>2'/"*VH, . Consequently, in the calculations of H,,
the baseline is displaced and here,

— Heoot “Hym) _ (Hyye—2"""VH, )
H H .

u or u

*g *g

(A30)

Such a displacement of the baseline does not affect the
above formulas nor alter the results in the Bean approxi-
mation, since here j, is independent of B. When the

function under scrutiny is M,, [see Egs. (34) and (42)],
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FIG. 11. Evolution of M,,, the remanent magnetization in an
infinite slab and cylinder, after removal of H . and H... The
curves were calculated using the expressions developed in this
Appendix using n =0 (Bean) and n =1 (simple Kim approxima-
tion) for j,=a/H". M, is normalized to M, the correspond-
ing maximum remanent magnetization for each geometry and
choice of n. H,, and H. are normalized to H g, the first
full penetration field for the corresponding choice of n. Note
that the “double” penetration field H 8,8 =2H &cjc =2H 4, When
n=0 and HX% =V2H} . =V2H., when n=1. The display
we use corresponds to the situation confronting the experimen-
tal worker in comparing H,, and H data on a given speci-
men of known geometry but unknown dependence of j, on B.
The ratios of H.,. and H,, for the onset of the two plateaus
provide a simple and direct guide to the dependence of j., on B.

these “floors” do not apply and the baseline is not “shift-
ed.”

APPENDIX B

For completeness, in this Appendix, we develop ex-
pressions for the remanent H,(r) profiles and
(B, o1/ Mo=H,,(R,) for infinite tubes, where

—H

(r)/H
Jer)=Jee T

total

(B1)
Here j., and H, are temperature-dependent parameters
of the matrix.

H,—H,(r) when H,>H,(r),
Hora(r)= H,(r)—H, when H, <H,(r).

(B2a)

gr (B2b)
All quantities are absolute values and H , is assumed uni-
form. Maxwell’s equation, Eqgs. (B1) and (B2a), and the
critical-state assumption lead to

R —_ r
f e{ng H,( )]/Hod{[ng—-Hm(r)]/Ho}

RD
=(joo/Ho) [ ‘dr, (B3
which yields
_ H, /H, X
H,(r)=H,—H,ln{e * °—[jo(R,—r)/Hyl} , (B4

since H,,(R,)=0 after removal of H ., or H .. Equa-
tion (B4) applies to the outer zone r, <r <R,, where

H,>H,(r) and to the entire wall when H, > H, (R;)
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hence r,=R;.

For the inner zone R; <r <r, where H, (r)= H
(B2b) applies. This leads to

gr? Eq

er.e[Hm(r)“ng]/HOd (LH,, (r )_ng 1/Hy)

==eo/Ho) [gdr . (BS)
which yields
H,(r)=H,+H, ln{e[Hm(Ri)“H

—[Jeolr —R;)/H,]} . (B6)

o )/Ho

Since H,,, =0 at r=r,, the interface between the two

zones and hence H,, (r,)=H,,, Eqs. (B4) and (B6) give

(eolo /Ho)=1+(j,gR, /Hy)—e &'

— R gl Moy 4 (i R./H,) . (BT)
Solving for H,,(R;) yields
H,(R;)=Hy,+H,In{2+[j.o(R,—R;)/H,]
H, /H,
—e

). (B8)
Introducing (B8) into (B7) gives

H,(r)=Hg+HyIn{2+[jo(R,—r)/Hy]—e = "0} .
(B9)
Letting dH,(R;)/dH,=0, we find that H,(R;)
traverses a maximum when
ng )
H—0=10{1+%[JCO(R0”R:')/H0]} . (B10)
Hence,
I ax =Hp (R} )pax
=2H,In{1+1[j.o(R,—R;)/H,]} . (B11)

From Eq. (B8) when H, =0 and hence M, =0, we see
that, here,

Hm(Ri):Htm
=1X(0)
=H0(ln2+ln{1+%[jCO(Ro—R,<)/H0]}) . (B12)
Consequently,
It
c,max __ 2 (B13)

1*0)  1+In2/In{1+1[jo(R,—R;)/H,l} ’

which rises to a maximum value of 2 as j.o(R,—R;)/H,
becomes infinite.

APPENDIX C

Among the B profiles sketched in Fig. 6, that labeled
(2) “embraces” the maximum total magnetic flux. Conse-
quently, uo{ H,,(r)), the remanent magnetic flux density
permeating the matrix, traces a peak as a function of H,,,
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i.e., vs M, and therefore vs H .y, and H,. when j,,
the critical current density, decreases as B increases. In
this Appendix we develop expressions for {(H,,(r)) for a
thin-walled tube where j., =a/H{,, in the framework
of our simple model where H, is assumed uniform. For
the case where n =1 we develop an expression for the
maximum value of (H,,(r)) and the corresponding H .
For a thin-walled tube,
2 R,
(Hm(r))=m fRi H, (r)rdr

1 R
z;fRi H,(x)dx , (o)}
where R,—R;=X <<R;. In the context of planar

geometry, Egs. (20) and (28) read
1/(n+1)
] , (C2)

Hm(x)Zzng_ ngr+1_H::] 1_,—;_

X

H,,,(x)|=ng+ X

n+1
Hn«m

1/(n+1)
—Hg,“] , (C3)

where Eq. (C2) applies to the outer zone xy<x <X, and
Eq. (C3) applies to the inner zone 0 <x <x,, with

H

L

H

n+1
X0

X (C4)

*xm

Introducing Egs. (C2)-(C4) into the definition
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(H,(x))= fo"on(x ),d(x /X )+ fx:H,,,(x )d(x /X)),

(C3)
we obtain
+1)(n+2)/(n+1)
(H,,,(x))z n+1 . H, " n
H,, n+2 H,,
n+2
H H
g +g— - (C6)
*xm *xm
(H,,(x)) transverses a maximum when H or Satisfies the
equation
n +1)1/n+1)
ng 1— gr "
H*m Htm
n+1
H 1
+ | E =——. (C7
H,, n+1 €

For the simple Kim case where j ., =a/H ., Eq. (C7)
yields

1 va|”
H,=H,, l;——; =0.383H,,, . (C8)
Introducing this into Eq. (C6) gives
(Hm(x)>max <Hm(x))max
———=0.871 and —————=1.307,
H,, an (H,,,(x ) )0

where (H, (x)), is the spatial average of the magnetic
field when H,, =0 [curve labeled (1) in Fig. 6].
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FIG. 9. Schematic of contours of constant magnetic flux den-

sity at a distance d, from the surface of an isotropic rectangular

grain of thickness 2a along the x axis, width 2b along y (with

b2a), and infinite length parallel to a homogeneous applied

field along the z axis. From conservation of current,
Jex By Az = j, Ax Az with j., = j,, for isotropic grain.



