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The magnetic field in the center of a superconducting YBa2Cu307 q hollow cylinder is measured as a
function of the applied field for temperatures ranging from 20 to 85 K. The aim of this paper is to ex-
plain the low-field hysteresis of the magnetization encountered in this and similar polycrystalline materi-
als through the use of the generalized critical state model. Parameters of the model are determined by
fitting the data giving an exponent close to n =2, a zero field critical current density J,o ranging from 0
to 1300 A/cm, and a characteristic field Ho which varies from 0 to 125 G. A related study of the full

penetration field as a function of the wall thickness is also presented. %e include the efFect of the demag-
netizing factor in the theoretical analysis when the cylinders are short compared to their diameter and
their wall thickness. This leads to a shielded volume fraction fe of the sample of around 0.55.

I. INTRODUCTION

Since the discovery of high-temperature superconduc-
tivity, ' many workers have observed two hysteresis loops
in the magnetization curves of the Y-Ba-Cu-0 (YBCO)
polycrystalline system (see Ref. 2 and references therein).
One appears at high applied fields (above, say, 500 G) and
is associated with the bulk critical current density J,~ in-

duced in the grains, which are then decoupled and
penetrated by vortices. At lower applied fields (0-200
G), another loop is observed and corresponds to vortices
in the intergrain regions associated with a critical current
density J, flowing in the weak-link network throughout
the sample. At intermediate fields, a combination of both
effects is expected (this is confirmed by the hysteresis of
the transport critical current of such samples ).

Since the intergrain contribution is intimately related
to the critical current limitation and J, is field depen-
dent, we want to focus on the mechanism of pinning for
the corresponding intergrain vortices and its influence on
the magnetic properties of YBCO. We choose to study
hollow cylinders since it is then possible to obtain a
direct solution of the field in the center as a function of
the field at the surface of the cylinder from the critical
state equation.

Measurements of the magnetic state of superconduc-
tors using cylinders were first introduced by Kim, Hamp-
stead, and Strnad on Nb-Sn and Nb-Zr tubes. Using
magnetoresistant probes, they obtained the magnetic field
in the hole as a function of the applied magnetic field.
They related the data to a critical state model following
an empirical function for J,(H) given by
J,(H)=a(H+Ho) ' in which a and Ho are material-
and temperature-dependent parameters. Many au-
thors ' ' have presented hollow cylinder data showing
the irreversibility observed at low fields in YBCO. Such
data allow a determination of the full penetration field Hz
and other characteristic fields as a function of tempera-
ture and wall thickness a. In particular, the wall thick-

ness dependence' can be a valuable source of informa-
tion since H (a) includes in general all the parameters of
a given critical state expression for J,(H).

To analyze our data, we use the generalized critical
state model' (GCSM), which unifies the Bean, linear, ex-
ponential, and Kim models. It includes three parameters
that we obtain by fitting the magnetic field measured in
the center of the hollow cylinder H „, as a function of
the applied field H, . In this paper, we first show that
these parameters can be determined completely even be-
fore fitting the data using the derivative of H„„, with
respect to H, at given points of the hysteresis loop for
infinitely long hollow cylinders. Because we expect and
observe demagnetizing efFects with our short cylinders,
this technique cannot be used. An additional contribu-
tion is included in a theoretical model in which the
demagnetizing factor and the shielded volume fraction of
the cylinder are introduced. In the case of short
cylinders, we underline the fact that the trapped field is
not the full penetration field Hz. Nevertheless, we devel-

op a method to extract Hz from the data using

BH„„,/BH, . It is then possible to fit the experimental
data and determine the GCSM parameters as a function
of temperature.

II. THEORETICAL APPROACH

The GCSM in cylindrical coordinates is given by'

dH (r) +JeoJ, (r)=
dr ( I+ IH (r) I /Ho)"

where J,o, H~, and n are the parameters related to the in-
tergrain coupling and to the pinning type and strength.
These parameters are expected to be temperature depen-
dent. The sign of J, . is determined by the local variation
of the intergrain field H(r) as the applied field varies
(+: (H(r)~ increases; —:(H(r)( decreases). A sche-
matic of the cylinder and its corresponding field profiles
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FIG. 2. Theoretical H „, as a function of H,N for J p=1000
A/cm, Hp =5 G, n = 1, and a =4 mm.
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FIG. 1. Flux profiles obtained while sweeping the magnetic
field from (a) 0 to H,„,(b) H,„ to —H,„.

is presented in Fig. 1. In the fallowing subsectian, we

suppose that H (r) never exceeds the lower critical field of
the grains (H„s) and that weak-link lower critical field

H„ is negligible. '

w (n +1)J,QH "a ]' '"+" H—(2)

where —and + are for the ascending and descending
branches, respectively. We are also able to determine the
full penetration field H and the field H, at which

H„„,=H~ on the ascending branch (see Fig. 1):

H~=Hll[[1+(n+1)JoalHO]'/'"+" —1} (3)

and

H, =Ho[[1+2(n +1)J,oa/Ho]'/'"+" —1] . (4)

We see that these characteristic fields depend on the same
three parameters (J,o, Ho, and n) and that the trapped
field is given by H [see Fig. 1(b) when H,s =0]. It will
be seen that an accurate fit of H (a) remains difficult in
YBCO since low wall thicknesses (below 1 mm) become
necessary. However, a direct determination of J p Hp,
and n can be obtained if we use the derivative of
H~„,(H,lr) at various points of the hysteresis loop.

A. Infinitely long hollow cylinders

Solving for the field in the center of an infinitely long
hollow cylinder (zero demagnetizing factor) of wall thick-
ness a as a function of the effective field at the surface
H,z gives

H...= [(IH.pl+Ho }""

with — and + for the ascending and descending
branches, respectively. At point 8 (H,&=K„ascending
branch) this gives

BH„„, H, +Hll

dH, ff H +Hll

and, at point D (H,fr=0, descending branch),

H0

Hp+Hp

n

where Eqs. (3) and (4) have been used. Since P, y, H,
and H, can be obtained experimentally, we are able to
uniquely determine n and Ho (and eventually J,o with the
expression for H~ }. In fact, one can prove that n is the
solution of

y
1/n

pl /n l /n
e

which helps us to find Hp.

y1/nHH=0
y

1/n

J,o may be obtained directly from Eq. (3}:

Hp
J,p= (n+1)a

n+1
'+1
p

(10)

In principle, these three basic equations should be
suScient to determine the parameters of the GCSM.

In Fig. 2 we illustrate the theoretical loop for an arbi-
trary but realistic set of J,p, Hp, and n values. Using Eq.
(2), the derivative of H „,gives

'dH„„, (n +1}J,OHoa

(IH„I+H, )"+'
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B. Demagnetizing efFect for short cylinders

Another important contribution inAuences the experi-
Inental data. This is the demagnetizing or shape effect.
For very long hollow cylinders, the demagnetizing factor
N is zero and there is no difference between the applied
magnetic field H, and the surface or effective field H, ff.
This will not be the case with our data, which show a
demagnetizing effect. For this reason, Eqs. (8) and (9)
cannot be used because P and y are influenced by this
effect. These equations are only valid when one measures
H„„, of sufficiently long hollow cylinders (typically with
the same aspect ratios as those of the original Kim-
Hampstead-Strnad work).

Thus we use a simplified version of several works on
the calculation of the low-field magnetization Qf
these materials in which we suppose that the grains are
long filaments of zero demagnetizing factor. Further-
more, our calculations will be restricted to cases in which
the grains remain in the Meissner state [we suppose H(r)
smaller than H„g everywhere in the sample]. When the
cylinders are short enough to obtain aspect ratios
(diameter/length or wall thickness/length) of the order of
1, the effective field H, ff at the sample surface with a
demagnetizing factor N is

H,ff=H, —NM,

where M is the total magnetization of the sample at H, ff

(or the corresponding H, }. To simulate the demagnetiz-
ing effects, one has to obtain M(H, rr) and inject this
value in Eq. (11): This gives a relation between H,s and

H, for given values of N and wall thickness a.
The magnetization contains two contributions: One is

related to the screening intergrain current density and the
other to the individual screening of each grain. The
latter one, M, can be written as

I d r ygH(r),
V

(12)

where H(r) is the intergrain field (solution of the GCSM),
ys( = —1) is the susceptibility of the grains below H„s, V
is the total volume of the sample, and fg is the shielded
volume fraction of the sample. Here we have supposed
that f is a constant throughout the sample, which is true
if the grains all have the same radius. Since we expect a
distribution of grain radii to occur, Eq. (12) is only a
rough approximation. We can rewrite Eq. (12) as

Using Eqs. (11) and (15), we finally obtain for H, as a
function of H, ff

..

H, =(1 N—)H,s+N(1+ygfg)(H(r));„„, . (16)

To obtain H„one has to calculate (H(r) );„„„which can
be obtained analytically (see the Appendix). We have to
underline the fact that for high enough applied fields
H(r) becomes constant throughout the sample as shown
in Fig. 1(a) for H,&=H~,„(when J,J is a decreasing
function of H). This results in H«„, ~H, s and
(H(r) )l;„„„~H,s, giving

H, ~(1+Nys fg )H,q .

This implies that the experimental dH„„,/r)H, should

tend to a constant [1/(1 Nfg }—] which determines

uniquely the product Nfg.
In Fig. 3 we show the effect of the demagnetizing fac-

tor on the calculated H„„, as a function of H, for given

values of N, fg, J«&, Hc, n, and a. The presence of a
demagnetizing factor (and of f ) increases the mean slope
of the loop. We also note the slight effect of various N
and fg values, keeping the product Nfg constant. It
seems that the trapped field is not really influenced

by this variation. However, the applied field H'
=H +NM(H ) at which H„„,=0 shifts as N and f are
modified.

To show that the calculated magnetization has the
correct behavior, we made the calculation for a filled

cylinder of 3 mm diameter (the wall thickness equals the
radius), J,c=500 A/cm, H&&=10 G, n =1, N =0 2, and.

fg=0.7. The result is presented in Fig. 4 and agrees
qualitatively with the experimental results presented by
Senoussi, Oussena, and Hadjoudj' at 60 K. One also
notes that the width of the loop is principally determined

by the factor fg, while the mean slope is still determined

by the Nfg product.
All this theoretical work clarifies what has to be done

200

'1 00—

Mg =ygfg(H(r));„„, , (13)

M,„„,= (H(r) ),„„,—H„. (14)

where (H(r));„„,is the mean field in the sample. One
can see that it is an irreversible contribution since
(H(r));„„, is different for ascending and descending
branches (for the same H,s). The other contribution
comes from the macroscopic intergrain current density
J, , which gives a magnetization

+ —100—
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Thus the total magnetization is given by

M(H, ~)=(1+y fg)(H(r));„„, H,~ . —(15)

FIG. 3. Theoretical H„„,as a function of H, with J,0=1000
A/cm, HO=5 G, n =1, and a =4 mm. The N and fz values

are indicated on the curves.
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sample cooled in zero field (earth field) by a closed-cycle
refrigerator giving access to temperatures as low as 10 K.
The applied field (and the effective one) never exceeds the
lower critical field of the grains (H, i ). If it did exceed
H, I, a decrease of the trapped field would be observed
along with additional contributions to the hysteresis loop
from intragrain effects.

IV. RESULTS AND DISCUSSION
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FIG. 4. Example of a magnetization calculation for a closed
cylinder with R =a =3 mm, J,0=1000 A/cm, HO=10 G,
n =1,fg =0.70, and N=0. 2.

experimentally to determine the GCSM parameters. The
obvious choice is to avoid short cylinders or to obtain
short cylinders with negligible demagnetizing factors.
The latter is achievable if one reduces the wall thickness
a. In fact, a thin wall tube can be seen as a closed thin
slab (a thin slab has a demagnetizing factor approaching
zero}. In the following sections we describe measure-
ments of H„„, as a function of H, for different wall
thicknesses of YBCO hollow cylinders. We show that the
results with the greatest wall thicknesses are easy to fit
despite the nonzero N. This allows a determination of
J p Hp and n. We verify the validity of these parameters
by fitting the wall thickness dependence of the full
penetration field H . Because of end effects, the theoreti-
cal procedure presented above [see Eqs. (8}—(10)] cannot
be used to fit accurately the data with small wall
thicknesses (N ~0).

Figure 5 shows the results obtained with a cylinder of
length L =9 mm and wall thickness a =3 mm at several
temperatures. We observe an increase of the trapped
field (H„„,at H, =0) as the temperature decreases. This
reflects the increase of the pinning force with decreasing
temperatures. On the other hand, we do not observe a re-
versible regime at the higher fields in our data. This indi-
cates that we never reach H, 2 (the upper critical field of
the junction network). Should the magnetic field reach
this value, the model would require modifications to fit
the results. It is anticipated that H„ is even larger than
H, 2J as in Lal. sBa0.2Cu04.

The mean slope of the loops remains the same for all
temperatures (in the case of Fig. 5, it is H„„,=1.25H, ).
This fixes the product Nf in Eq. (17) and shows that it is
essentially temperature independent. Equation (17) pre-
dicts that, as N varies, the mean slope of the loop is
affected: An example of this effect is shown in Fig. 6. As
the wall thickness decreases, the factor 1/(1 Nfs) de-—
creases as expected. In the same figure, we observe a
significant variation of the trapped field Hf ppzd with the
wall thickness. This is expected since for an infinitely
long tube, H„„,(H, =O}=H, which is known to be a
function of a [see Eq. (2)]. However, in a real case such
as ours for H, =0, the effective field at the surface of the
cylinder is H,s= NM(H, =O—). Since M(H, =O) is
nonzero, the trapped field measured at H, =0 is not H .
To find H~, one has to use the derivative of H„„, with
respect to H, . This gives

III. EXPERIMENTAL PROCEDURES

Details of the sample preparation are presented else-
where. The cylinders are obtained by stacking several
pellets of approximately 1.5 mm thickness and 12.5 mm
outer diameter. All the results presented here are ob-
tained with a cylinder 9 mm in length. A small hole is
drilled initially in each pellet and then gradually enlarged
by sandblasting, which creates less heat and damage than
drilling. This increases the range of available wall
thicknesses as the pellets are more and more fragile with
increasing hole diameter and ensures that the sample
quality is not modified during the whole experiment.

The magnetic field in the hole is measured using an n-
type GaAs film (n = 10' /cm ) calibrated at various tem-
peratures in the range 20-85 K. The Hall voltage is
measured by a Keithley 182 sensitive nanovoltmeter as
the current in the probe is fixed at 0.5 mA. This gives an
accuracy of the measured field which is better than 0.1 6
(largely sufficient compared to the typical H„„,of several
tens of gauss). All the measurements are made with the
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FIG. 5. Experimental H„„, as a function of H, at various
temperatures for a =3 mm. From the inner to the outer loop:
80, 65, 50, and 20 K. Also shown K„„,=H, (dashed line).
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FIG. 6. Experimental example of the demagnetizing effect at
T=35 K.

tures ranging from 20 to 85 K. We find that H is non-
P

linear in a. This confirms that J, - is field dependent. An
even more pronounced nonlinearity must occur for a & 1

mm to ensure that H (0)=0.
We also want to emphasize the fact that we can fit the

experimental data even with a demagnetizing effect. This
must be done without Eqs. (8}and (9). Instead, Eq. (10) is
used since it is still valid in the presence of demagnetizing
effects. In Fig. 9(a) and 9(b), the experimental data at 35
and 75 K for a =4 mm are fitted using the given values of
J p Hp n, N, and fg Ag. ood agreement is found for the
whole temperature and field ranges. The parameters are
obtained using an initial H representing a compromise
between the measured H (determined by the derivative
method) and the trapped field H„, ,d. This extra correc-
tion is necessary to minimize the impact of end effects, '

which are discussed in the next paragraph. By fixing n,
we vary Hp in Eq. (10) to obtain different values of J,p

and use the mentioned parameters to create the corre-
sponding loop. Since Nfg is a fixed value as mentioned

BH,

Hcent

dH, rr

1 —N
BH,

(18)

250
— (a)

200- 20K

Since BH„„,/dH, tr is a minimum at H, fr
=0 (H„„,=H )

and BM/BH, has no extrema around H, =O, we con-
clude that H„„,=HP when dH„„,/dH, is a minimum
(and not when H, =0). In Fig. 7 we show this derivative
for a =3 mm, I. =9 mm, and T=50 K. The noisy
features are due to the manner in which BH„„,/dH, is
calculated (the slope between two adjacent experimental
points). This represents a new way of determining H
and remains valid for the other critical state equations
(since they all predict a minimum in r}H„„,/BH, fr at
H,q=0}.

Using this derivative method, we are able to plot H as
a function of a [in Figs. 8(a) and 8(b)] for many tempera-
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FIG. 7. Derivative of H„„, with respect to H, for T =50 K
and a =3 mm.

FIG. 8. H~ as a function of the wall thickness for all temper-
atures.
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previously, we also scan individual N and f values to ob-
tain the best fit.

We can then use the value of J,p Hp and n to fit the
wall thickness dependence of H . This is shown in Fig.
10 for T =20 K. It is seen that the fit follows much more
closely the H values obtained by the derivative method
than those obtained by the trapped field. Furthermore,
the increasing difference between H and Ht pp d as one
decreases a is a direct evidence of end effects in our low
pinning and short length situation. This is confirmed by
the difficulty in fitting the entire hysteresis loop for a wall
thickness of 1 mm. To take into account this problem,
one would have to include a slight axial dependence of
the intergrain critical current density which could be
similar to a field- (or susceptibility-) dependent demagnet-
izing factor. '

In Fig. 11 the Hp and J,p temperature dependences
are presented. J,p has a typical temperature dependence
one could expect for the pinning force of a disordered ar-
ray of Josephson junctions combined with the

250
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Theory

til 150

100
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50—
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FIG. 10. Comparison of the theoretical value of H~ as a func-
tion of the wall thickness with the measured values of H~
(derivative method) and the trapped field (H, =0) at 20 K.
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Ambegaokar-Baratoff expression for the critical current
density of a superconductor-insulator-superconductor
(SIS) junction (see the detailed discussion on the relation
between them in Ref. 18). Thus this parameter can de-
pend on the relative orientation of the grains, particularly
because of the great anisotropy (of the gap function) of
high-T, materials. It also depends on the barrier width
and the normal resistance of the junctions. These proper-
ties can be modified by grain surface contamination, by
adding intergrain silver, or by varying the oxygenation.

We also note in Fig. 11 that Hp presents a positive cur-
vature near T„but remains linear below 70 K. The
physical significance of Hp remains unclear. At first in-
stance, one expects Hp to follow the junction expression
given by $0/r A,L. Contrary to our observations, this
gives a negative curvature near T, proportional to
(1—T/T, )'~ . One could argue that Ho is a measure of
the mean distance between pinning centers
[do=($0/Ho)' ]. This means that Ho should remain
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FIG. 9. Experimental data and their corresponding fits: (a)
T=35 K, J,0=1250 A/cm~, HO=90 Cx, n =2, fg=0. 54, and
N=0. 40; (b) T=75 K, J,0=774 A/cm, HO=20 G, n =2,
fg =0.54, and N=0. 40.
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FIG. 11. GCSM parameters J,o and Ho as a function of tem-
perature deduced from the fits for a =4 mm.
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constant. Since Hp varies with temperature as shown in
Fig. 11, dp is increasing with temperature and diverges at
T, . Our interpretation of Hp is somewhat different.

Suppose that dp is the mean distance between potential
pinning sites and d is the mean distance between vortices.
If the junction penetration depth A,J is greater than dp, a
single vortex can include several pinning centers. Thus
d ~ dp. Furthermore, we can define Hp as the local field
corresponding to the complete occupancy of the pinning
sites. In this condition, the next vortex added to the sys-
tem at this particular position has no pinning site avail-
able and contributes to the decrease of J, . Since our
mean grain radius r is around 2.5 pm, we suppose that
we always remain in the limit A.~ &r where A,J is the
mean London penetration depth of the grains. The
remainder of this analysis consists in evaluating the
effective area covered by one quantum of flux (AJ) ex-
cluding the shielded cores of grains. Two limits appear.
In the first, XJ is smaller than r . This results in
Aq=AJAr and Ho=go/AJAr. The other limit occurs
when hypervortices are present giving XJ greater than
r . Then one or more grains are embedded in a single
vortex. Each grain contributes an area proportional to
rg Ar to the final Az. The number of grains included in
such a vortex is approxiinately given by AJIr a, nd we ob-
tain AJ =A Jkr Irs and Ho Par~--/Ajar . Since
diverges at T, as (1 —T/T, ) '~, hypervortices will ap-
pear near T, . The extent of this behavior at temperatures
lower than T, will depend on the ratio A,Jlrg. Using
kz (T)=0.74Ar (0)(1—T/T, ) ', we obtain Ho(T)
~ (1—T/T, ),which reproduces the positive curvature
observed in Fig. 11 just below T, . We note that this
theoretical expression gives values of Hp lower than the
experimental Hp by a factor of 3—5 using realistic values
of r, kz, and A,J. To explain this difference, we note that
the experimental Hp found with the fit corresponds to a
critical current density of J p/4 when n =2. Thus oul
experimental Hp could be the product of a constant and
the above theoretical Hp. Decreasing the temperature at
which XJ —r, one should expect a crossover from the hy-
pervortex limit to the junction vortex limit. This qualita-
tive analysis suggests the possibility of varying
significantly the transport and magnetic properties by the
synthesis of samples with different mean grain radii.

The exponent n is found to remain constant for the
whole temperature range at n =2. This is consistent with
the results presented in Refs. 5 and 29. We expect this
exponent to be related to the microstructure of the sam-
ple: dimensions and relative orientation of the junctions
with respect to the local field. In fact, this value of n is
an indication that the mean angle of the junctions with
respect to the applied (and local) magnetic field is
1 5, 30,31

We also want to comment on the typical value of
fg=0. 55 found in this work. The measured density of
our sample is 5.23 g/cm, which is about 82% of the
theoretical density of YBazCu30&. If we suppose a ra-
dius of 2.5 pm for, say, cylindrical grains' penetrated
over a London penetration depth of 0.5 pm, we find that
the screened volume of the sample is given by

f&=0.82(1 —Ar Irg ), which is around 50—60% of the
total volume: This is the fitting result. We observe a
small temperature dependence off near T, . It begins to
decrease around 80 K, reaching f =0.4 at 85 K. This is
consistent with the fact that A,z is an increasing function
of temperature.

Finally, we have to underline the fact that the three pa-
rameters present particular temperature dependences
that can be affected during the synthesis. The most in-
teresting avenues are Ag addition, texture, and in-
creasing the mean grain radius.

V. CONCLUSION

We underline the importance of understanding the ori-
gin of the critical current density limitations from the mi-
crostructure of high-T, polycrystals. In fact, every possi-
ble application of these materials in the shape of pellets,
bars, or Ag-sheathed tapes will imply a knowledge of the
behavior of the parameters of a given critical state equa-
tion following precise modifications of the materials.

Here we have used the generalized critical state model
(GCSM) to fit entirely the hysteresis loop produced when
measuring the field in the center of a YBCO hollow
cylinder as a function of the applied field, even in the
presence of a demagnetizing effect. The analysis allows
one to obtain the model parameters for several tempera-
tures between 20 and 85 K. The full penetration field can
be determined using a derivative method, and its corre-
sponding wall thickness dependence can be reproduced
theoretically.
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APPENDIX

In this appendix, we give the analytic solution of the
mean field (H(r) );„„,which enters in the magnetization
calculations. Here the sample is a hollow cylinder of
length L, outer radius R, and wall thickness a. The mean
field is given by

(A 1)

where V =n [R (R —a ) ]L is the—volume of the sam-
ple. Solving Eq. (1) with a surface field of H, fr gives the
field at position r in the sample as

+(n +1)J,OHO(R —r)]'~'"+" Ho, (A2)—
where —and + are for the ascending and descending
branches, respectively. Combining Eqs. (Al) and (A2)
gives an integral over the radial position, which can be
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integrated easily. The result is

(H( r ) ) II, yR An +2/n + 1 y (R a )(A y a }n +2 /n + l
inter

2(n + 1 )I(n + I)J ~")
"+

0=
R —(R —a)

(fH„/+H, )"+'
A=-

(n +1)J,oHo

(A4)

(A5}

n + ~ p2rg +3/Pg+]
2)i +3

+ (A pa )2n+3/n+1
2Pf +3

where 0 and A are defined as

(A3)

In Eq. (A3) the upper sign is for the ascending branch
and the lower sign is for the descending one.

One should note that this equation is only valid in the
range H (H,ff&H,„ for the ascending branch and
0 H ff H,„ for the descending branch. For
0&H,ff~H, one has to take into account the sign
change in H(r). This gives a similar solution as Eq. (A3}
and is not shown here.
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