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We study the ground state of the two-dimensional Anderson-Hubbard model using a quantum
real space renormalization group method. We obtain the phase diagram near half filling. The system
is always insulating with disorder. At half filling, the system undergoes a transition from a gapless
(Anderson) insulator to an incompressible (Mott-Hubbard) insulator as the interaction U reaches a
critical value U, . Away from half filling, the insulating phase is always gapless and is found to be
controlled by the Anderson fixed point at half filling. This result is similar to that obtained in the
corresponding one-dimensional system and suggests strongly the importance of the electron-electron
correlation in this gapless insulating phase.

I. INTRODUCTION

When disorder is introduced into a physical system,
it will result in the localization of some single-particle
states. For a noninteracting electron system, if the states
at the Fermi surface are localized, the system is a so-
called "Anderson insulator. " In reality, the interac-
tion between electrons always exists, and such a single-
particle picture may not apply. The understanding of the
interplay between disorder and interaction has been an
important issue in condensed matter physics. 2 This issue
has become more interesting since the discovery of the
high temperature superconductors. On the one hand, it
is commonly believed that these materials are strongly
two dimensional (2D) in character, and that electron-
electron correlations are important and are responsible
for many of their unusual physical properties; on the
other hand, it is also clear that disorder, which manifests
itself as (e.g.) oxygen vacancies, is inevitably present in
these materials. It is thus of interest to investigate the
effect of disorder in highly correlated systems. In this
paper, we pursue such a study using a real space renor-
malization group (RG) approach. The model we consider
is the two-dimensional Anderson-Hubbard model defined

by the Hamiltonian

+U ) n tn i.

Here c, (c, ) is the creation (annihilation) operator for
a spin-0 electron on site i, t;~ is the nearest-neighbor in-
tersite hopping energy, and U () 0) gives the on-site
Coulomb repulsion energy. The chemical potential is
given by p, , and S', is a random site potential which
has an independent Gaussian distribution with zero mean
and width W, i.e. , W; = 0 and W, Wi = W h;s (where
the overbar indicates random average). We shall con-
sider only the square lattice case. Without interaction
(U = 0) but with disorder, this is the Anderson model

of localization which has been the prototype for studying
the effect of disorder in electron systems. With inter-
action but without disorder (W;—:0), this is the Hub-
bard model, which is believed to be one of the simplest
theoretical models which possesses the essential physics
of correlation, 5 and which has been the focus of intense
theoretical investigation since the discovery of high-T,
superconductors. Thus, the Anderson-Hubbard model
is a natural starting point for the investigation of the
combined effects of disorder and interaction in electron
systems. Throughout the paper our discussion will be
restricted to ground-state properties; also, we will not
consider the issue of magnetic ordering.

For the Anderson model in 2D, the consensus is that all
of its eigenstates are localized, and hence that it describes
a gapless insulating state. 2 For the Hubbard model at
half filling, on the other hand, it is commonly accepted
that the Coulomb repulsion U gives rise to insulating be-
havior, with long-ranged antiferromagnetic ordering in
the ground state. Thus, in contrast to the usual "band
insulator" where the insulating phase is due to the fill-

ing of electron bands in the solid, and different from the
Anderson insulator where the vanishing conductivity is
caused by the localization of the single-particle states
at the Fermi surface, the insulating state in the Hub-
bard model at half filling is a result of electron-electron
correlations, hence a "correlated insulator. " Away from
but close to half filling, the Hubbard model describes a
highly correlated system whose exact properties we still
know little about despite intense studies during the past
few years. Candidates for the possible ground states can
be, e.g. , phase separation, a highly correlated metal,
or a superconductor. ' When both interaction and dis-
order are considered, one expects that disorder breaks
the translation and other lattice symmetries and possi-
bly weakens the efFect of the correlations; on the other
hand, strong correlations may render the standard single-
particle picture of Anderson localization meaningless. As
a first step towards understanding this complicated is-

sue, we wish to identify the phase diagram of the 2D
Anderson-Hubbard model.
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Previously, the Landau Fermi-liquid idea has been em-

ployed to describe systems of weakly interacting electrons
with (weak) disorder. The validity of approaches along
this line is questionable in the present situation because
the noninteracting system is non-metallic, and because
the eKect of the interaction is presumably nonpertur-
bative. The real space RG approach, on the other
hand, is a nonperturbative method which allows one to
treat disorder and interaction of any strength on the same
footing. It has however the disadvantage of being an un-
controlled approximation, so that its implementation and
interpretation should be taken with extra caution.

The real space RG scheme adopted in this paper
is a generalization of the works of Hirsch and Ma.
This method allows one to study the compressibility
of the system by investigating the renormalization of
chemical potential and the corresponding fiow of den-
sity. This RG scheme has been previously employed to
study the U = oo Anderson-Hubbard model for spin-
less bosons. ' While the quantitative results, such as
the critical exponents of the superBuid —Bose-glass phase
transition, are still the subject of some controversy, this
method does provide the correct qualitative physical pic-
ture. For instance, it shows that the super8uid phase
is unstable against any amount of disorder in the 1D
U = oo Anderson-Hubbard model, in agreement with
the exact result; in 2D and 3D, it shows a transition
froin the superfluid phase to a disordered (Bose-glass)
phase at some critical amount of disorder, as indicated
by other theoretical approaches. Thus we have reasons
to believe that the real space RG approach can also give
us useful information concerning the fermion Anderson-
Hubbard model (1.1). In addition, the validity of the real
space RG scheme for the present case may be tested in
the noninteracting system; for this case our method gives
the result that the metallic phase is unstable against any
amount of disorder (see below), consistent with the now
accepted theoretical results. '

One may wonder why we are in a position to in-
vestigate the Anderson-Hubbard model when there is
still not a good understanding of even the pure sys-
tem. Our response to this question is that, as discussed
previously, ' and as will be emphasized in the section
to fo11ow, disorder is in fact an advantage for our investi-
gation. By sampling a large ensemble of random configu-
rations of the potential (W;), the problem of losing long-
range quantum correlations due to breaking the system
into blocks in the real space RG may be partially corn-
pensated. Also, the disorder averaging allows us to treat
the (average) particle n as a continuous variable —which
is not possible in the absence of disorder. Finally, even
for disordered systems there already exist some known
cases where one can test the method, as discussed above.
These considerations give us some confidence that our
real space RG approach to the disordered problem is a
suitable choice, at least for our present purpose of inves-
tigating the phase diagram.

The rest of the paper is organized as follows: the real
space RG method is described in some detail in the next
section; in Sec. III, we present our results; and we oKer
a summary and discussion in Sec. IV.

II. METHOD

Our real space RG method is similar to that of Refs. 9
and 11. This real space RG is implemented numerically
on a finite lattice. The random field (W;) is obtained
through a Gaussian random number generator. Briefiy,
the RG procedure can be described in the following five
steps: (i) Divide the lattice into blocks of size n, . (ii)
Compute the block fermion operators which are defined
in terms of four eigenstates of the block Hamiltonian.
Each block is characterized by an efFective on-site po-
tential and an on-site repulsion between the "block par-
ticles. " (iii) Determine the hopping parameters for the
block particles &om the interblock couplings between the
site variables. However, since the block parameters arise
from the random (W~), and so have in general a difFerent
distribution from the original one, we need to (iv) repeat
the above procedures [(ii) and (iii)] for a large random
ensemble to determine the distribution of the block pa-
rameters. We shall limit ourselves to tracking only the
first two moments of each distribution (see below). At
this stage, the Hamiltonian is mapped back onto its orig-
inal form with renormalized parameters

H = ) (t pet cp + H.c.) + ) (W —P)n
(aP) acr

+U) 6 tn )+const, (2 1)

where a and P are block indices. Finally, (v) we iterate
the above sequence to find the fiow and fixed point(s) of
the RG.

Now we elaborate each of the above steps
(i) The blocks we used in the present work are shown

in Fig. l. Each of them is chosen to have an odd number
of sites, to allow us to correctly treat the physics of half
filling. ~7 Even for such small blocks the numerical diag-
onalization is nontrivial, due to the large Hilbert space
and the necessity of sampling a large number of random
configurations. For the 3x3 square lattice at half fill-

ing, for instance, the dimension of the Hilbert space is
15 876 x 15876. (Here the lat tice symmetry is destroyed
by disorder and thus cannot be used to reduce the size of
the Hilbert space. ) Both types of blocks shown in Fig. 1
have been tested, and we find that they give the same
qualitative physics. Thus for our present purpose (ex-
ploring the phase diagram) we may focus on the "star"
block [Fig. 1(a)] which is computationally more conve-
nient.

(ii) Each (microscopic) site can have one of four possi-
ble states: the no-electron state ~0), the up-spin electron
state [t), the down-spin electron state ~$), and the two-
electron state t$). The energy for the no-electron state
is denoted E&, and the two-electron state energy E& ~.

The up- and down-spin electron state energies are de-
generate and denoted by E~ ~. For each block, we find
the exact ground state and ground-state energy for the
Hamiltonian [Eq. (1.1)] for every possible odd number
of particles, restricted to the subspace with S =

2 (the
two S, = +2 states are degenerate). The lowest energy
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(a)

(b)

FIG. 1. Two types of blocks used in our RG approach for
the square lattice. (a) Star lattice, (b) 3x3 lattice

among these ground-state energies then gives us E( ).
Letting N be the number of particles which gives E(i)
in block o. , and

I t ) the corresponding ground state,
we then take the N —1 ground state (from the sub-
space S = 0) as IO ) (with energy E( )), and the N + 1
ground state (8 = 0) as

I f$ ) (with energy E(2)). The
block variables may be determined from these states as
follows:

U —E( ) + E( ) 2E( ) (2.2)

gJ~ p~ —1(&) E(0) (2.3)

(iii) The hopping energy between two neighboring
blocks is obtained from the hopping energy of the neigh-
boring sites on these two blocks. We calculate the matrix
elements in the new states by insisting that those states
are the same for both the new and the old Hamiltonians.
There are four nonzero matrix elements for t for each
bond between blocks a and P,

t.'p' = (o- tn I ~~ I t- 0n) = (o- 4 I ~~
I t- 0~) (2.4)

t"p ——(t.4 III' Io tin) = (t-&n l~~ Io t&~) (2.5)

t."p = (t4- 0p I
If~

I 4- tn) = (t&- 0n I
II~

I &- 4) (2 6)

t'p = (t4 4p I K I 4 tip) = (t4 4p I Ifc
I 4 lip) (2.7)

There are three bonds allowing hopping between any two

star blocks a and P (also in the square blocks; see Fig. 1).
We sum these three hops to get t &. The above four t p's(i}

are then averaged, ts =
4 P, i t &, for one connection

tq between two blocks n and P.
(iv) Now we average over an ensemble of random con-

figurations to determine the distribution of the param-
eters in the block Hamiltonian. Since (2.2) is always
positive (as verified numerically), we simply use its mean
(denoted as U) as the renormalized on-site repulsion be-
tween the block particles. The renormalized chemical
potential p, is defined by the mean of the right hand side
of (2.3). This implies that the renormalized random po-
tential (W ) has zero mean. However, the distribution
of the block potential is in general diHerent from the orig-
inal one. Here we choose to keep track of only the first
two moments, the mean (= 0) and the variance (= W);
we thus map the renormalized distribution of the (W, )
back onto an (independent) Gaussian form.

The determination of the block hopping parameter is
more subtle. Consider a block (of any size) without dis-
order. In general, the ground state is degenerate, where
the degeneracy is related to the symmetry of the lattice
and to the Fermi statistics of the electrons. Any amount
of disorder breaks this lattice symmetry and therefore
lifts the degeneracy. As (degenerate) perturbation the-
ory shows, depending on the configuration of the random
fields (W, ), the sign of the t p's can be either positive
or negative. This causes frustration when the product
of t p's around a closed path is negative. This is dif-
ferent from the boson case considered in Ref. 11 where
the ground state of the pure system is nondegenerate
and the kinetic energy is unfrustrated by site disorder.
To take this efFect of frustration into account, one has
thus to keep track of the lattice structure. More specif-
ically, for the star block considered here, we first build
a square lattice which consists of nb ——125 coupled star
blocks (n, x nb = 625 sites). Step (iii) is then performed
to obtain the corresponding block hopping parameters.
This explicit lattice structure enables us to compute the
frustration index (defined by the ratio of the number of
frustrated plaquettes to the total number of plaquettes).
It turns out that, starting from a uniform hopping con-
stant t;~ = t, the RG described above will randomize
the hopping parameter and frustrate the kinetic energy.
Regardless of the starting configuration, the frustration
index for the block system is always near 0.5. We approx-
imate the block hopping parameters with an independent
Gaussian distribution which is determined by their mean
t and variance t„,. In the actual calculation, we typ-
ically average over n, b

——5—10 such lattices. Due to the
symmetry of the square lattice, one can always choose
the mean of the hopping parameter t

„

to be positive.
Hence we take t „=Itl and t = (1/N ) P ~;,»~„t~p

'(-p)"
with N = n, bnb, the variance is then

tvar—
disorder

(~P&
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Under the RG iterations for the 2D problem, t „de-
creases rapidly, reflecting the frustration.

(v) Using the new set of parameters one can repeat
the process described above and study the How of the
parameters under the RG iteration. Physical phases are
identified &om the stable fixed points of the RG.

The Hamiltonian (2.1) is characterized by four
independent parameters, which may be chosen as
t „/W, U/W, P/W, and t /W A.mong the others,t„,/W is found to always renormalize to zero; hence we
shall not discuss this parameter further in the following.
For simplicity we label the relevant dimensionless param-
eters as follows: U/W —= U/W gives the strength of the
repulsion; the fiow of t „/W—:t/W indicates insulating
(-+ 0) or metallic (~ oo) behavior; and P/W—:p/W
gives a dimensionless measure of the chemical potential.

The choice of the block states described in (ii) needs
some more explanation. We truncate the Hilbert space
of the block by choosing four low lying states such that
the block Hamiltonian and the site Hamiltonian have the
same form. However, there are different possibilities of
choosing these four states. The simplest possibility (im-
plemented in Ref. 9 at half filling) is always to pick the
same N = N for every block n. This "fixed-n" (where
n is defined by n—:N /n, ) procedure is the most artifi-
cial of the procedures we have used; however, one might
argue that it is adequate for incompressible states.

A second ("fixed-p, ") procedure is to fix the chemical
potential p rather than the density n. This procedure can
only work, however, if the chosen value for p corresponds
to a density which can be represented on the blocks by
an integer particle number; otherwise, instabilities occur
in the RG How. Hence we have only used the fixed-p,
procedure at half filling. In this case, the chemical po-
tential is known to be precisely U/2 and can therefore be
set at the beginning of the RG iteration. Since the distri-
bution of the random potential (W~) is symmetric with
zero mean, the statistical Huctuations will then preserve
the average density at 1 and p at U/2 by averaging over
the random configurations. Since the density is allowed
to vary &om block to block, this method allows one to
study compressible as well as incompressible states.

The possibility of allowing the density to Huctuate in
such a real space RG scheme is unique to disordered sys-
tems. In a pure system, all blocks are identical and N
will thus be chosen the same for all blocks. The particle
number fluctuation in any given region (of any size) is
thus 1, so that the RG can only describe an incompress-
ible state. Thus one expects that such a real space RG
scheme for pure systems will be mostly applicable at half
fiBing, where it is indeed incompressible.

We have used a third procedure to study the physics
in a region around half filling, by allowing the chemi-
cal potential to Bow also in the RG iterations. This en-
ables us to explore the RG flow in the full 3D parameter
space (t/W, U/W, p/W). In the absence of disorder, this
would not be possible, since the density cannot vary in
any block. In the presence of disorder, one selects N
which minimizes the energy in a given block o, , and thus
allows n (where again the overbar means disorder aver-

age) to vary continuously along with p. However this
How must fail at high and low densities, where the small
size of our blocks imposes strict upper and lower bounds
on the range of densities which can be handled by the
method —for example, the density in a star block cannot
fall below 0.2 nor exceed 1.8. Hence with this procedure it
is necessary to follow the flow of n as well, and to discard
Hows when n saturates at its upper or lower bound. With
this procedure it is sometimes convenient to parametrize
the chemical potential as P,/U—:p, /U since it is in terms
of this parameter that we can locate half filling (n = 1
at p,/U = 1/2).

III. RESULTS

We start by considering the Anderson model (U = 0).
In this case, with either the fixed-n or the fixed-p, method,
the only meaningful parameter of the system is t/W Ei-.
ther procedure gives the same qualitative result: we find
two fixed points, at t/W = 0 and at t/W = oo. The
fixed point describing the pure system (t/W = oo) is
unstable, with Bow towards the attractive (insulating,
t/W = 0) fixed point. Thus we find that, for noninter-
acting fermions, disorder is always relevant, in agreement
with the prediction &om scaling theory.

Next we consider the interacting case U g 0. In Fig. 2,
we show RG How diagrams in the two-dimensional pa-
rameter space (t/W, U/W). Figure 2(a) is obtained at
half filling. Here we again find that the two RG pro-
cedures (fixed n and fixed p) give similar results. Fig-
ure 2(b) depicts RG fiow at densities away from half
filling, obtained using the fixed-n procedure. The pos-
sible densities are n = 1/5, 3/5 for the star blocks, and

(b)

FIG. 2. Flower diagrams of the 2D Anderson-Hubbard model
as obtained by our RG approach, at fixed filling of the lat-
tice. (a) For half filling we see two insulating phases: a
Mott-Hubbard phase at large U/W and an Anderson (gap-
less) phase at smaller U. (b) Away from half filling we see
only the Anderson phase.
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n = 1/9, 3/9, 5/9, 7/9 for the 3x3 square blocks (apart
from those which may be obtained using particle-hole
symmetry). They all give qualitatively the same flow
diagrams. At half filling, Fig. 2(a) shows that, apart
from the unstable fixed points describing the noninter-
acting (U = 0) and pure (t/W = oo) phases, there are
two stable fixed points at (t/W = 0, U/W = oo) and at
(t/W = 0, U/W —1.3). Between these two phases is
a separatrix which terminates at a repulsive fixed point
[t/W = 0, U/W = (U/W)* = 7.3]. Away from half fill-

ing and at fixed density, the RG Bow has only one stable
fixed point, at finite U/W. We note that, with respect to
the noninteracting system, U is relevant at all the fillings
we examined.

We next ask, what is the nature of the various phases
revealed by the stable fixed points in Fig. 2? Since t/W
renormalizes to zero in all the cases, there is no metal-
lic state. However, the nature of the insulating states
needs some elaboration. We consider first the half-filled
case. For the pure system (Hubbard model) at half fill-

ing, it is believed that the system is always insulating
with long-ranged antiferromagnetic order for any finite
U ) 0. However, while the disordered system is always
insulating, the physics responsible for the insulating be-
havior may vary. This situation is best illustrated in the
essentially exact calculations on the infinite-dimensional
Hubbard model: at low but above the Neel tempera-
ture, there is a critical value of U = U„beyond which
a gap opens up in the quasiparticle spectrum and the
system changes &om a metal to a Mott-insulating state.
Such a paramagnetic solution persists down to T = 0, al-
though it becomes unstable at low temperature and the
true ground state is antiferromagnetic for any finite value
of U. Thus one may expect that, while for small U the
insulating state is a result of the delicate (antiferromag-
netic) correlations, at large U it is simply due to the large
energy cost for double occupancy. Upon introducing dis-

order, the Mott transition (masked by the antiferromag-
netic long-range order in the pure case) is revealed, but
the corresponding metallic state now becomes insulating
also. Hence we interpret the state described by the fixed
point at (U/W) ~ oo as the Mott-Hubbard phase, while
that associated with the fixed point at finite U/W we
will call the "Anderson" phase, since it is expected (to
be corroborated below) to be gapless.

Remarkably, this phase diagram is quite similar to that
for the 1D case, which was calculated at half filling in
Ref. 9 using the fixed-n method. (We have obtained
the same picture for the 1D Anderson-Hubbard prob-
lem using the fixed-p method at half filling. ) The value
of the unstable fixed point separating the two insulators
is about (t/W, U/W)* = (0, 7.3). This value for the 2D
system is very close to the fixed point obtained by Ma
for the 1D case [(t/W, U/W) = (0, 8.3)], and to the slope
of critical line for the opening of a compressibility gap in
the (U„W)plane obtained by Dominguez and Wiecko
(DW) for the 3D case, U, = 6.7W (W/t —i oo). As
mentioned before, in getting the hopping parameter tg
between two blocks, we take an arithmetic average over
four t p's to take account of frustration. The t p's tend
to be of varying sign (for reasons discussed earlier) and

hence to cancel each other when we average, so that the
parameter t/W rapidly approaches zero as the RG iter-
ation proceeds. The slope of the separatrix between the
two insulators is, therefore, nearly zero (unlike the 1D
case

The stable fixed point found (with fixed density) away
from half filling can be interpreted naturally as a fixed
point describing the Anderson insulating phase. Al-
though this phase diagram is obtained using the RG pro-
cedure for fixed n—which is more appropriate for incom-
pressible states —we believe that this Anderson phase is
actually compressible &om the physical point of view.
The compressibility of this phase at or near half filling
may be investigated through the RG How in the 3D pa-
rameter space (t/W, U/W, p/W).

We have studied the compressibility in our numerical
RG calculations using two methods. One, which is purely
heuristic, is to stop the calculation after a single iteration,
associating the renormalized values of density and chemi-
cal potential with the (fixed) values of U, t, and W which
were input. This method —which cannot probe the long-
wavelength physics seen &om repeated RG iterations—
nevertheless gives surprisingly good results, possibly due
to the large size (625 sites) of the finite lattice which
we used, coupled with the further averaging over disor-
der. Results obtained using this method are plotted in
Fig. 3. We see that (thanks to the disorder and the av-
eraging) the density n flows smoothly with the chemical
potential, with two significant exceptions. One excep-
tion occurs when the density saturates at the maximum
or minimum value allowed by the finite size of our block
(i.e. , for the star block, 0.2 and 1.8). This saturation

B.O

30—

0.5—

—0.0
—5

FIG. 3. Density versus p/U with diKerent U/W for fixed
t (= 0.5) and W (= 1.0). Each curve is shifted to the right,
for visual purposes, by 0.5 as U/W is increased by 1. Density
is pinned at n = 1 over a 6nite range in p as U is increased.
Inset: The incompressibility Ep in the Mott-Hubbard phase
is plotted as a function of U in units of t, for fixed W and t.
For comparison, ere include some results for the 1D lattice.
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U. )
U U )

=n 1 ——'
for (U& U, ). (3.1)

Taking the large-U limit, the gap b,p/U will approach cr

in p/U and U/W space. Hence our second xnethod for
studying the behavior of the incompressibility is to follow
the RG flow in the 3D parameter space (t/W, U/W, p/U),
distinguishing however those Bows which remain pinned
at n = 1 f'rom those which do not. Figure 4 is a 3D
Bow diagram inside the limits at which the density satu-
rates, but projected out onto the 2D plane (U/W, p/U).
(We project out the behavior of t/W since it is the most
predictable, always flowing to zero. ) In this figure we
see that the Mott-Hubbard phase (shown by the shaded
area) with n = 1 is bounded by Eq. (3.1). We can also
see the two fixed points in the plot, which correspond to
those in Fig. 2(a). For U/W + oo we have a "fixed bar"

1.0

0.75-

marks a limit beyond which our method gives meaning-
less results. The other departure &om smoothness occurs
at n = 1, for sufficiently large U, and is due to the above-
mentioned incompressibility. The incompressibility (the
Hubbard gap) is broadened with increasing Coulomb re-
pulsion (Fig. 3). In the inset we plot the Hubbard gap
b,y/t as a function of U/t, with fixed t and W. We can
see that the Hubbard gap increases linearly with U. The
slope a [= (&&" j of the three curves is about n 1.0,
which is consistent with what is expected, and also with
the result obtained by DW.

From the inset of Fig. 3 we can write Ap, = n(U —U, )
at fixed W. Then in (p/U, U/W) parameter space the
gap can be described (for fixed t) by

(i.e., a line of fixed points in p t—U—space) which attracts
the flows inside the Mott-Hubbard phase. (This fixed bar
is of course a fixed point in n—t—U space, with n = 1.) In
the Anderson phase we can see that the parameter p/U
flows to the value for half filling p/U = 1/2. Hence we
find that there is a finite region in density, around n = 1,
in which the system is a compressible (Anderson) insu-
lating phase and is characterized by the fixed point at
half filling.

Since the discovery of high-T, superconductivity, there
have been suggestions that the dimensionality alone will
invalidate the Fermi-liquid theory and make a 2D inter-
acting system a highly correlated one, as it does for
its 1D counterpart. While for the 2D Hubbard model
near half filling there is little doubt that the system is
indeed highly correlated, controlled perturbative expan-
sions suggest that at low density a system of interacting
2D fermions can be well described by the conventional
Fermi-liquid theory. If this is the case, the insulating
state at low density would be simply due to the local-
ization of the quasiparticles. From this point of view,
one would expect that the (compressible) insulating state
near half filling will be quite different &om that at low
(or high) densities, so that there should be an additional
stable fixed point describing such a "conventional" An-
derson insulating state, distinct &om the "highly corre-
lated" Anderson insulating state controlled by the fixed
point at half filling. Hereafter we shall call the "conven-
tional" Anderson phase an "Anderson-Fermi" insulator;
the (presumably) highly correlated Anderson phase de-
scribed by the Anderson fixed point at half filling we
call the "Anderson-Luttinger" insulator. We choose the
latter name since our RG study shows a strong resem-
blance between the 1D and 2D systems near half filling,
and since generic (pure) 1D systems are described by the
highly correlated Luttinger liquid. In our studies we
have found no evidence for an Anderson-Fermi insulating
phase characterized by a high- or low-density fixed point.

U/W

0.25-

U=0

0.00 10
U/W

15

FIG. 4. Projection on a plane of Bows of 3D RG param-
eters (t/W, U/W, p/U). In our projection the fiow of t/W
is not shown, since this parameter always Bows to zero.
The Mott-Hubbard phase (in which the density is pinned
at 1) is shaded. The unstable fixed point (U/W = 7.3,
p/U = 0.5) marking the boundary of the Mott-Hubbard
phase is marked with a small circle; the stable one is located
at (U/W, p/U) = (1.3, 0.5).

I 1

0 dW
----n =1

FIG. 5. 3D parameter How diagram. In the dark area,
where the density is saturated and so our method gives no
information, we are assuming the chemical potential Hows to-
ward half Glling. The Mott-Hubbard phase is marked with
light shading.
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N./U

U/W

U=O
.'0 . -----n =1

tlat'

0 t/IW
-----n =1

FIG. 6. 3D parameter Bow diagram, but with an alterna-
tive hypothetical scenario from that shown in Fig. 5. Here
we assume the existence of attractive fixed points in the dark
areas (high and low density), indicating the presence of "un-
correlated" insulating phases distinct from the "correlated"
phase we find around half filling. Since our method fails in
the dark shaded area, it cannot distinguish between the pic-
ture shown here and that in Fig. 5.

IV. SUMMARY AND DISCUSSION

Using a quantum real space renormalization group
method, we have obtained the phase diagram of the 2D

We note however that we cannot rule out the existence
of such fixed points, since our method is only reliable in
a 6nite range of densities around half filling, and so may
be incapable of detecting these uncorrelated phases.

In Fig. 5 and Fig. 6 we show the full flow diagrams in
the 3D parameter space. Taking account of particle-hole
symmetry, we omit the region n ( 1. We also omit U ( 0
(which is expected to give difFerent physics) and t ( 0
which is trivially related to t ) 0; hence we are left with
one octant of the full space. In each plane the flows are
the projection of 3D parameter flows. The incompressible
Mott-Hubbard phase is lightly shaded in the (p, /U, U/W)
plane. Our RG approach fails in a high- and a low-density
region; the former is shown in Figs. 5 and 6 with dark
shading. In this dark region we can imagine either two
fixed points (one in the high-density region and the other
one in the low-density area), or none. In the case of no
fixed points in the dark area (Fig. 5)—or if the noninter-
acting fixed points are unstable to any finite U—the RG
parameters outside the Mott-Hubbard phase flow to the
one fixed point, so that there is only one ("correlated" )
Anderson phase in the Anderson-Hubbard model. On
the other hand, if there are two stable fixed points (at
high and low density) (Fig. 6), the Anderson-Hubbard
problem will have two diferent Anderson phases as dis-
cussed above. We include both Figs. 5 and 6 because we
do not believe that we can distinguish these two scenarios
within the limitations of our method.

Anderson-Hubbard model near half filling at T = 0. A
test of our method for noninteracting fermions shows the
instability of the metallic phase for any nonzero disor-
der TV, in agreement with commonly accepted results
and hence providing some evidence that our method is
qualitatively reliable. By studying the renormalization of
chemical potential and the corresponding flow of particle
density, we were able to estimate the compressibility gap
Dp in the Mott-Hubbard phase as a function of U and
W. We found that Ap increases proportional to the in-
teraction U (at constant W) above a critical value (U/t), ,

with the constant of proportionality n about 1, and that
Ap decreases with increasing W (at fixed U). Our results
here are also in good agreement with those obtained by
other methods, which gives us further confidence in our
approach.

Our studies show that there is no metallic phase for
the 2D Anderson-Hubbard model, for any 6nite value of
the random potential R' and of the repulsive interaction
U between the electrons. The interplay between inter-
action and disorder yields two insulating phases at half
filling: an incompressible Mott-Hubbard insulator and a
gapless Anderson insulator. The phase diagram strongly
resembles that for the corresponding 1D system. Away
from half 6lling, the insulating phase is always gapless,
and its properties are controlled by the fixed point de-
scribing the Anderson insulator at half 6lling. We char-
acterize such a highly correlated insulating phase as the
Anderson-Luttinger insulator. U is relevant with respect
to the noninteracting 6xed point for all the cases we have
considered. We would like to emphasize, however, that
the relevance of U itself does not constitute evidence for
the existence of the Anderson-Luttinger insulator. Since
the noninteracting disordered system is described by the
localized (t/W = 0) fixed point, one may expect that, at
least in the low-doping (near half filling) case, any inter-
action will be relevant regardless of the properties of the
corresponding pure system, although there is a possibil-
ity that short-ranged interactions such as the on-site U
studied here are not relevant in the dilute (low or high
density) limit. The dilute fixed point, which presum-
ably describes the conventional Anderson-Fermi insulator
whose physics is related to that of localized noninteract-
ing fermions has not been found within our approach,
which is however limited to a range of densities around
half filling.

The picture that we find at half filling is not unex-
pected: the instability of the noninteracting fixed point,
the consequent finite-U (gapless) fixed point, and the
opening up of a gap at U with flow towards U = oo in
the Mott-Hubbard phase. The one feature of our results
that is perhaps somewhat unexpected is the existence of
a finite region in n (or p) around half filling, which is
dominated by the n = 1 fixed point. One could imagine
a difFerent result, namely, that, like the Mott-Hubbard
phase, the Anderson-Luttinger phase is well defined only
at or close to half 61ling, becoming unstable as n deviates
from this region and flowing towards a dilute fiwed point.
In other words, one could imagine that hp:—p —U/2
is relevant when its magnitude becomes nonzero or suf-

ficiently large, which is not what we have found for the
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region allowed by our RG scheme.
It is conceivable that this result might be due to an

artifact of our method. That is, one might conjecture
that the fiow towards half filling refiects only the stability
of the algorithm at half 611ing, rather than the stability of
the thermodynamic phase. Although we see no reason for
this to be the case, we cannot rule out this possibility. We
do however gain some con6dence in the results of our RG
method, in the case where we allow the chemical potential
to How, &om the good agreement of these results for the
Hubbard phase with existing results obtained by other
methods. We note that these results (Figs. 3 and 4) were
all obtained using this algorithm.

We therefore assume that the correlated Anderson-
Luttinger insulator indicated by our results is in fact the
true ground state of the 2D Anderson-Hubbard problem
for some region around half filling. This suggests a num-
ber of directions for future work. It is clearly important
to try to clarify the nature of this phase, in both the 2D
and the 1D problems, for instance by calculating density-
density or magnetic correlation functions and their RG
How. Furthermore, if indeed the physics for this dis-
ordered problem around half 6lling is described by the
Anderson 6xed point at half 6lling, one can expect to
gain signi6cant information about the lightly doped case
by directly studying the half-filled case (where, for in-
stance, there is no "sign problem" in quantum Monte
Carlo simulations). It would also be of considerable in-
terest to extend this work to the 3D problem, where one

expects a metallic phase, and metal-insulator transitions
of various types. @ Unfortunately, the smallest isotropic
3D block with an odd site number (3 x 3 x 3)ir is far too
large for exact diagonalization. Since the 3-(spatial)-D
problem is of interest both in its own right, and as a fur-
ther test of the present 2D results, we believe that the
problem of extending our real space RG technique for
disordered systems to the 3D case merits some further
effort. Finally, the issue of stability of long-range anti-
ferromagnetic ordering (against potential disorder (W;))
and the effect of disorder on magnetic properties, which
are presumably important in the weak disorder regime
and are not considered in the present work (since our
RG procedure does not probe the pure limit), should be
addressed in future investigations.
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