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A relation between the thermodynamic potential and certain spectral-weight functions in mixed
singlet-triplet states of a Fermi fluid with weakly attractive interaction is established. The entire thermo-
dynamics of the system can be derived using this relation. A similar relation is also established for an as-

sembly of spinless, interacting bosons in the ordered phase. The latter corresponds to the KadanofF-

Baym relation for the normal phase when the necessary conditions are fulfilled. Crossover scaling forms
for the susceptibility and the deviation of pressure from its critical value for the Bose system are calcu-
lated using the established relation. These forms are in general agreement with those obtained earlier by
renormalization-group approaches to the problem.

I. INTRODUCTION

About three decades ago, Kadanoff and Baym' estab-
lished a formula relating the thermodynamic average of a
model Hamiltonian for an interacting Bose system in the
normal phase to a spectral-weight function. This func-
tion can either be defined' in terms of the retarded and
the advanced single-particle Green's functions or can be
given by a discontinuity across the real axis of a certain
function constructed by analytic continuation of the
Fourier coeScient corresponding to the temperature
Green's function of the system to nonreal z ( =i co„, where
co„ is a Matsubara frequency}. A few years ago, relations
between spectral-weight functions and the Fourier trans-
forms in space and time of the dynamic correlation func-
tions of order parameter fluctuations were established by
the present author for the effective Bose system and also
for the singlet-spin-pairing and equal-spin-pairing states
of a Fermi fluid with weakly attractive interaction. The
present work aims at establishing a relation between the
thermodynamic potential per unit volume corresponding
to mixed singlet-triplet states of this Fermi system and
certain other spectral-weight functions. We also aim at
establishing the same for an assembly of spinless, in-

teracting bosons in the ordered phase. The former gives
the relations for pure singlet and triplet states as special
cases whereas, in suitable limits, the latter reduces to the
Kadanoff-Baym (KB) relation' for the normal phase. The
idea behind establishing these relations is to show the
possibility of the derivation of finite-temperature thermo-
dynamics and critical behavior of these two systems using
the weight-function method.

An outline of the content of this paper is as follows. A
relation between the thermodynamic potential per unit
volume, in mixed singlet-triplet states of a Fermi Quid

and certain spectral-weight functions is established in
Sec. II. A set of coupled equations for various gap func-
tions occurring in this relation are also set up. The KB
relation for the normal phase of an interacting Bose sys-
tem is extended to the ordered phase in Sec. III using the
well-known Bogolubov prescription. The usefulness of

the relation to derive thermodynamics and critical
behavior is demonstrated using an approximate form of
the Matsubara propagators in the finite-temperature
analogues ' of the Beliaev equations. It is shown that
crossover scaling forms for the susceptibility and the de-

viation of pressure from its critical value, calculated us-

ing the present method, are in general agreement with the
corresponding ones obtained by previous workers ' by
their renormalization-group (RG) approaches to the
problem. Finally, Sec. IV contains a discussion related to
the work presented in this paper.

II. THERMODYNAMIC POTENTIAL OF A FERMI
SYSTEM
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The system under consideration is an assembly of in-

teracting fermions contained in a box of volume V. In
second quantized notation, the mean-field Hamiltonian'
of the assembly, in the case of mixed singlet-triplet pair-

ing, reads (in units such that fi= l)

HF =g Akek Ak,
k
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Here, mF and pz, respectively, denote the mass and

chemical potential of a fermion. Vkk. denotes an attrac-

tive interaction potential. The subscripts 1 and 2 in (3),
respectively, correspond to the two spin states 1 and J,

and angular brackets ( ) to the thermodynamic average
calculated with HF. Fermi statistics implies ' that in
this case, whereas (b)), b, zz) are odd functions of k,
(b, )z, hz) ) are neither even nor odd. Equations for these

gap functions will be written down towards the end of
this section.

Our aim here is to establish a relation between the
thermodynamic potential per unit volume

Here, co„=(2n+1)mlP with n =0,+1,+2, . . . , T,
denotes the time-ordering operator and

Hr(k)r Hr—(k)r
Qk r 'e "

ak e (10)

The Lehmann representations' (LR) of AP(kkcr, co) are
easy to write. With the help of these representations one
obtains

AP ( kkcr, co) = 2—(e~+ 1)ImfP( kkcr, co },
where

fP(kkcr, co}= i J—f dt dt'e'""

Qp= —(PV) 'ln Trexp( 13Hp—) (4) X (a +k (t')a+k (t) )&e(t t') . —
of the assembly and certain spectral weight functions.
Here, P denotes the inverse of the product of temperature
T and Boltzmann constant k&. The specific heat at con-
stant volume will be calculated using this relation also to
demonstrate its usefulness.

It is convenient to define a new potential per unit
volume Qp(A, ) in terms of the Hamiltonian Hp(A, ) =AHp,
where A, is a variable, for the purpose stated above. One
can write

Qp(A, )= V ' I (Hp(A. ))k+Qop,

(12}

In view of (11)and (12), it is easy to see that

+„dco Ap(hkcr, co)
~akk (t )Qkk (t))A, t)—m 2n' (et~+ 1)

(13)

Upon substituting (13) in (7} one finally obtains the rela-
tion

where the angular brackets ( )k denote thermodynamic
average calculated with Hp(A, ) and Qop is an integration
constant to be specified later [see note below Eq. (28)].
The system under consideration corresponds to
Qp(A, =1). Obviously, the task now boils down to estab-
lishing relations between the average (Hp(A, ))k and
spectral-weight functions.

We follow the methodology pioneered by KadanofF and
Baym, ' by and large, to accomplish the task. The first
step is to set up equations of motion for the operators
ak (t ), ak (t) (cr = 1, $ ), etc. , where

iH&(k)) iH&(k))—
Qk t =e Qk e

The next step is to write down equations of motion for
the averages gk (ak (t')ak. .(t) )k. These equations yield

(Hp(A, ))k= —,
' lim g i i- —

) k Bt c}t'

X j (ak (t')ak (t) )k

X [ AP(kcr, co)+ AP( kcr, co)] .—

(14)

This is the relation sought. As for uses, this type of rela-
tion serves as the starting point to investigate the thermo-
dynamics of models that include the possibility of both
singlet and triplet pairings, such as the Klemm-Liu mod-
el'z for layered, high-T, superconductors.

The weight functions in (14) can be calculated setting
up equations of motion for the temperature Green's func-
tions in (9) and transforming these equations to the ones
for the corresponding Fourier coeScients. The latter
constitute a system of homogeneous, linear equations.
One obtains

g [AP(kcr, co)+ AP( —kcr, co)]

[ C;(k )5(co+AEk')+D; (k )5(co—AEk') ],
i =1,2

+ (Q —k (t )a —k (t) )k] (7) (15)

The thermodynamic averages in (7) will now be expressed
in terms of the spectral-weight functions AP (+kcr, co)

given by

Ap(kcr, co)=i[GP (kcr, kcr, co„}l,. +,.0+I CO

b,z)(k }=—,'[iI),)z(k) —bz)(k)], (17)

where

(
—1)' e( p)k[la„(k)l'+ Iaz')(k)l']

C;(k)=1+ (16)
Ek(')&g(k )

—GP(kcr, kcr, co„)l, ,o~],
n

(8) E"= [ep(k )+ri (k ) ]' (18)

where Gp(k cr, k'cr', co„) are the Fourier coefficients of the
temperature Careen*s functions

Gp(kerr, k'cr''r')= —(T,[ak~(r)ak ~.(r ) j )k . (9) (19)
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g(k)=[(l& I' —l~ I')'+(I& I' —I&' I'}'

+ (~1(~)2 ~22~21) + ~11~21 ~22~12) I

(20)

ductor. In the equal-spin-pairing (ESP) states of the sys-
tern, on the other hand, 6&2=0= A2] and
Ek'=(eP+ Ib,;; I

)', i =(1,2). One thus obtains the two
independent equations for 5;, (k ):

and the coefficients D, (k) are obtained replacing ( —1)'

with ( —1)' in (16). In view of (15)—(20), it may be
remarked that the introduction of mixed singlet-triplet
pairing, within the BCS approximation scheme, has
merely complicated the notation without much qualita-
tive change in expressions of quantities, such as that for
excitation energy Ek. In fact, as is expected, we have an

expression for Ek which gives both the spin singlet

(5,, =0=5&) ) and the spin triplet ((5z) =0) excitation en-

ergies as special cases.
The gap functions (GF) occurring in the sum in (14) are

not yet known. These functions can be expressed in
terms of appropriate temperature Green's functions. As
in the case of AF(+krr, co}, GF's can then be obtained
solving equations for Fourier coeScients corresponding
to these temperature functions. Without showing any of
the details, we write down here the self-consistent equa-
tions for GF's obtained by the above procedure:

PE„'"
b, ; (k)=g Vkk A~(k')tanh

k'

b...(k'}
h, , (k ) = —g Vkk. (.) tanhpEk" /2 .

2Ek"
(24)

( ~11~22+~11~22} pEk, EsP
(1)

(f, f~ )tan—h
~k, ESPEk, ESP

pEk EsP
(2)

+(f, +f2)tanh (25)

where

One may conclude from here that in an ESP-type triplet
superQuid the spin-up and the spin-down particles form
two completely independent systems. The small mean-
field corrections b,X;,.(k, co) (see Sec. IV also) to the
temperature-independent normal-phase values of spin
susceptibility components show that this is not entirely
true. For example, b,X„,(k, co) in ESP states is propor-
tional to

PE(2)
+B; (k')tanh

2
(21) f, (k, co) = 1

Go 6) + l 0
1

co+a&+i0+
(26)

where i,j= 1,2 and

IG,',"(k}l
3; (k)=-

2E(1)(E(i)2 E(2)2)
k k k

B (k)=
V 2E(2)(E(1)2 E(2)2)

k k k

(22)

f2(k, a)) = 1

co —c,2+i 0+
1

Q)+ f.2+l0

E") = [e'(k )+ Ia, , (k) I']'"

el( } Ek, ESP +Ek, ESP & s2( k ) Ek, ESP Ek, ESP
(1) (2) — (&) (2)

(27)
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The details are to be submitted for publication elsewhere

in the future. Obviously, the correction above does not

appear as the sum of two separate contributions arising
from the spin-up and the spin-down particles. Also the

peaks in Im~»(k, ro) (and the corresponding neutron

scattering function) occur at (e„e2) and not at

(Ek"EsP, Ek E'sP). This can be verified by the inelastic

scattering of neutrons in the A-phase of liquid He.
We now substitute (15) in (14) to obtain (HF()(.))z.

This, on being used in (5), gives

QF(A, = 1)=QoF —(PV) ' g g ln coshPE„"/2 . (28)
k j= 1,2

The matrices G. '(k) are obtained replacing il((k) by

i)z(k) in G~"(k). The system of equations given by
(21}—(23) gives all the gap elements. The SU()V) repre-
sentation of these equations is more convenient to deal
with. The solutions will be reported in the future. One
sees from (21) that in a pure singlet state, A )2

= —b, /2Ek
and B,2=0, where 6= —,'h, z and Ek =(eF+b, )' . This
leads to the familiar gap equation for a BCS supercon-

Since, in the present approximation, the normal

phase of the system corresponds to an ideal Fermi

gas, the integration constant Qoz must be

[ —(pV} '21n2+k 1+(2V) 'gk+. Ek~) j, for then the
resultant expression of Qz(A, =1) will reduce to that for
the ideal gas in the normal phase. For pure triplet states,
(28) remains the same formwise. However, for pure
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singlet states, it reduces to the simple expression

QFs= —2(PV) ' g ln[1+e '], E& =(@++AD, )'~

k

kaP (.) BE„"' ~,u~„PEP'
SF= g g 'EP'+P 'e " sech

2V

(29)

The entropy per unit volume, in view of the note below

(28), is given by

PE(j)+ g gln[1+e~,=i,Z k

Then the specific heat at constant volume and pz is

(30)

—k~P BE(J) BZE(j)

BP

BE„'&'

2 4V . i2 ~
"

Bp

PE„J
sech2 (31)

In the case of a BCS superconductor, (30) assumes the
simple form

III. THERMODYNAMIC POTENTIAL OF
A BOSK SYSTEM

k,P BE„
SFs = —

V Q Ea+P
k

PEa
tanh —1

2

The Hamiltonian of an assembly of spinless, interact-
ing bosons of mass mz contained in a box of volume V (in
units such that %=1) is

The term

+ g 21n[1+e
k

(32}

q 'qqq, """"""
ksP—V ' g P(BE& /BP)(tanhPE& /2 —1)

k

in (32) is a typical consequence of Fermi statistics, for
Leggett's expression for Szs, calculated using Planck's
formula and the ansatz that the probability of occurrence
of ground pair, broken pair, and excited pair states are
given by the Boltzmann distribution, does not contain
this term. Near the critical temperature of the supercon-
ductor, this term may be assumed to be small compared
to the other terms in (32) as the gap b, may be approxi-
mated by a constant at criticality. This emphasizes that
the statistics does not play a significant role in determin-
ing critical behavior of thermodynamic functions.

Other useful relations also exist for calculating thermo-
dynamic potential of a Fermi system, e.g., the relation'
for pure singlet states involving pair susceptibility. Sofo
and Balseiro' used this relation to derive the thermo-
dynamics of a two-dimensional electron gas in the low-
density limit. However, as remarked by these authors,
the correct way of doing the calculation is through the
approach of Kadanoff and Baym. '

H~ (M ) =H~ (M ) hMV, — (34)

where

where e~(q)=[(q /2m~) p~], b»
—denotes a boson an-

nihilation operator for the single-particle state of momen-
tum q and u the two-body interaction constant. pz
denotes the chemical potential of a boson.

The aim in this section is to establish a relation similar
to Sec. II between the thermodynamic potential of the as-
sembly in the ordered phase and certain spectral-weight
functions. The usefulness of this relation to derive the
thermodynamics and the critical behavior of the system
will be discussed towards the end of this section.

For the system of bosons in the ordered phase ((b ),
(b t)%o0), an external-field term [ —(hV' /2)(ho+ho)]
must be added to the Hamiltonian in (33), where h
denotes the field conjugate to the real part of bo/v V.
Following Bogolubov, we replace bo/& V everywhere in
the Hamiltonian by a real c number M. Consequently Hz
in (33), together with the external-field term, can be writ-
ten in the form

I

H (M)=VE (M)+ ,' g'[e (q)+2U—(M)](&,b, +&,&, )+-,'U(M) g'(&, & ,+& ,&,)—-
q q

(3S)

Eo(M)=[ @~M +uM ], U—(M)=2uM

The primed q summations above exclude the point q =0.
In writing (35), three-operator terms have not been taken
into account, as in the weak-interaction approximation
only averages involving two and four operators contrib-
ute to various thermodynamic functions. The unknown

(36}

I

M is determined by demanding stationarity of the ther-
modynamic potential per unit volume

Qz = (PV) 'ln T—r exp[ PH~ (M )]—(37)

with respect to variations in M. As in Sec. II, it is con-
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venient to define a new thermodynamic potential per unit

volume flz) ( &(, ) in terms of the Hamiltonian

Hti(M, A, )=AH&(M). The potential Qz)(A, ) will be then

given by a relation similar to (5). Thus, as in the preced-

ing section, the aim boils down to obtaining

( H~ (M, A, ) ) z in terms of weight functions.

To achieve this goal, we first set up equations of
motion for the operators b (t), b (t), etc. , where

iH~(M, ) )t —iH~(M, X)t
38

Next, we manipulate these equations to obtain

(Hz)(M, i())z=AVEO(M) —XhMV+ —,
' g' lim i —i—, +2[e~(q)+2U(M)] [(b (t')b (t))z (b (t')b (t))zI

q
at at'

+ — g' lim [(b (t')bq(t))z+(bq(t')b q(t) )z I .
4

(39)

The averages in (39) can be expressed in terms of the
spectral-weight functions A z) (q, (o) (j= 1,2, 3,4) given by

A t)(q&to)=i [6, (q, c)o~
lG)

In (41), the subscript 1 corresponds to (q, q'} and the sub-
script 2 to ( —q, —q'). Now introducing the functions

j, (q, to)= i f f—dt dt'e' " ' '( )z8(t t')—, (43)

—6 (q, (o„)~ . . +],
n

(40)

where 6 (q, co„) are the Fourier coefficients of the tem-

perature Green's functions
A)~r)(q, oi) = —2(eP"—1)lmf, (q, co) . (44)

6, z(qr, q'r')= —(T, [b+ (r)b+q (r')} )z,
63 (qr, q'q')= —(T, [bq(r)bq (7 ) j )z,

As in Sec. II, (43) and (44) yield
(41)

where ( ) & is a thermodynamic average appearing in the
right-hand side of (39), and substituting LR's (Ref. 12) of
6 (q, (o„) in (40) one obtains

64(qr q r )= (T Ib q(r)b q
(r )] )z

Here, to„=2nqr/P, n =0, +1, +2, . . . and

He(M, Z, ) & H()(M, &)&'—
(42)

( b "(t')b (t)) =
2qr (et'~ —1)

(45)

and similar expressions for the rest of the averages in
(39). Using these expressions one finally obtains

+„d(o [to+ez)(q)+2U(M}]
n, (X)=n„—ZhM+XE, (M)+ —f g' f [A )~(q, to)+ A z~(q, (o)]

V A, —~ 8qr (e~ —1)

1 dk +„d~ [A3z)(q, (o)+ Agz)(q, (o)]
+— U(M) g'

V
q

Sn (eP —1)

for the ordered phase (h~0, MAO, h/M~O), where

Qos is an integration constant to be specified later [see
note below Eq. (57)]. In the normal phase (h ~0, M ~0,
h /MAO), since ED=0= U, A 3z)

=0= A4z), and

A, s = A ze, (46) corresPonds to the well-known KB rela-
tion. '

To demonstrate the usefulness of (46) to derive thermo-
dynamics and critical behavior, the weight functions are
to be calculated. We calculate these functions and the
thermodynamic potential per unit volume in an approxi-
mation scheme ' ' where the momentum and Matsu-
bara frequency dependence of the normal and anomalous
self-energies, denoted by X))(q,co„) and Xoz(q, (o„), re-
spectively, occurring in the finite temperature analogues
of the Baliaev equations (FTABE) are ignored altogether.
The approximate Matsubara propagators in FTABE give
the following expressions for the weight functions:

Q 2

ez) (q) +X),(0,0)
+1

ez) (q)+ Xi i(0,0)
V2

2
6q

e = [ez)(q )+X*„(0,0)—X()z(0,0}]
X [ez)(q)+X*„(0,0)+X()z(0,0)],

A )z)(q, (o)= A z"z)(q, (o)

=2qr[uq5(co —Ae ) —vz5(co+Re )],
A 3z)(q&(o) = A4z)(q, (o)

=2qruqvq[5((o+7(, e )
—5((o —ge )],

where

(47)

(48)

(49)
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h

2M
= —ps+Xfi(0, 0)—Xo2(0,0) . (50) Qs(T, y„)=Qos —(2V) ' g' q +y„

2mB
Equation (50}is the equation to determine M. This corre-
sponds to the finite temperature analogue ' ' of the
Hugenboltz-Pines theorem. The thermodynamic poten-
tial per unit volume, on the other hand, is given by

Qs(A, =1)=Qos —hM+Eo(M)
r1, q2 h

2V 2m' 2M

2

+(PV) 'g'Insinh — +y„
2 2m'

—2un' (T,y„), (56)

where, in view of (50) and (52)—(54), y„ is given by self-
consistent equations

+ (PV) ' g' ln sinh
2

(51)

In the ordered phase, the equation to determine M and
the thermodynamic potential per unit volume are ob-
tained by taking the limits h ~0 and h tM ~0 (MAO) in
(50} and (51), respectively. The self-energies, in the ap-
proximation scheme of Ref. 16, are given by

l 1n'(T, y„)=—g'
exp P +y„—1

2mB

r. = pa—+4un'(»r. ) .

(57)

Xf&(0,0)=2U(M)+4un'(T, X]i Xo2}+2uy(T, Xii Xo2}

(52}

Xo2(0,0)= U(M)+2uy(T, Xii, Xo2),

where

n'=V-'y (btb, &

Upon choosing Qos=(pV) 'g'ln2 the boson pressure
(P) becomes [Po(T,y„)+2un' (T,y„)], where Po is
formwise the same as the ideal gas pressure. The choice
is guided by the fact that, on turning off the interaction,
Qs ( T,y „)should reduce to the thermodynamic potential
of the ideal gas. The deviation in pressure from its A,-line
value Pc(T,psc}, where psc=4un'(T, O) is the value of
p, ~ on the A, line at a given T, is

P(P —Pc)=P[Po(T r. }—Po(T o}l
es(q}+X;,(0,0}=—X'

V e o(exp' o
—1)

+2Pu[n' (T,y„)—n' (T,O)] . (58)

es(q)+ Xf)(0,0}—eqo+
26qp

y=V 'g'(blab )

Xo2(0 0) + 1

2e o e o(exp' o
—1)

(53)

(54)

We now split n' above into two parts, viz. , nI' and nI'„

where the subscripts I and Il, respectively, correspond to
the momentum ranges 0& ~q ~ &qo and qo & Iq I

& ao.

Since the y„dependence of n' can be ignored for the
latter range, we take qo=l'Qy„with I'=10+2m~. As
regards Po(T, y„},we split it also into two parts, viz. , Por
and Poh. It is well known7 16 17 that singularities, in vari-
ous thermodynamic functions, near the A, line have their
origin in the low-momentum (0& ~q ~

& qo) operators of
the system. With all these in view, we write explicitly the
part of P(P Pc ) which is a—function of T and y„both
and also correspond to low mornenta:

2
2

&qO
B

2

+2Xo2(0, 0)2' B [&(P Pc ) I I =&Por(T —y. }

+2Pu[nI (T,y„)
The term Eo(M) is given by [—p&M +uM
—2un '

uy ] —Equat.ions (52)—(54) are the self-
consistent equations for X&&, Xo2, n', and y. Starting with
Eqs. (51)—(55) the entire thermodynamics of a Bose sys-
tem in the ordered phase can be derived. We now obtain
crossover scaling forms, ' for the susceptibility and the
deviation of pressure from its critical value, for the nor-
mal phase of the system starting with these equations.

We note that, in the normal phase, the inverse suscep-
tibility h/2M (=y„) is nonzero. The equation of the 1,
line is given by y„~O+. From (51) we obtain

+2nI', (T,y„)nr'(T, y„)] . (59)

+8'(T)u(Py„) '+O(uy„'),
where, to the leading order in e,

(60)

The high-momentum part, on the other hand, is given by
the remaining terms in (58). Close to the A, line one may
assume Py„« 1. For a (4—e)-dimensional system of bo-
sons, one then obtains

[P(P—Pc)]1=&(T,y„)(Py„)' ' '
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p2
+1 +O(Py„)

x' &dx

2P71B
X + r'

B'(T)=

n"= J"

21 4

(f2+2n"),
8n P

(Pqo/2m2t )x dx
T

pq
2

exp x —1
2mB

r4,
B(T,y„)= 1+

1 67r p 2fo 2mtt

(61)

the weak interaction limit (x « 1), since Y' = 1,
b(T, x)=B(T)/A (T). In the opposite limit (x))1),
Y'=x ~ +'~ and, therefore, b(T,x)=B'(T)x ' /
A (T)C. One notices that, whereas (65) agrees with the
Walasek's result in the weak interaction limit, in the op-
posite limit the second term in the former is of order
~t~

' x ' and that in the latter is ~t~
'~ x . The

reason for this disagreement, as mentioned above, can be
traced to the fact that the thermodynamic potential has
not been calculated here using a renormalized Hamilton-
ian. The results above show that the weight function
technique is quite efficacious even for deriving crossover
critical behavior.

2
mg p2

~P'~' 2m~
ln 1+

(62)

Equation (62) implies that the susceptibility (Py„) is
expressible in the crossover scaling form [cf. Eqs. (75) and
(6.24) in Refs. 9 and 18, respectively]

(p1 „)-'=~t~-'Y(x), x—=Cu~t~-'",

where the scaling function Y is given by the equation

1=Y—xY'

(63)

(64)

Equation (64) differs from Eq. (76) in Ref. 9, for the latter
has been obtained from a renormalized Hamiltonian. It
is possible to obtain the latter, within the framework of
this method, provided the thermodynamic potential is
calculated with the renormalized Hamiltonian in Ref. 9.

Now substituting (63) in (60) and noting that the high-
momentum part of [13(P Pc)], for a give—n T, can be ex-
pressed in the form [A(T)~t~+O(~t~ )] close to the A,

line, one obtains

11(P Pc)= A(T)~t~[1—+b(T,x)~t~' '~ (1+x) '],
(65)

where

b(T,x)= A '(T)Y' (x) B(T)+ B'(T)—
(66)

Y'(x ) = Y(x )(1+x )

This is the crossover scaling form of the pressure devia-
tion sought for [cf. Eq. (15) in the second paper in Ref. 8].
It is also possible to obtain a similar result by the map-
ping' of a Bose system onto a classical S spin model. In

To write down I P(P Pc ) ]
—in the scaling form in Ref. 8,

(Py„) in (60) is to be expressed in terms of the scaling
variable defined by Eq. (7.33) in Ref. 18 [see also (98) in
Ref. 9]. A similar variable defined by (52) in Ref. 9, how-
ever, is more suitable for the present task.

As mentioned above, (Py„) can be calculated from
Eqs. (57). On considering, in the first approximation,
only the low-momentum part of n '( T, y „) and defining t
as the variable P(p~ —p, ttc), it is easy to see from (57) that

Py„= t —Cu (P—y„)'

IV. DISCUSSION

The main aim behind the work reported in this paper
was to show the possibility of deriving the thermodynam-
ics of Fermi and Bose systems using spectral weight func-
tions in (8) and (40). The idea of the work was derived
from the Kadanoff-Baym relation' [see the note below
(46)] published about thirty years ago. In the recent past,
too, some investigation' has been done in this regard.
Apart from thermodynamic potential per unit volume,
the weight-function method can also provide explicit ex-
pression for Gibb's potential per particle, starting with an
appropriate second quantized Hamiltonian, for all
quantum-mechanical systems. Thermodynamics and
critical behavior exhibited by these systems can then be
derived in terms of the experimental variables tempera-
ture and pressure. The method, therefore, has a wide
scope.

It was shown by Lukierska et al. that critical
behavior of the correlation length changes from that
characteristic of the (d+1)-dimensional, classical Ising
model to one characterizing the critical behavior of the
d-dimensional, classical Ising model. The problem is to
examine other thermodynamic functions, to generalize
this effect (called "dimensional crossover"), with the help
of the weight-function method. If the Gibbs potential per
particle of a Fermi fluid (liquid 3He) is calculated by some
means (by the weight-function method, for instance)
starting with the approriate microscopic basis, hopefully
one then obtains appropriate explanation of various
features associated with the A and B transitions in liquid
He.

A Kubo-type formula involving a retarded correlation
function of spin-density operators has been used to com-
pute ~(k, co) in (25). A similar correction for the static
case was obtained by Brinkman ' several years ago. The
procedure adopted, however, was di8'erent. To first order
in an applied field, self-consistent equations for gap func-
tions were expanded and, substituting these expansions in
the expression for magnetization, the susceptibility was
obtained.

The scaling form similar to (65) can be obtained for the
ordered phase of the system starting with Eqs. (51)—(55).
In a forthcoming publication of Singh, this will be de-
rived within the ambit of the RG study in Ref. 9. It will
be shown that the normal-phase scaling form of Walasek
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is not entirely valid for the ordered phase; in place of
b{1+x)

~ [see Eq. (15) in the second paper in Ref. 8] a
structurally difFerent term is present. These terms are,
however, approximately equal in the weak interaction
limit as well as in the opposite limit.
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