Ion-size effect on T_N in $(R_{1-x} Pr_x)Ba_2Cu_3O_{7-y}$ systems (R = Lu, Yb, Tm, Er, Y, Ho, Dy, Gd, Eu, Sm, and Nd)

Weiyan Guan, Yunhui Xu, S. R. Sheen, Y. C. Chen, J. Y. T. Wei, H. F. Lai, and M. K. Wu Materials Science Center and Department of Physics, National Tsing Hua University, Hsinchu, 30043, Taiwan, Republic of China

J. C. Ho

Department of Physics and National Institute for Aviation Research, Wichita State University, Wichita, Kansas 67208 (Received 14 October 1993)

We conducted a detailed study of the structure and magnetic properties of $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ sintered samples, where R = Lu, Yb, Tm, Er, Y, Ho, Dy, Gd, Eu, Sm, and Nd for x = 0.5 - 1.0. We found that the temperature dependence of the dc susceptibility follows the Curie-Weiss law in the temperature range 20-300 K and the paramagnetism of the Pr and R sublattices exist independently of one another. The antiferromagnetic ordering temperature T_N of Pr ions decreases monotonically with increasing R concentration (1-x). At a given x, T_N is R-ion-size dependent. The slope in the T_N vs x curve is steeper for ions with smaller ionic radii. The observed results are interpreted in terms of the hybridization between the local states of the Pr ion and the valence-band states of the CuO₂ planes.

I. INTRODUCTION

 $PrBa_2Cu_3O_7$ is an intriguing exception among the rare-earth-substituted isomorphic $YBa_2Cu_3O_7$ compounds (which are 90 K-class superconductors), since it is nonsuperconducting and an insulator.¹ Specific heat and magnetization measurements on $PrBa_2Cu_3O_7$ showed an anomalous magnetic ordering at $T_N = 17$ K.² Neutrondiffraction³ and Mössbauer spectroscopy⁴ experiments suggest that this ordering is a simple three-dimensional commensurate antiferromagnetic (AFM) order in the Pr sublattice.

The general behavior of PrBa₂Cu₃O₇ differs from what is expected based on a conventional AFM structure: (1) In comparison with other members of RBa₂Cu₃O₇ systems, where the highest value of T_N is observed for the Gd system (2.3 K), the magnetic ordering around 17 K of $PrBa_2Cu_3O_7$ is two orders of magnitude higher than that expected from a scaling of the respective deGennes factors [based on the dipole-dipole or Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions].^{3,5,21} (2) The T_N for $PrBa_2Cu_3O_7$ is field independent up to 9 T.² This result is in contrast to a conventional AFM, which in an external field of a few tesla is expected to suppress its T_N by a few degrees kelvin. (3) The dc susceptibility increases monotonically with decreasing temperature below T_N in PrBa₂Cu₃O₇. (4) The value of the Pr magnetic moment $(0.74\mu_B)$ is much smaller than that of the free Pr ion. (5) The value of the Sommerfeld constant γ determined from specific heat measurements is relatively high $[94 \text{ mJ/mol } \text{K}^2)$ (Ref. 6) or 265 mJ/(mol $\text{K}^2)$ (Ref. 7)], which is comparable to those of the heavy-fermion systems.

The quenching of superconductivity and the anomalous magnetic ordering in $PrBa_2Cu_3O_7$ have been a puzzle and stimulated enormous research activities. One approach in understanding these striking properties of PrBa₂Cu₃O₇ is to study in detail the effect of Pr doping in RBa₃Cu₃O₇ compounds.^{8,9} It is found that as the Pr concentration x in a $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ system increases, its superconducting transition temperature T_c is depressed. Beyond a critical Pr concentration x_{cr} , the superconductivity is quenched⁹ and the system becomes insulating and displays magnetic ordering of both the Pr and Cu sublattices.^{9,10,11} Thus the $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ system can exhibit either superconductivity $(x < x_{cr})$ or AFM ordering of the Pr ions $(x > x_{cr})$. However, the coexistence of both ordering states remains controversial in these systems.^{10,11} It has also been noted that T_c and x_{cr} , at a given Pr concentration in the $R_{1-x}Pr_xBa_3Cu_3O_7$ systems, decrease almost linearly with increasing radius of the R ions.^{9,12,13}

The suppression of T_c has been attributed to two possible mechanisms: the Abrikosov-Gor'kov (AG) pair breaking^{8,14} or hole localization and filling.^{7,15} Both effects may be due to the hybridization of the Pr ion with the sandwiching CuO_2 planes.^{9,15} Very recently, Fehren-bacher and Rice¹⁶ proposed a theoretical model for the electronic structure of PrBa₂Cu₃O₇. They considered the difference between $PrBa_2Cu_3O_{\mu}$ and other $RBa_2Cu_3O_7$ superconductors comes from an enhanced stability of the Pr^{IV} state due to the hybridization with oxygen neighbors, and involves a transfer of holes from primarily planar $O2p_{\sigma}$ to $O2p_{\pi}$ states.¹⁶ In parallel with work on the behavior of the $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems in the superconducting regime $(x < x_{cr})$, the magnetic ordering temperature T_N of the Pr ion in these systems has also been determined from heat capacity and magnetization measurements. 2,6,10,11,17,18 All the results suggest that T_N decreases monotonically with increasing content of R ions, (1-x).

In this paper we report the results of a systematic study on the T_N of $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems (R = Lu, Yb, Tm, Er, Y, Ho, Dy, Gd, Eu, Sm, and Nd).

Our data reveal the existence of a rare-earth ion-size effect on T_N ($x > x_{cr}$), similar to that on T_c ($x < x_{cr}$).^{9,13} For a fixed R concentration (x = const), the rate of depression of T_N with respect to x is smaller for R ions with a larger ionic radius.¹⁰ This is in contrast to the rate of suppression of T_c with x, in that case the rate of depression of T_c with respect to x is larger for R ions with a larger ionic radius.^{9,13} The observed results are interpreted in terms of the hybridization between the local states of the Pr ion and the valence-band states of the CuO₂ planes.

II. EXPERIMENTAL DETAILS

The ceramic $(R_{1-x} Pr_x)Ba_2Cu_3O_7$ (R = Lu, Yb, Tm,Er, Y, Ho, Dy, Gd, Eu, Sm, and Nd) systems with composition in the range of 0.4 < x < 1.0 were prepared by two different methods: (1) A mixture of appropriate amounts of high purity (>99.9%) R_2O_3 , Pr_6O_{11} , $BaCO_3$, and CuO was firstly fired in air in an Al₂O₃ crucible at 940-960°C for 2 days, followed by slow cooling in the furnace. The resultant powder was then reground and pressed into pellets which were fired for 2 days at 940-960°C and then slow cooled at 450°C, where they remained for 10 h before a final slow cool to room temperature. All specimens were annealed in an atmosphere of flowing oxygen to ensure a sufficient oxygen content in the final product. (2) Stoichiometric amounts of high purity (>99.9%) R_2O_3 , Pr_6O_{11} , $BaCO_3$, and CuO powders with a cationic molar ratio (using 0.005 mol of R_2O_3) were dissolved in nitric acid. An aqueous solution of oxalic acid and triethylamine was prepared by mixing 0.04 mol of oxalic and 50 ml of triethylamine in 50 ml of de-ionized water. The solution of metal nitrate salts was added into the oxalic acid-triethylamine solution with vigorous stirring. During the mixing, blue precipitates formed rapidly. The solution was then cooled in an ice bath while being stirred. After stirring for several minutes, the precipitates were filtered and dried at 120 °C overnight. The dried powders were then calcined at 800 °C in air for 10 h to eliminate any organic components. The resulting black powder was pressed into pellets. The pellets were sintered at 930-940 °C for 24 h, annealed at 400 °C for another 24 h, and then slow cooled to room temperature. All the heat treatments were carried out in flowing oxygen atmosphere. Overall, the quantitative agreement in the physical properties of the polycrystalline samples prepared by both methods is excellent.

The structures of the samples were investigated by xray diffraction using CuK α radiation. Differential thermal analysis (DTA) techniques were used between room temperature and 1150 °C to check the presence of other phases. The magnetization was measured by a quantum design magnetometer [superconducting quantum interference device (SQUID)] in magnetic fields up to H = 1 T over the temperature range 5-300 K.

III. RESULTS AND DISCUSSION

The x-ray-diffraction patterns at room temperature show that all samples (for all values of x studied) have the

FIG. 1. X-ray powder diffraction patterns with Cu $K\alpha$ radiation for $(\text{Sm}_{1-x}\text{Pr}_x)\text{Ba}_2\text{Cu}_3\text{O}_7$ (x = 0.4-0.9).

layered orthorhombic perovskite-like structure and contain no extra peaks due to impurity phases within the experimental error (<5%). As an example, Fig. 1 shows the x-ray-diffraction patterns for $(Sm_{1-x}Pr_x)Ba_2Cu_3O_7$ (x = 0.4 - 0.9). Because of the different ionic radii among the various rare-earth elements, it is likely to observe certain degree of segregation in mixing 123 compounds with different concentration x. Such a segregation may not easily be detected by the x-ray-diffraction analysis due to their similar lattice parameters. DTA curves for the $(Sm_{1-x}Pr_x)Ba_2Cu_3O_7$ samples (x = 0.4-0.9) are shown in Fig. 2. A slight endothermic change is observed at around 940-950 °C, probably due to the presence of small amounts of BaCuO₂ phase. The melting peak in DTA curves for $(Sm_1 x Pr_x)Ba_2Cu_3O_7$ samples splits progressively into two branches as the Pr concentration increases. This may reflect an inherent tendency of having

FIG. 2. DTA curves for $(Sm_{1-x}Pr_x)Ba_2Cu_3O_7$ (x =0.4-0.9).

FIG. 3. Temperature dependence of dc susceptibility for $(Gd_{1-x}Pr_x)Ba_2Cu_3O_7$ (x = 0.5-1.0).

some measure of inhomogeneity retained in the Pr distribution or even the existence of phase separation. However, we cannot resolve the difference in lattice parameters of the two isomorphic phases based on the x-ray data. The observation of a systematic variation in the magnetic properties with Pr doping, as will be discussed later, suggests that phase separation has only a minor effect on the physical properties of interest. Therefore, in the later discussion, we will neglect such a phase separation effect.

magnetization M The molar of all the $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ samples (R = Lu, Yb, Tm Er, Y,Ho, Dy, Gd, Eu, Sm, and Nd with x = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0) were measured in an applied field of 5×10^{-4} T over the temperature range between 5 and 300 K. Figure 3 is the typical temperature dependence of the dc susceptibility $\chi(T) = M(T)/H$ for $(Gd_{1-x}Pr_x)Ba_2Cu_3O_7$ samples (x = 0.5 - 1.0). In all cases, the samples are not superconducting and the dc susceptibility increases with decreasing temperature. The measured $\gamma(T)$ can be fitted by a Curie-Weiss law down to 20 K > T_N :

$$\chi = \chi_0 + C / (T - \theta) , \qquad (1)$$

where the Pauli-like susceptibility χ_0 is independent of temperature and the Curie constant is given by

$$C = NP^2 \mu_B^2 / 3K_B , \qquad (2)$$

with P being the effective number of paramagnetic Bohr magnetons. By analyzing the susceptibility data and using formulas (1) and (2), we find $\theta = -5.58$ K, $P_{\rm Pr} = 2.98$, and $\chi_0 = 4.3 \times 10^{-4}$ emu/mol for $\rm PrBa_2Cu_3O_7$. The $P_{\rm Pr}$ value, in agreement with those reported in the literature, falls between the free ion values expected for $\rm Pr^{3+}$ (3.58) and $\rm Pr^{4+}$ (2.54). Similar results have been used extensively to argue for the existence of mixed-valent Pr.⁸ However, the moments calculated for the $\rm Pr^{3+}$ ion in the presence of the crystal field are different from that of the isolated ions and are in good agreement with that deduced from the measured susceptibility.^{19,20}

We have also determined the values of P, θ , and χ_0 for the $(R_{1-x} \Pr_x) \operatorname{Ba}_2 \operatorname{Cu}_3 \operatorname{O}_7$ systems $(R = \operatorname{Lu}, \operatorname{Yb}, \operatorname{Tm}, \operatorname{Er},$ Y, Ho, Dy, Gd, Eu, Sm, and Nd) by fitting their $\chi(T)$ data over the temperature range of 20-300 K. The results are listed in Table I. The effective Bohr magneton numbers should be the resultant of the contributions from both Pr and R ions if the contribution from Cu ions is neglected. The latter can be justified because in most cases the Cu sublattice is in an AFM state over the measured temperature region.²¹ The experimentally determined P value is always smaller than the theoretical counterpart as estimated by the formula

$$P^{2} = x P_{\rm Pr}^{2} + (1 - x) P_{R}^{2} , \qquad (3)$$

where $P_{\rm Pr}$ and P_R are the corresponding P values for Hund's-rule free ${\rm Pr}^{3+}$ and R^{3+} ions, respectively. However, the difference is small. It can be understood reasonably well from the viewpoint of localized magnetism if crystal-field effects are taken into account.^{19,20} Exception is for $R = {\rm Gd}$, since ${\rm Gd}^{3+}$ has zero angular momentum and therefore has no crystal-field effect. Consequently, our results strongly suggest the coexistence of independent Pr and R ions paramagnetism in the $(R_{1-x}{\rm Pr}_x){\rm Ba}_2{\rm Cu}_3{\rm O}_7$ systems. Both P_R and $P_{\rm Pr}$ have approximately the same values as that of the free ions. The Pauli-like susceptibility χ_0 derived from this analysis is in

TABLE I. Effective number of paramagnetic Bohr magnetons P for $(R_{1-x}Pr_x)Ba_2Cu_3O_{7-y}$. $P_{calc} =$ the P value estimated by the formula (3), and $P_{expt} =$ the P value fitted from experimental data using the formulas (1) and (2).

X	PRe ³⁺	Nd 3.62	Sm 0.84	Eu 0.00	Gd 7.94	Dy 10.63	Но 10.60	Y 0.00	Er 9.59	Tm 7.57	Yb 4.54	Lu 0.00
P_{expt}	3.023	2.599	2.837	3.291	4.275	4.290	2.543	4.045	3.569	2.745	3.054	
0.8	$P_{\rm calc}$	3.588	3.224	3.202	4.781	5.732	5.721	3.202	5.352	4.660	3.791	3.202
	P_{expt}	2.756	2.732	2.542	3.874	5.232	5.101	2.395	5.028	4.437	2.769	2.699
0.7	$P_{\rm calc}$	3.592	3.030	2.995	5.281	6.548	6.533	2.995	6.047	5.115	3.893	2.995
	P_{expt}	2.672	2.237	2.334	4.340	5.381	6.053	2.167	5.847	5.182	2.949	2.485
0.6	$P_{\rm calc}$	3.596	2.823	2.773	5.736	7.272	7.255	2.773	6.669	5.533	3.992	2.773
	P_{expt}	2.569	2.394	2.343	5.024	6.946	6.605		6.397	5.774	2.904	2.443
0.5	$P_{\rm calc}$	3.600	2.600	2.531	6.159	7.931	7.911	2.531	7.238	5.921	4.088	2.531
	Pexpt	2.546	2.136	2.246	5.801	7.578						
0.4	$P_{\rm calc}$	3.604	2.356	2.264	6.554	8.540	8.517	2.264	7.766	6.286	4.183	2.264
	Pernt	2.585										

the order of $10^{-4} - 10^{-3}$ emu/mol.

To reveal the magnetic ordering of $PrBa_2Cu_3O_7$, we plot the data in terms of χ vs 1/(T+5.58) [Fig. 4(a)] and $d\chi/dT$ vs T [Fig. 4(b)]. Both plots demonstrate the presence of an anomaly around 17.9 K, which is consistent with the reported T_N for this compound.^{2,6} The continuing increase of χ below T_N indicates a behavior different from that associated with a conventional AFM transition, for which the magnetic susceptibility reaches a peak at T_N .

The effect becomes more apparent in other systems studied as exemplified in Fig. 5, which shows the temperature dependence of the dc susceptibility $\chi(T)$ over 5-20 $(\operatorname{Sm}_{1-x}\operatorname{Pr}_{x})\operatorname{Ba}_{2}\operatorname{Cu}_{3}\operatorname{O}_{7}$ Fig. for 5(a)] and K $(Gd_{1-x}Pr_x)Ba_2Cu_3O_7$ [Fig. 5(b)]. There is no pronounced change in the slope of the magnetization curve. Therefore it is difficult to determine the exact position of the anomaly (or T_N) from $\chi(T)$ curves. It is noted that, with increasing Pr concentration, the measured dc susceptibility increases in the $(Sm_{1-x}Pr_x)Ba_2Cu_3O_7$ system, but decreases in the $(Gd_{1-x}Pr_x)Ba_2Cu_3O_7$ system. In addition, the determination of T_N using $d\chi/dT$ vs T curves

FIG. 4. (a) dc susceptibility vs 1/(T+5.58) curves for PrBa₂Cu₃O₇ and (b) $d\chi/dt$ vs T curves for PrBa₂Cu₃O₇.

FIG. 5. (a) $\chi(T)$ curves for $(\mathrm{Sm}_{1-x}\mathrm{Pr}_x)\mathrm{Ba}_2\mathrm{Cu}_3\mathrm{O}_7$ (x = 0.5 - 1.0) and (b) $\chi(T)$ curves for $(\mathrm{Gd}_{1-x}\mathrm{Pr}_x)\mathrm{Ba}_2\mathrm{Cu}_3\mathrm{O}_7$ (x = 0.5 - 1.0).

does not give sufficient resolution for x < 0.5 in $(\text{Sm}_{1-x}\text{Pr}_x)\text{Ba}_2\text{Cu}_3\text{O}_7$ [Fig. 6(a)] and for all x in $(\text{Gd}_{1-x}\text{Pr}_x)\text{Ba}_2\text{Cu}_3\text{O}_7$ [Fig. 6(b)]. A natural explanation of this difference is that the Gd³⁺ ions have a higher magnetic moment ($P_{\text{Gd}}=7.94$) than that of Sm³⁺ ($P_{\text{Sm}}=0.84$). The paramagnetic contribution of Gd ions is dominant in this temperature range, and it interferes the determination of T_N from the Pr sublattice.

A second approach using the deviation of susceptibility from linear in a χ vs $1/(T-\theta)$ plot also fails to resolve the T_N of $(\text{Gd}_{1-x}\text{Pr}_x)\text{Ba}_2\text{Cu}_3\text{O}_7$ for x < 0.7 (Fig. 7). The difficulty was overcome through a log-log plot of the temperature dependence of χ (Fig. 8), which clearly demonstrates a turning point at T_N in all the nonsuperconducting compounds. In conclusion, therefore, at least one of the three methods mentioned above can precisely determine the T_N of the $(R_{1-x}\text{Pr}_x)\text{Ba}_2\text{Cu}_3\text{O}_7$ systems (R = Lu, Yb, Tm, Er, Y, Ho, Dy, Gd, Eu, Sm, and Nd). The results, which are consistent with one another and are plotted in Fig. 9, show that in all cases T_N monotonically decrease with increasing R concentration.

The T_N values of four $(R_{1-x} Pr_x)Ba_2Cu_3O_7$ systems,

FIG. 6. (a) $d\chi/dT$ vs T curves for $(\mathrm{Sm}_{1-x}\mathrm{Pr}_x)\mathrm{Ba}_2\mathrm{Cu}_3\mathrm{O}_7$ and (b) $d\chi/dT$ vs T curves for $(\mathrm{Gd}_{1-x}\mathrm{Pr}_x)\mathrm{Ba}_2\mathrm{Cu}_3\mathrm{O}_7$.

FIG. 7. dc susceptibility χ vs $1/(T-\theta)$ curves for $(Gd_{1-x}Pr_x)Ba_2Cu_3O_7$.

FIG. 8. $\chi(T)$ curves in a log-log scale for $(Gd_{1-x}Pr_x)Ba_2Cu_3O_7$.

with R = Y, ^{2,6,21} Gd, ^{18,22} Eu, ¹⁷ and Nd, ¹¹ have been reported by several groups using calorimetric and/or magnetic techniques. The general features of our results are consistent with these earlier reports. The small discrepancies in the values of T_N among different groups may be due to the differences in sample preparation.

Our data show a clear ion-size effect on the evolution of T_N with x. A set of linear fit of T_N vs x yields a steeper slope for R with a smaller ionic radius (see Fig. 9). For a given R concentration, T_N decreases monotonically with decreasing ionic radius (Fig. 10).

Das et al.¹⁸ investigated extensively the $(Gd_{1-x}Pr_x)Ba_2Cu_3O_7$ system. Their results show that the magnetic ordering temperatures associated with the Pr and Gd ions, respectively, do not affect each other. Furthermore, Gd ordering prevails even in the dilute Gd concentration 1-x = 0.1, thereby proving the long-range nature of the magnetic ordering of the Gd sublattice. These observations do not favor any mechanisms incorporating the direct intersite iteration. Thus they concluded that the magnetic ordering of Gd in GdBa₂Cu₃O₇

FIG. 9. T_N vs Pr concentration x for $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems.

FIG. 10. T_N vs ionic radius of R in $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems.

may originate from the dipole-dipole interaction.

Our results show that the T_N (Pr ordering) suppression in $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems does not depend on the magnetic moment of R ions. In fact, the suppression of T_N is more effective by R ions with smaller size irrespective of their moment value (see Fig. 9 and Table I). This does not support the existence of any direct intersite Pr-Rmagnetic interaction in these compounds. On the other hand, the dilution of Pr ions is an important factor for T_N suppression, suggesting the short-range nature of the magnetic ordering of the Pr sublattice in these systems.

The Pr ion has its 4f wave function more spatially extended among all rare-earth ions which form the orthorhombic 123 structure. It has also been suggested that the Pr ions in $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ have an enhanced stability in a Pr^{IV} state with a symmetry in favor of stronger hybridization¹⁶ with the valence-band states associated with the CuO₂ planes. Consequently, the hybridization generates an appreciable exchange interaction between the Pr magnetic moments and the spin of the mobile holes in the CuO_2 planes. Therefore it is more likely that the Pr AFM order in the $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems originates from the superexchange interaction through oxygen neighbors. This is consistent with the existing data,⁸ which suggest the importance of the superexchange mechanism involving CuO₂ sheets in determining the Pr magnetism. There are other facts to support this view. First, few conduction electrons (holes) exist to mediate the RKKY interaction. Second, T_N is one or two orders of magnitude larger than that of other $R Ba_2 Cu_3 O_7$ compounds which are believed to originate from dipolar interactions.

Apparently, the other R ions have smaller spatial extension of 4f wave functions and do not possess an orbital symmetry like the Pr^{IV} state. It has also been shown that the conduction electrons (holes) in the CuO₂ planes have almost zero density of states at the R-ion sites.²³ Accordingly, these R ions and the CuO₂ layers can be considered as electronically decoupled for all practical purposes.²⁴ However, based on our experimental data, we suggest that, even though the R ions in $(R_{1-x}\Pr_x)Ba_2Cu_3O_7$ systems do not directly hybridize with the valence band,²⁴ the spatial extension (ion size) of R ions does influence the hybridization between the valence-band states of the CuO₂ planes and the Pr 4*f*electron states. For R ions with a larger ionic radius, the stronger hybridization results in stronger superexchange interaction. Subsequently, it leads to a weaker suppression of T_N . For example, at the same concentration of Rions, T_N is 16.9 K for (Nd_{0.1}Pr_{0.9})Ba₂Cu₃O₇, but reduces to 11.9 K in (Lu_{0.1}Pr_{0.9})Ba₂Cu₃O₇.

In order to compare and to summarize the correlation between the unique magnetic properties and the superconducting properties of the $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems, the superconducting transition temperature T_c vs x for the $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ (R = Nd, Gd, Er, and Lu) (Refs. 9 and 13) together are plotted in Fig. 11 along with their $T_N(x)$. The main features of this "phase diagram" are the following.

(1) The localized 4f electrons of the Pr ions play a crucial role both in the suppression of superconductivity^{9,13} and in the magnetic ordering of the $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems.¹⁰

(2) The superconducting transition temperatures T_c (Refs. 9 and 13) and the magnetic ordering temperature T_N of the Pr ions¹⁰ are affected by the size of the R ion in $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems. At constant Pr concentration, T_c decreases with increasing radius of the R ion.^{9,13} On the contrary, at constant Pr concentration, T_N decreases with decreasing radius of the R ion.

(3) As the Pr concentration x increases, T_c monotonically decreases up to x_{cr} and possibly beyond which T_N increases with further increasing of x. Our results suggest that most likely the superconductivity and the Pr AFM ordering in $(R_{1-x} Pr_x)Ba_2Cu_3O_7$ systems are mutually exclusive. However, the specific heat measurements give an indication of a possible coexistence of superconductivity and AFM in some region near the metallic-insulating transition.^{7,8,16}

(4) As mentioned in our previous reports, 9,13 T_c suppression in $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems is indepen-

FIG. 11. T_c and T_N vs Pr concentration x for $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems (R = Nd, Gd, Er, and Lu).

dent of the magnetic moments of R ions. Similarly, the AFM ordering temperature T_N (for the Pr sublattice) is also independent of the magnetic moments of R ions.

The most likely cause for the above observations is that the ion size of R influences the hybridization between the electron states of Pr ions and that of CuO₂ planes.¹⁰ The hybridization of the 4f states of Pr ions and the valenceband states of CuO₂ is larger in $(R_{1-x}Pr_x)Ba_2Cu_3O_7$ systems with larger R ionic radius. This effect gives rise to

- ¹J. K. Liang, X. T. Xu, S. S. Xie, G. H. Rao, X. Y. Shao, and Z. G. Duan, Z. Phys. B **69**, 137 (1987).
- ²A. Kebede, C-S. Jee, J. Schwegler, J. E. Crow, T. Mihalisn, G. H. Myer, R. E. Solomon, P. Schlottmann, M. V. Kuric, S. H. Bloom, and R. P. Guertin, Phys. Rev. B 40, 4453 (1989).
- ³W. H. Li, J. W. Lynn, S. Skanthakumar, T. W. Clinton, A. Kebede, C-S. Lee, J. E. Crow, and T. Mihalisn, Phys. Rev. B 40, 5300 (1989).
- ⁴G. Wortmann and I. Felner, Solid State Commun. 75, 981 (1990).
- ⁵D. McK. Poul, H. A. Mook, A. W. Hewat, B. C. Sales, L. A. Boatner, J. R. Thompson, and M. Mostoller, Phys. Rev. B **37**, 2341 (1988).
- ⁶S. Ghamaty, B. W. Lee, J. J. Neumeier, G. Nieva, and M. B. Maple, Phys. Rev. B **43**, 5430 (1991).
- ⁷M. B. Maple, J. M. Ferreira, R. R. Hake, W. B. Lee, J. J. Neumeier, C. L. Seaman, K. N. Yang, and H. Zhou, J. Less-Common Met. 149, 405 (1989).
- ⁸H. B. Radousky, J. Mater. Res. 7, 1917 (1992).
- ⁹Y. Xu and W. Guan, Phys. Rev. B 45, 3176 (1992), and references therein.
- ¹⁰W. Y Guan, Y. C. Chen, J. Y. T. Wei, Y. H. Xu, and M. K. Wu, Physic C 209, 19 (1993), and references therein.
- ¹¹H. Jhans, S. K. Malik, S. K. Dhar, and R. Vijayaraghavan, Physica C 207, 247 (1993).
- ¹²H. D. Yang, P. F. Chen, C. R. Hsu, C. W. Lee, C. L. Li, and

the suppression of superconductivity in the lower Pr concentration and the enhancement in superexchange interaction which is favorable for magnetic ordering in high-Pr-content compounds.

ACKNOWLEDGMENT

This work was supported by ROC National Science Council Grant No. NSC790208M00795.

- C. C. Peng, Phys. Rev. B 43, 10568 (1991).
- ¹³Y. Xu and W. Guan, Solid State Commun. **80**, 105 (1991).
- ¹⁴Y. Xu and W. Guan, Appl. Phys. Lett. **59**, 2183 (1991); Phys. Lett. A **163**, 104 (1992).
- ¹⁵J. J. Neumeier, T. Bjørnholm, M. B. Maple, and Ivan K. Schuller, Phys. Rev. Lett. 63, 2516 (1989).
- ¹⁶R. Fehrenbacher and T. M. Rice, Phys. Rev. Lett. **70**, 3471 (1993).
- ¹⁷G. Neiva, S. Ghamaty, B. W. Lee, M. B. Maple, and Ivan K. Schuller, Phys. Rev. B 44, 6999 (1991).
- ¹⁸I. Das, E. V. Sampathkumaran, R. Vijayaraghavan, Y. Nakazawa, and M. Ishikawa, Physica C 173, 331 (1991).
- ¹⁹L. Soderholm and G. L. Goodman, J. Solid State Chem. 81, 121 (1989).
- ²⁰L. Soderholm, C-K. Loong, G. L. Goodman, and B. D. Dabrowski, Phys. Rev. B 43, 7923 (1991).
- ²¹I. Felner, U. Yaron, I. Nowik, E. R. Bauminger, Y. Wolfus, E. R. Yacoby, G. Hilscher, and N. Pillmayr, Phys Rev. B 40, 6739 (1989).
- ²²H. D. Yang, P. F. Chen, C. R. Hsu, and H. C. Ku, Physica B 165&166, 1193 (1990).
- ²³J. Yu, S. Massidda, and A. J. Freeman, Phys. Lett. A **122**, 203 (1987).
- ²⁴Yunhui Xu and Weiyan Guan, Appl. Phys. Lett. 53, 334 (1988).