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We examine the effect of thermal and quantal fluctuations on small superconducting grains using
a BCS-like Hamiltonian. A comparison between the static path approximation to the Hubbard-
Stratonovich representation of the partition function (Zus) and the order-parameter representation
(Zop) based on the Landau theory of phase transitions shows that one should use the expectation
value of the pairing potential G instead of the BCS energy gap A for the order parameter of a
superconducting system. Unlike Zus, Zop is not restricted to positive-definite pairing potentials and
can be used for general momentum-dependent pairing potentials. We find that quantal fluctuations
are negligible for the crystallites of the polycrystalline high-T. materials and that the results obtained
using Zop are a good approximation to the exact results. Both the sharpening of the peak in the
specific heat and the increase in the critical temperature observed during the sintering process of
polycrystalline high-T. materials can be qualitatively understood by taking into account thermal
fluctuations. In polycrystalline high-T. materials there is an anomaly in the specific heat rising
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above the BCS peak which is not reproduced by including these finite-size effects.

I. INTRODUCTION

Finite-size effects and in particular thermal fluctua-
tions are much more important for high-7,. materials than
for conventional superconducting materials for several
reasons. First, bulk materials are often sintered polycrys-
talline materials with the individual crystals being only
very weakly linked. This is illustrated by the observation
that the critical current in sintered polycrystalline mate-
rials is more than an order of magnitude lower than in
melt-textured materials where the individual crystallites
are aligned! and about two orders of magnitude lower
than in large single crystals.? Secondly, the supercurrent
in high-T, materials seems to be confined to the Cu-O
planes? and it seems that coupling between Cu-O planes
is not essential for high current densities.* Furthermore,
both the high critical temperatures and the low carrier
densities make thermal fluctuations more significant in
these materials than in conventional superconductors.

In the light of the weak coupling between the crys-
tallites we treat, as a first approximation, the individ-
ual crystallites as isolated superconducting systems. The
mean-field treatment neglects thermal and quantal fluc-
tuations, both of which can become important for small
systems. The first arises because in finite systems states
other than the most probable state (i.e., the state which
minimizes the free energy) become accessible at finite
temperature. Quantal fluctuations, on the other hand,
arise from the approximate nature of the mean-field wave
functions. Furthermore, for finite systems one should re-
place integrals over the density of states by sums over the
discrete states. Since the number of states is still very
high for the small crystallites, we use instead a simple
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geometrical modification to the density of states.56
Using a BCS-like Hamiltonian”

H = Zekcfwck,, + Z Gkk’CLTCT—uC—k’le'Tv (1.1)
ko kk’

we have shown® that both the increase in the critical tem-
perature and the sharpening of the peak in the specific
heat observed during the sintering process of polycrys-
talline high-T,, materials can be qualitatively understood
by taking into account finite-size effects, and in particu-
lar thermal fluctuations and finite-size corrections to the
density of states.

However, there is a qualitative difference between the
specific heat curves of small conventional superconduc-
tors and those of polycrystalline high-T,. superconduc-
tors. In conventional superconducting grains the specific
heat curve remains below the bulk BCS curve,®?° while in
polycrystalline high-T, materials there is an anomaly in
the specific heat rising above the BCS curve.!®"12 This
is not reproduced in the present work. One can, if one
inconsistently uses the gap parameter(s) as an order pa-
rameter within the Landau theory of phase transitions,
reproduce the anomaly rising above the BCS peak in the
specific heat.'? However, this is an artifact of the incon-
sistent choice of order parameter, i.e., one should use the
expectation value of the pairing potential G instead of
the BCS energy gap A for the order parameter.

In a recent paper'® we considered two approaches to
calculate the effect of thermal fluctuations on the sys-
tem. The first is the static path approximation (SPA) to
the Hubbard-Stratonovich representation!*1% of the par-
tition function (Zys). The second is based on the Lan-
dau theory of phase transitions in which one integrates
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over the accessible states as labeled by a macroscopic or-
der parameter. Both treatments include thermal but not
quantal fluctuations. We found that the resulting analyt-
ical expressious are very similar for the two formalisms if
we choose the expectation value of the pairing potential,

G=> Gue st s ot cwn),
Kk’

(1.2)

for the order parameter of the system instead of,
as is traditionally done, the BCS energy gap A =
—G Y lexrc—ky) (see, for example, Refs. 16 and 17).

Furthermore, choosing G for the order parameter re-
solves some of the conceptual difficulties encountered
when using A for the order parameter. First, when one
uses a momentum-dependent pairing parameter Giy/,
the BCS energy gap

Ak = — Z Gkk’ (CkTC—lq) (1.3)
kl

is no longer a single parameter characterizing the macro-
scopic state of the system. G, on the other hand, remains
a single macroscopic parameter also for momentum-
dependent pairing parameters. Secondly, in an exact
calculation the BCS energy gap is exactly zero at both
sides of the phase transition. Only within a mean-field
calculation do we find that A is meaningful as an order
parameter in that it is nonzero below the phase transi-
tion and zero above. In the thermodynamic limit the
expectation value of the pairing potential G continues to
have the expected behavior of an order parameter, even
in an exact calculation. In finite systems it remains finite
above the phase transition. We feel this indicates that in
finite systems both phases coexist at all temperatures.

Zop has an advantage over Zgs in that it can be
used for pairing potentials which are not positive def-
inite. This allows us to evaluate the partition func-
tion for Hamiltonians such as the one used in the the-
ory of hole superconductivity proposed by Hirsch and
Marsiglio.!®=2° Furthermore, we find that quantal fluc-
tuations are negligible for the small crystallites we are
considering. This leads us to believe that the results ob-
tained using Zop(G) are a very good approximation to
the exact results.

Furthermore, the Hubbard-Stratonovich transforma-
tion cannot be used for the general momentum-
dependent pairing potential Gyxx'. Zop(G), on the other
hand, does not have this restriction and can be used to
give a good approximation to the SPA results and, in
cases where quantum fluctuations are negligible, also to
the exact results.

We use two BCS-like models. First we use a constant
pairing potential of unspecified origin (i.e., not neces-
sarily mediated by phonons), and secondly we use the
model of hole superconductivity proposed by Hirsch and
Marsiglio.’®=2% In all calculations we include the finite-
size corrections to the density of states.>® We find that
both the increase in the critical temperature and the
sharpening of the peak in the specific heat observed
during the sintering process of polycrystalline high-T,
materials!! can be understood by taking into account
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finite-size effects, and in particular thermal fluctuations
and finite-size corrections to the density of states. For
both models we find that the specific heat curve remains
below the bulk BCS curve as is experimentally observed
for small conventional superconducting particles®°® and
for Bechgaard salts.?! Contrary to previous calculations
where A has been used for the order parameter,®'? we do
not reproduce the extra rise observed in the specific heat
curves of polycrystalline high-T, materials!»1% when we
use either Zys or Zop with G for the order parameter.

II. THE HUBBARD-STRATONOVICH
REPRESENTATION OF THE PARTITION
FUNCTION

Consider a system described by a BCS-like Hamil-
tonian (1.1) with constant attractive pairing potential
Gyx' = —G. The grand canonical partition function for
such a system is given by

Z(B,a) = tr [e_ﬁK] , (2.1)

where G = ﬁ is the inverse temperature and o = Bu
with p the chemical potential and

K=H-puN =) enk, - GP'P.
ko

(2.2)

Here ny, = c;’wcmy counts the number of electrons in the
state |ko) and P is the pairing operator defined by

— tF
Pt = chTc-kL'
k

(2.3)

The single-particle energies €x = ex — p are measured
relative to the chemical potential y. Defining

i

X =L(P+Ph, Y = 2(7>—7>*), (2.4)

we can write the Hamiltonian in a form suitable for the
Hubbard-Stratonovich transformation!%:15:22

K =Ko - G(X?+Y?), (2.5)

Ko=) [ek + (ek - g) (Maer + gy — 1)} . (26)

k

The exact grand canonical partition function can be writ-
ten in the form of a path integral,

,BG M M

Zus(foe) = Jim (Z5)" [ T dbu(tn)dgnten)
n=1

« {eJ;f TN 82 (tm)+ e} (tm)

X Tt [Te-a‘% por 'Cm] } (2.7)



49 FINITE-SIZE EFFECTS AND POLYCRYSTALLINE HIGH-T, ...

where 7T is the imaginary time-ordering operator, M is
the number of time slices, and

K = K(tm) = Ko — 2G[X o (tm) + Yy (tm)]. (2.8)

Note that K,, is now only quadratic in the fermion oper-
ators, while K was quartic. Since the functions ¢,(t) and
¢y(t) are periodic with period 8 they may be expanded
as a Fourier series??:23

M-1
2z
_i21r
$e(t) = D Tape B, (2.9)
p=—M31

with 7%, = 7p, and similarly for ¢,(t). We can now
write the partition function in the following form:

s\ ™ xp
s = A}igam(—;) [ e, TL [ dnesinin
p:

M-1
» {e—ﬁG(ﬁZ+7‘z§+En=’1 [ni..+n,’,,.])

B
x Tr I:Texp (—,8/ K(t)dt)] } . (2.10)

This enables one to define various approximation
schemes. In the case of the staticpath approximation
(SPA) one approximates K(t) by its time-averaged value

K = Ko — 2G[X7, + Y7, (2.11)
with 7, = 720, 7y = 7yo and one neglects the term
SK(t) = —2G 3 (napX + mypY)e 5.

P(#0)

(2.12)

The Gaussian integrals over 7., and 7, can then be
performed analytically. Introducing polar coordinates

Mz = A cos(8), 1, = Asin(0), (2.13)

one obtains
ZEMNp0) =p [ 2L 2y

o G
with

_ _ _2 —BEw (D) Az
Q(A)—Ek:[fk Ex(A) ﬂln(l—{-e ) + ek
(2.15)

with Ex = /€2 + A2. Note that the extremum of the
integrand satisfies the BCS gap equation

G 1-2f
= — 1
1= }k: = (2.16)
with
= ———1 2.17
fk— 1+eﬁEk. ( . )
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In order to improve on the SPA one can introduce first
order quantum fluctuations by treating dX(t) as a first
order perturbation on . The resultant expression for
the partition function is

Zyg " STh = Z§ERQ (2.18)
with
o= I (1— ?EAM) (1— @25231",.)
m(>0) k k
2
G
+ (%‘ ZCkm) ], (2.19)
k
where
A = Qj tanh(Sk/2)
km = Sk S;‘: + m2m?2’
tanh(Sk/2)
Bim = Skg,f_-T-ﬂ'z—mz’ (2.20)
Co — Qr tanh(Sk/2)
kem = Sk S+ m?m2rm’
and
G
Qr = ﬁ(fk - E) , S = BEk. (2.21)

III. THE ORDER PARAMETER
REPRESENTATION OF THE PARTITION
FUNCTION AND THE CHOICE OF THE ORDER
PARAMETER

In the Landau theory of phase transitions one assumes
that the macroscopic state of the system can be char-
acterized by a single macroscopic parameter which is
called the order parameter £. In the thermodynamic limit
both the thermal and the quantal fluctuations approach
zero and the mean-field BCS results are exact. In finite
systems, however, one should include thermal fluctua-
tions arising due to states other than the most probable
state becoming accessible. Furthermore, the mean-field
wave functions themselves are no longer exact, causing
what are generally called quantum fluctuations. Ignoring
quantum fluctuations, the isothermal probability distri-
bution for macroscopic states characterized by the order
parameter ¢ is given by!7-24

P(£) x e PO = e—;.E,LTQ'(ﬁ)’ (3.1)
where Q' = Q/V is the thermodynamic potential per
unit volume of the system. Note that in the thermody-
namic limit (N — o0,V — oco,n = N/V finite) only
the state which minimizes the thermodynamic potential

has a nonzero probability. The partition function in this
formalism is given by

Zop(B,a) = Nz /0°° e P8 gg, (3.2)
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where Nz is the normalization constant and the thermal
average of an observable is given by

3 f°° 0(5)6—&1(6)(15
0 == g

(3.3)

Traditionally the order parameter for a superconduct-
ing system is chosen to be the gap parameter, defined
by A = -G, {ckrc-xy) (see, for example, Refs. 16 and
17). However, for the case where the pairing potential is
momentum dependent the gap parameter itself becomes
momentum dependent [see Eq. (1.3)] and it is thus no
longer a single parameter which can be used to define
the macroscopic state of the system. Furthermore, in an
exact calculation the expectation value of the gap param-
eter is identically zero for all temperatures.

Comparing the static path approximation of the par-
tition function (2.7) with the order parameter represen-
tation (3.2), we are led to identify £ = %2 as the order
parameter. This quantity can in turn be identified as the
expectation value of the pairing potential in the thermo-
dynamic limit.

Let us therefore look at the behavior of the expecta-
tion value of the pairing potential G defined in Eq. (1.2).
In the thermodynamic limit (V,N — oo, N/V finite)
G has a similar behavior to that of the gap parameter
A, i.e., it remains finite below 7., and approaches zero
at T.. But unlike the gap parameter G remains a single
macroscopic parameter for a momentum-dependent pair-
ing interaction. Furthermore, it is well defined in an exact
calculation. In finite systems G remains finite above T,
indicating that both phases coexist at all temperatures.

Now, in order to calculate Zop(G) let us transform the
Hamiltonian (1.1) into quasiparticle space

Akt = UkCkt — 'Ukcf_kl:

a_x| = UkC_k| + UkCI(T. (3.4)

Here aL - and ay, are the quasiparticle creation and
annihilation operators and we have chosen the arbitrary
phase factor acquired in the transformation such that
ux and vy are real. Choosing the phase factor in this
way ensures that A is real and A is given the physical
interpretation of an energy gap. We require further that
the quasiparticles obey Fermi statistics so that ug +vg =
1. We can thus replace the two parameters uy, vk by a
single transformation parameter zy defined by

ulz( 1
Ul o 11t a). (3.5)
k

Taking the expectation value of the transformed Hamil-
tonian we obtain

E=2) eap+§ (3.6)
k

with

G = Guerine + Y Guxpi, (3.7)

kk’ k

where py is the single-particle density
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P = (hocro) = 5[1 — k(1 - 2fi)] (3.8)
with fi = (aLTakT) = (atkiagu), and 7 is the pairing
tensor defined by

Tk = C—xiCkp) = %M(l —2fu)-

In the thermodynamic limit the second term in Eq. (3.7)
is exactly zero and for a constant pairing potential G we
have G = %3. Consequently both G and A are in the
thermodynamic limit finite below T, and zero above T..
For finite systems both terms in Eq. (3.7) have to be
considered, resulting in G being nonzero above the phase
transition.

In order to calculate the partition function as a func-
tion of G we minimize the free energy F' = £—T'S for each
value of G with respect to the transformation parameters
Tk, subject to the constraints that the expectation value
of the pairing potential is given by (3.7) and that the
number of particles is given by N/,

NZQV):ZZpk.
k

(3.9)

(3.10)

Let
F'=F — u{Ny — XG

with A and p Lagrange multipliers for the constraints

(3.11)

. . U U U d
(3.7) and (3.10) respectively. Since % = gfk + %%3%’

F' has a minimum (and we assume in what follows that
it is a global minimum) where both % = 0 and —g% =0.
We obtain

€
T = 2 2’
veai+A
/ Gkk’
€ = € — (14 Ao, (3.12)
A= (142) G,
kl
and
fx (3.13)

1+ exp(By/€2 + A?)’
After solving the coupled set of equations (3.7), (3.10),
and (3.12) simultaneously for A’, p, and A for each
value of G, we can calculate the thermodynamic potential
Q(G) = F — puN and hence the partition function using
Eq. (3.2)

IV. APPLICATION TO POLYCRYSTALLINE
HIGH-T. MATERIALS

Since the individual grains of sintered polycrystalline
high-T, materials are only very weakly linked (the critical
current in these materials is about two orders of magni-
tude lower than in large single crystals?) we treat, as
a first approximation, the individual crystallites as iso-
lated from each other.® No attempt is made to model the
tunneling current between the grains. Furthermore, the
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supercurrent in these materials seems to be confined (ex-
cept for tunneling) to the Cu-O planes.® In our simple
model we consider a small superconducting system with
two dimensions determined by the average grain size and
the third dimension by the approximate height of the
Cu-O planes.

We consequently introduce the following finite-size ef-
fects. First, in finite systems at finite temperature, states
other than the most probable state (i.e., the state that
minimizes the free energy) become accessible to the sys-
tem, resulting in thermal fluctuations. Thermal fluctua-
tions are especially important for granular high-7T,. mate-
rials, not only because bulk materials are usually gran-
ular, but also since their critical temperature is much
higher and their carrier density much lower than in con-
ventional superconducting materials. Secondly, in small
systems the mean-field wave functions are no longer ex-
act. This introduces what are commonly called quan-
tum fluctuations. Including quantum fluctuations as a
first order perturbation around Z3§* we find that their
contribution is negligible for the superconducting grains.
Thirdly, when evaluating the partition function for small
systems one should in principle replace the integral over
the density of states by a sum over the single-particle
states. However, for particles of the size of the super-
conducting grains the number of states is still very large
and performing the sum is computationally expensive.
Instead we use a geometric correction to the density of
states.?%® Since the current between the grains is only a
small tunneling current, we feel that Dirichlet boundary
conditions yield a good approximation to the true bound-
ary conditions. The resulting expression for the density
of states is

TA L
g(k) =

“aw tagey )o@

where g1, (k) is the density of states in the thermody-
namic limit and V, A4, and L are the volume, surface, and
length parameters for the small superconducting grain.
Using geometry fixes the number of particles.

The remaining question is the choice of the Hamilton-
ian. It seems doubtful that a standard BCS model will be
applicable to high-T,. materials since the phonon barrier
seems to limit the critical temperature to below 40 K.
However, various authors26:27:18-20 have shown that a
BCS-like model, where the pairing need not necessarily
be mediated by phonons, might still be valid for the high-
T. materials. This led us to perform the calculations
using two BCS-like models. First we used a constant
pairing potential of unknown origin and, in order to see
whether the momentum dependence of the pairing poten-
tial would make any difference in the finite-size effects,
we performed the calculations using the model of hole
superconductivity.'®~2° We found, however, that the re-
sults are qualitatively identical. The figures below show
the results obtained with a constant pairing potential.

In Fig. 1 we compare the BCS specific heat curve with
the curves obtained using Z§£4, Zop(A), and Zop(G) for
the geometries 3 Ax (2000 A)2 and 3 Ax (500 A)2. The
effect of quantum fluctuations was found to be in both
cases less than 0.5% and is thus not shown. Note that

15949

0.9
0.8

0.7

—cv
cvir=1

06 -

0.5

0.4

0.3

0.2

01 1 1 1 i 1
0.6 0.8 1 1.2 1.4
T/T.

FIG. 1. The specific heat as a function of temperature. The
thick solid line labeled BCS is the mean-field BCS result, the
two thin solid lines labeled a and b give the result obtained
when one uses A for the order parameter, a for a particle
of size 3 Ax (2000 A)? and b for 3 Ax (500 A)%. The two
thick solid lines labeled c and d give the result obtained when
one uses G for the order parameter, ¢ for a particle of size
3 Ax (2000 A)? and d for 3 Ax (500 A)?. The dotted line
gives the SPA result for a particle of size 3 Ax (500 A)Z2.
Quantum fluctuations make no visible contribution for both
sizes and the SPA result coincides with the result obtained
using Zop(G) for particles of size 3 Ax (2000 A)2.

Zop(G) approximates ZS5A very well indeed while the
behavior of Zop(A) is qualitatively and quantitatively
different. For Zop(A) we observe close to the transition
temperature a rise above the BCS peak. This behavior is

0.8

0.6 o
cvir=rc y,
0.4 -
0.2 -

0 1 1 1 1 L
0.4 0.6 0.8 1 1.2 14
T/T.

FIG. 2. The specific heat as a function of temperature cal-
culated using G for the order parameter. The thick solid line
gives the result for the thermodynamic limit which coincides
with the mean-field BCS result. The thin solid lines are for the
geometries 6 Ax (2000 A)2, 6 Ax (1000 A)?, 6 Ax (500 A)?,
and 6 Ax (250 A)2, respectively. The peak in the specific
heat flattens with decreasing crystal size. Note that, contrary
to calculations done using A for the order parameter, the spe-
cific heat curve for T < T. remains below the BCS curve for
all sizes.
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FIG. 3. The specific heat as a function of temperature
calculated using G for the order parameter and including fi-
nite-size corrections to the density of states. The thick solid
line is the mean-field BCS result, the curves labeled a and
b are calculated without finite-size corrections to the density
of states, while the curves labeled ¢ and d are calculated by
taking into account finite-size corrections to the density of
states. Curves @ and c are for the geometry 6 Ax (500 A)?
while curves b and d are for 6 Ax (250 A)2.
indeed observed in polycrystalline high-T,. materials.!%:!!
However, we feel that this result is a coincidence arising
from the inconsistent choice of the order parameter. One
should either use the expectation value of the pairing
potential G for the order parameter or alternatively use
the Hubbard-Stratonovich representation of the partition
function where the concept of an order parameter is not
required.

Figure 2 shows the specific heat as a function of tem-
perature for various grain sizes. The calculations were
done using the order parameter representation of the par-
tition function with G for the order parameter. Note that
the specific heat curves remain below the BCS curve for
all sizes and for all temperatures T'<T,.

In Fig. 3 we see that the effect of the finite-size correc-
tions to the density of states is to lower both the critical
temperature and the peak in the specific heat. Note that
for the planes to which the supercurrent is confined we
have

A 2[a%?+2ah] 2
-~ — for
| aZh h
Here h is the height of the plane determined by the Cu-O
planes while a is the average side length of the crystal-
lites. In other words the leading term of the finite-size
corrections to the density of states is virtually indepen-
dent of the crystal size.

h < a. (4.2)
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V. CONCLUSIONS

Comparing the analytical expression for the parti-
tion function in the static path approximation of the
Hubbard-Stratonovich representation Z§5* with that of
the order parameter representation Zop we infer that the
expectation value of the pairing potential G and not the
BCS energy gap A should be used for the order param-
eter of a superconducting system described by a BCS-
like Hamiltonian. Numerically we have found that the
specific heat curves obtained using Zop(G) are indeed a
very good approximation to Z5&2, while the specific heat
curves obtained using Zop(A) differ significantly.

First order quantum fluctuations were found to be neg-
ligible for the superconducting grains and we believe that
Zop(G) gives a good approximation to the exact result.
One can thus use either Zys or Zop(G) and the choice
depends on the particular application since both repre-
sentations have advantages and disadvantages. The ad-
vantages of Zys can be summarized as follows.

(1) It is an exact representation of the partition func-
tion which can be calculated in various well defined ap-
proximation schemes (SPA, RPA-SPA, etc.).

(2) For a constant pairing potential it is computation-
ally less demanding than Zop.

(3) Quantum fluctuations can be
Zop has the following advantages.

(1) It is not restricted to pairing potentials which are
positive definite.

(2) It can be used for general momentum-dependent
pairing potentials.

(3) It introduces the concept of a macroscopic order
parameter.

Applying the formalism to polycrystalline high-T, ma-
terials, we found that the specific heat curves obtained
using Zop(A) have a similar structure to those observed
experimentally in polycrystalline high-T, materials in
that they have an anomaly rising above the BCS peak.
This behavior is not observed when one uses either Zgs
or Zop(G). We feel, however, that this is a coincidence
arising from the use of an inconsistent order parameter.
In small conventional superconductors, to which the the-
ory should apply, this behavior is not seen; the structure
of the specific heat curves in conventional superconduct-
ing grains closely resembles that obtained using either
Zyus or Zop(G).

included.
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