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The critical behavior of a model with N-vector complex order parameters and three quartic cou-

pling constants that describes phase transitions in unconventional superconductors, helical magnets,
stacked triangular antiferromagnets, superBuid He, and zero-temperature transitions in fully frus-
trated Josephson-junction arrays is studied within the field-theoretical renormalization-group (RG)
approach in three dimensions. To obtain qualitatively and quantitatively correct results perturbative
expansions for P functions and critical exponents are calculated up to three-loop order and resummed

by means of the generalized Pade-Borel procedure. Fixed-point coordinates, critical-exponent val-

ues, RG Qows, etc., are found for the physically interesting cases of N = 2 and 3. Critical (marginal)
values of N at which the topology of the Bow diagram changes are determined as well. It is argued,
on the basis of several independent criteria, that the accuracy of the numerical results obtained is
about 0.01, an order of magnitude better than that given by resummed two-loop RG expansions. In
most cases the systems mentioned are shown to undergo Buctuation-driven first-order phase tran-
sitions. Continuous transitions are allowed in hexagonal d-wave superconductors, in planar helical
magnets (into sinusoidal linearly polarized phase), and in triangular antiferromagnets (into simple
unfrustrated ordered states) with critical exponents p = 1.336, v = 0.677, o = —0.030, P = 0.347,
and g = 0.026, which are hardly believed to be experimentally distinguishable from those of the
three-dimensional XY model. The chiral fixed point of RG equations is found to exist and possess
some domain of attraction provided N ) 4. Thus, magnets with Heisenberg (N = 3) and XY-
like (N = 2) spins should not demonstrate chiral critical behavior with unusual values of critical
exponents; they can approach the chiral state only via first-order phase transitions.

I. INTRODUCTION

The renormalization-group (RG) approach in three di-
mensions (3D) proved to be very eKcient when used
to study the critical behavior of simple O(n)-symmetric
models. Calculations of higher-order RG expansions for
field-theoretical P functions and critical exponents com-
bined with proper resummation of the series obtained re-
sulted in the estimates of critical exponent values which
nowadays are referred to as the most accurate (canon-
ical) numbers. i'2 This approach enabled one to give a
quantitatively correct description of the critical behav-
ior of more complex systems possessing two quartic cou-
pling constants in their Landau-Wilson Hamiltonians.
We mean the impure Ising model, the cubic model, '

and the mn model. Moreover, the method turned out to
be powerful enough even in two dimensions as was shown
by comparison of the approximate results obtained on the
basis of four-loop RG expansions resummed by means of
Pade-Borel-like technique with their exact counterparts
known for (exactly solvable) 2D Ising and impure Ising
models. ' ' '

On the other hand, there are numerous models with
more than two quartic coupling constants which de-
scribe phase transitions in a variety of systems. Such
models, however, being extensively studied in the frame
of RG approach, were actually treated only within the
lowest-order (one- and two-loop) approximations which
are known to lead to rather crude quantitative and, some-

times, to contradictory qualitative results.
The aim of this paper is to study the static critical be-

havior of the three-dimensional model with three quartic
coupling constants on the basis of three-loop RG series
resummed in the way which provides proper physical pre-
dictions and accurate numerical estimates. As far as we

know, this is the first attempt to get reliable, numeri-
cally correct results for a complicated 3D Geld-theoretical
model &om higher-order RG expansions. The Landau-
Wilson Hamiltonian of the model is as follows:

I = — d z moPaPa + & Pa&&a + Paga&P&p
2 2

'Uo ~o+ pa'pa% aV'a + V'aV'aV'pV p ) (1 1)
2 2

where p is a complex vector order parameter Geld,

n, P = 1, 2, . . . , N, a bare mass squared m2o being pro-
portional to the deviation &om the mean-field transition
point (line).

This model describes critical phenomena in plenty of
substances. Their list includes tetragonal, hexagonal,
and cubic superconductors with d- or p-wave pairing
as well as superconductors with two—8 and d order
parameters, fully &ustrated Josephson-junction arrays
(FFJJA's) at zero temperature, i stacked triangular an-
tiferromagnets (STA's), iz'i helical magnets (HM's) and
magnets with sinusoidal spin structures, the A phase
of superfluid sHe. i7'i The model Eq. (1.1) is related also
to the critical thermodynamics of type-II superconduc-
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tors with short coherence length near the upper critical
magnetic field.

All the systems mentioned were extensively studied
during the last decade and rich theoretical information
about their critical behavior has been obtained both ana-
lytically and numerically. Unfortunately, the major part
of these data turns out to be contradictory or inconclu-
sive. To illustrate this point we overview, in brief, what
was predicted for FFJJA's, STA's, and HM's by diferent
people within diferent approaches.

A superconductor-insulator transition in FFJJA's at
zero temperature produced by competition of Josephson
and charging e8'ects in the presence of quantum Buctu-
ations is described by the three-dimensional model Eq.
(1.1) with N = 2 and vo ——0 or ivo ——0. Starting
from 4 —e dimensions, such a transition was shown to be,
within the lowest order in e, discontinuous, while the
(2+ ~) expansion did not enable one to resolve whether
it should be first order or continuous. 2 On the other
hand, this transition was referred to as a second-order
one on the basis of an analysis valid to the leading order
in 1/N ii

For N = 2 and N = 3, the Hamiltonian (1.1) gov-

erns the critical behavior of STA's such as VCl2, VBr2,
CsMnBrs, CsVClq, and of HM's (Ho, Dy, Tb, P-Mn02,
MnAu2) . In the case of Heisenberg spins, RG calculations
in 4—e dimensions and the 1/N expansion result in a first-
order phase transition, although e-expansion pre-
dictions were believed also as favoring a continuous one.
Monte Carlo simulations in 3D seem to provide an evi-

dence of a continuous phase transition. RG analysis
of the corresponding (2 + e)-dimensional model proposes
that the systems mentioned should undergo, in three di-

mensions, a first-order transition or a second-order one
with either O(4) [not O(6)] critical or tricritical mean-

Geld exponents.
Obviously, the situation needs to be cleared up. Since

the problem does not allow an exact solution, in order
to obtain reliable theoretical information one has to em-

ploy approximate methods with controlled or, at least,
known level of accuracy. Regular RG perturbation the-

ory in 3D subject to the application of Pade-Borel-like
resummation technique will be shown to play a role of
such a method.

The paper is organized as follows. In Sec. II the Hamil-

tonians describing the systems mentioned above are con-
sidered and related to the Hamiltonian (1.1). In Sec. III
the renormalization scheme is formulated and three-loop
RG expansions for P functions and critical exponents are
presented. Various resuramation techniques based on
the Borel transformation and applicable to a divergent
(asymptotic) power series of several independent vari-

ables are considered and criteria for the choice of the
best one are established. The specific symmetries of the
model (1.1) with N = 2 are discussed in detail. They re-
late coordinates of different fixed points of RG equations
to each other being a sensitive indicator of the quality of
the approximation employed. All the numerical results
obtained are presented in Sec. IV: coordinates of the
fixed points, critical exponent values, critical (marginal)
order parameter dimensionalities N, at which the topol-

ogy of How diagrams changes, etc. RG Gows are also
shown in the planes where stable, within these planes,
fixed points exist. In Sec. V the results obtained are ap-
plied to superconducting, super6uid, and magnetically
ordered systems and certain theoretical predictions are
made. Particular attention is paid to what is known as
chiral critical behavior and its relevance to real HM's and
STA's with Heisenberg or XY-like spins. Section VI con-
tains a summary of the results obtained. Details of the
Pade-Borel resummation procedure are described in the
Appendix.

II. RELEVANT SUBSTANCES
AND STRUCTURES

In this section we discuss physical systems undergoing
phase transitions which are described by the Hamiltonian

(1 1)

A. Unconventional superconductors

These materials should be mentioned first since
Eq. (1.1) is actually an obvious generalization of appro-
priate Ginzburg-Landau form (see, e.g. , Ref. 9) with &p

being a superconducting order parameter. For N = 2 the
Hamiltonian under consideration governs a static critical
behavior of tetragonal and hexagonal (vo ——0) super-
conductors with d-wave pairing, while the case N = 3
corresponds to cubic p-wave materials. Heavy-fermion
compounds such as UPt3, UBe~3, and others are thought
to belong to this class of superconductors. ' Phase
transitions in thorium-doped UBei3 are well described
by the phenomenological model with two coexisting, s-
and d-wave, order parameters ' which, in some limit,
is reduced to that given by Eq. (1.1). Moreover, since
there are numerous experimental facts ' and theoret-
ical predictions favoring nontrivial pairing modes in
high-T, superconductors, the Hamiltonian (1.1) may be
also relevant to the critical behavior of these new mate-
rials.

It is worth noting that the width of critical region is
large enough in high-T, superconductors (see Refs. 32,
33 for an overview and numerical estimates) and su-

perconducting Buctuations proved to be clearly seen
in their thermodynamics near T,. %ide Buctua-
tion regions are also expected to exist in heavy-fermion
compounds. ' That is why the critical behavior of the
model (1.1) is extensively studied within the context of
superconductivity. On the other hand, the Hamil-
tonian (1.1) has only one, isotropic gradient invariant;
i.e., it ignores a crystallographic anisotropy of the order
parameter correlation function which may play an ap-
preciable role in the critical region. So the applicability
of Eq. (1.1) to real unconventional superconductors is
somewhat limited. The inBuence of anisotropic gradient
terms on thermodynamics of these materials in the region
of weak, Gaussian Auctuation was studied in Ref. 43.

B. Fully frustrated Josephson-junction arrays

The main features of JJA behavior are known to be
described by the following Hamiltonian:
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E. .(8)'I = ——' ) I I

—Eg ) cos(8; —8. —A;.),2 88;)
(ij)

(2.1)

modeling STA reads:

H = —J) S;S~ —J' ) S;S~ , J ( 0
(ij) (ij)'

(2.5)

where 8; is a phase of superconducting order parameter
in ith island,

2x
A,~

= AdE (2.2)

A being a vector potential of external magnetic field, and
4'p is a quantum of fIux. Here E plays a role of charging
energy which is responsible for the Coulomb blockade and
quantum dynamics while the Josephson coupling Eg fa-
vors establishing of the global phase coherence and over-
all superconductivity in the system. At zero temperature
a superconductor-to-insulator transition occurs when the
ratio E,/Eg exceeds a critical value. Since quantum fluc-
tuations are essential in the case considered, the efFective
dimensionality of the system turns out to be equal to 3:
D = 2+ 1 (see, e.g. , Ref. 11).

If the external magnetic field B is uniform the JJA
is regulary frustrated with the &ustration parameter
f = (Bao)/4'o, ao being an area of a plaquette. We
shall consider JJA's with square and triangular lattices
in a magnetic field corresponding to f = zi which are
usually referred to as fully &ustrated ones. To study
their critical behavior a proper Hubbard-Stratonovich
transformationii'4s may be applied to the model (2.1)
resulting in the Landau-Wilson Hamiltonian with quar-
tic terms which are, in the notation of Ref. 11, as follows:

u(1&iI'+ l&2I') —vil&il'1@21'+»Re(&i&)'

(2.3)

where @i and F2 are complex scalar fields. In the case of a
square lattice u & 0, vq ——v2 ) 0, while for the triangular
FFJJA's u & 0, vq & 0 and v2 ——0. It is easy to see
that Eq. (2.3) is actually identical to the quartic part of
the Hamiltonian (1.1) for N = 2 provided the coupling
constants are related to those standing in Eq. (1.1) by

B = tie + vp + ivo, vi = 2(vp + tvp) & vz = 2ivo

(2.4)

Domains vp = 0 u)p & 0 and vp & 0, top = 0 correspond
to the square and triangular FFJJA's, respectively. The
Hamiltonian (1.1) governs also the critical behavior of
triangular JJA's with f =

4 since it is known to belong
to the same universality class as FFJJA's with square
lattice. 4'

C. Stacked triangular antiferromagnets

Triangular antiferromagnets which we shall deal with
possess lattices consisting of triangular antiferromagnetic
layers stacked in registers along the orthogonal axis. In
the ground state the spin arrangement may be thought
as formed by three ferromagnetic sublattices with 120
angles between neighboring, within the layer, spins (see
Refs. 13, 46 for details). The microscopic Hamiltonian

The first sum represents antiferromagnetic interactions
within triangular layers which give rise to &ustration.
The second one describes interlayer coupling, the sign of
J' being unimportant since there is no &ustration along
the orthogonal direction. The Hubbard-Stratonovich
transformation followed by the expanding around the in-
stability points and other standart procedures leads to
efFective Hamiltonian containing

ui, (a'+b2) + vi, (ab)' —a b2 (2 6)

as an interaction term, a, b being real n-component vec-
tor fields. If then one put

&a = &p+ ~p vg = 4tDp, (2.7)

Eq. (2.6) will immediately turn into the quartic part of
the Hamiltonian (1.1) with vp = 0 and (p = a +i,b
The &ustration may be shown to be relevant only for
mp & 0; the opposite case, mp ( 0, corresponds to simple
ferromagnetic or antiferromagnetic ordering. 4s

D. Helical magnets

In these magnets spins align ferromagnetically in a
plane and form spirals along the orthogonal axis. Such
an ordering may be described by the microscopic Hamil-
tonian (2.5) provided the first and second sums are de-
fined in a new manner. i Namely, let the first sum repre-
sents nearest-neighbor ferromagnetic interactions, J & 0,
while the second term in (2.5) describes antiferromag-
netic, J' ( 0, next-nearest-neighbor interactions acting
along only one crystallographic axis. Then for ratios
I
J'I/J exceeding a critical value spins will be helically

arranged along this axis. All the machinery mentioned
above gives in this case just the same Landau-Wilson
Hamiltonian as for STA's. The helical ordering, how-
ever, is realized only if vi, ) 0 (ivo ) 0)."For vi, ( 0 a
sinusoidal (linearly polarized) spin density wave should
occur. ~6

E. Super8uid ~He

In liquid He fermionic excitations are known to form,
below T, Cooper-like pairs with 8 = L = 1. Since the
magnetic dipole-dipole interaction couples orbital and
spin angular momenta to each other the superfIuid or-
der parameter possesses a O(3)xU(1) symmetry. This
is precisely the symmetry underlying the Hamiltonian
(1.1) with N = 3 and vo ——0. As was shown in Refs. 17,
18, Eq. (1.1) describes, in fact, the transition of liquid
He &om a normal to super6uid Anderson-Morel phase;

the coupling constants gp and Ap entering formulas of
Refs. 17, 18 are easily seen to be identical to up and mp,
respectively.
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III. RG SERIES, RESUMMATION,
AND SYMMETRIES

As was already mentioned, the static critical behavior
of the model Eq. (1.1) has been studied in three dimen-
sions within one- and two-loop RG approximations.
The taking into account of two-loop contributions to the
P functions and critical exponents was found to change
drastically the results of the lowest-order RG analysis.
In particular, it alters the total number of 6xed points
and avoids the degeneracy of the O(2N)-symmetric fixed
point which is fourfold degenerate, for N = 2, within
the parquette approximation. On the other hand, some
of the numerical results obtained on the basis of the re-
summed two-loop RG expansions do not obey some ex-
act symmetry relations (see below). In such a situation
three-loop calculations turn out to be very desirable.

We calculate the P-functions for the Hamiltonian
Eq. (1.1) within a massive theory. The renormalized
Green function G~(p, m) and four-point vertex functions

I

UR(p;, m, u, v, w), Vir(p;, m, u, v, w), Wn(p;, m, u, v, w)
are normalized at zero momenta in a conventional way:

G~'(0, m) = m

OG~'{p, m) =1
|9p p~ =0

UR (0, m, u, v, w ) = mu

VR(0, m, u, v, w) = mv

Wit (0, m, u, v, w ) = mw

(3.1)

One extra condition is imposed on the p insertion:

(x,2)I R (p, q, m u, v w)
J =v=0

(3.2)

The value of the one-loop vertex graph at zero external
momenta including the factor (N + 4) is absorbed in u,
v, w in order to make the coefficient for u term in P„
equal to unity. The P-functions obtained are as follows:

u —u — (uv + uw + w ) + [(41N + 95)u + 200u v + 200u wN+4 27 N+4 2

+46uv + (46N+ 216)uw + 92uvw + 144vw + (36N + 72)w ]

s [(2.69789N + 54 9403.8N + 99.82021)u + (26.58751N4N+4 s

+ 329.22770)(u v+ u w) + {2.48756N+ 221.36225)(u v + 2u vw) + (2.48756N

+ 155.55980N + 470.42246)u w + 50.50080(uv + 3uv w) + (34.28057N

+ 626.66599)uvw + (8.11011 N + 125.312 13N + 311.16081)uw + 110.420 34v w

+ (1.95355N + 216.93358)vw + (—5.20190N —0.628 29N + 95.22334)w ] (3.3a)

p„= v 1 —
l

3u + —v + 4w
l
+ [(23N + 185)u + 362uv + 524uw

N+4 (, 2 ) 27N+42

+136v + 380vw + (28N + 180)w ]
— [(—2.502 21N2

4 N+4'
+41.853 90N + 234.666 99)u + (

—0.014 37N + 720.91540)u v + (8.984 98N

+1015.38106)u w + 579.33309uv + 1575.28532uvw + (151.47423N

+780.920 14)uw + 157.45847v + 604.534 12v w + (6.495 76N + 753.089 66)vw

+( 327046N —+ 1363522N + 284 67391)u ]I (3.3b)

2 ( N ) 2
() =u(1 —

]
3u+v+ —u

]
+ ((23N+ 185)u*+200uv+ (54NN+4 I 2 p 27N+4~

+92)uw + 28v + 56vw + (36 —8N)w ]
— [(—2.502 21N + 41.853 90N

4(N+ 4)s

+234.66699)u + (—9.01372N + 426.44974)u v + (2.99978N + 83.141 93N

+230.13930)u w + 162.71394uv + (29.267 15N + 266.893 58)uvw + (5.756 01N

+48.11146N + 131.38337)uw + 25.29977v + (1.15422N + 73.59085)v w

+(9 52258N + 106 36551)vu 4. (
—1 31497N + 10 710 74N + 58669 55)u ]) (3.3c)
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Such series are known to be divergent, at best asymp-
totic. They contain, however, rich and important phys-
ical information which may be extracted provided some
procedure making them convergent is applied. The Borel
transformation usually plays the role of this procedure.
Here we are dealing with expansions of quantities de-
pending on three variables u, v, and zo. So the Borel
transformation should be taken in the generalized form:

j(a, v, w) =) c,,gu'v'w = f e 'E(at, vt, wt)df
ijk

simple models known up to today.
(iii) New results should be self-coasisteat; i.e., numeri-

cal values of any critical exponent calculated by means of
the resummation of different expansions, say, expansions
for p and p, should be identical (as close as possible).

(iv) All (known) symmetries of the problem should be
preserved by the approximation scheme employed.

The last criterion is of prime importance in the case
considered. The point is that the model Eq. (1.1) for
N = 2 possesses specific symmetry properties. Indeed, if
the field p undergoes the transformation

(3.4) p1 M+1 ) p2MZII2 (3.9)

where the Borel transform expansion is as follows:

F(z, y, z) = ) . ". x'y'z".
Z+g +ijk

To calculate the integral entering Eq. (3.4) one
should perform an analytical continuation of the Borel-
transformed expansion. Although there are several dif-
ferent ways to do it, only two approaches proved to be
efBcient in the case of a multivariable RG series. 4's The
first one exploits the so-called resolvent series:4~

quartic coupling constants are also transformed:

uMu ) vMv+2QJ ) 8J M —tU ) (3.10)

but the structure of the Hamiltonian itself remains un-
changed. Just the same situation takes place in the case
of another field transformation:

+1 + ZP2 ~g1+ g2
) P2~ (3.11)

which does not affect the Hamiltonian structure resulting
only in the following replacement of u, v, and m:

F(*,y, z, s) =) X") )
V

uM u+v+2tU v M —2'w QJ M ——
)

2
(3.12)

n=o l=O m, =0

(3.6)

F(x, y, z) = [L/M] (3.7)

(see the Appendix for details). This approximation
scheme possesses the remarkable property: for y = z = 0
(or z = z = 0 or z = y = 0) expression (3.7) turns into
conventional single-variable Pade approximants. Hence,
all the results obtained for simpler, say, O(n)-symmetric
models hold good within this approach.

Another way of the analytic continuation is realized
through the construction of the Canterbury approxi-
mants invented by Chisholm:

which is actually a series in powers of A with coeScients
A„being uniform polynomials of nth order in u, v, aad
m. Pade approximants in A [L/M] are thea used and the
sum of the series is given by

It is well known that RG functions of the problem are
completely determined by the structure of the Hamilto-
nian: They do not depend on uo, vo, and no which play
the role of initial values of effective coupling constants
when the RG How of u, v, and m is searched. Hence, RG
equations should be invariant with respect to any trans-
formation conserving the structure of the Hamiltonian;
Eqs. (3.10) aad (3.12), in particular, were shown to be
such transformations.

It means that for 3V = 2, P„, P„, and P should obey
some special symmetry relations which may be readily
written down:

P„(u, v, m) = P„(u, v+ 2', —tu)

P„(u, v, to) + 2P (u, v, tu) = P„(u, v + 2to, —tu), (3.13)

P (u, v, m) = —P (u, v+ 2m, —zu)

and

P„(u, v, m)+P„(u, v, m)+2P (u, v, m)

[K,L, M/R, P, Q] =
E,"=o Ep=o E,=o &.~.* y"z'

(3.8)

V= P„u + v + 2to, —2m, ——
2)

It was found to be rather effective when applied to the
impure Ising model, the cubic model, ' and the mn
model.

To determine which approximation scheme is the most
adequate to our problem certain criteria should be for-
mulated. We adopt the following ones.

(i) The resummation technique chosen should not lead
to unphysical results.

(ii) New results should be consistent with the most ac-
curate numerical estimates for O(n)-symmetric and other

V
p„(u, v, m) = —2p u + v + 2', —2m, ——

2p (u, v, w) = —p u+ v + 2m, —2m, ——
i

)

(3.14)
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One can see that expansions Eqs. (3.3a, 3.3b, 3.3c) do re-
ally satisfy these relations. Moreover, due to this special
symmetry, transformations Eqs. (3.10) and (3.12) can, at
most, rearrange the fixed points of RG equations not af-
fecting numerical values of their coordinates u, v, and
m, themselves. It provides a powerful tool for the eval-

uation of the accuracy of the approximation scheme em-
ployed.

To calculate the critical exponents field-theoretical ex-
pansions for two of them are needed. We find p and g
as a power series in u, v, and to up to three-loop order.
They are as follows:

0.192 509 3 (N'+ 2N+ 1)u'N+4 s

+ 18(N + 1)
3 (u v+ u m) + (2N+ 10) (uv +2uvm) + (2N +2N+ 8)urv

+4(v + 3v m+ Nm ) y (4N+ 8)vm

1 -N+1 1 N+1=1 — u+v+m + z
u +2(uv+um+vm) +v +NmN+4 2 N+4~ 2

0.247 270 1

(N+ 4)' (N +5N+4)u'+ (6N+24)(u v+u m+vtu )+10(3uv +6uvtv

+v + 3v ur) + (18N+ 12)uw + (2N + 8)m

(3.15)

rl=
q (N+ 1)u + 2(2uv+2uto+ v + 2vm+ Nm )27 N+4 ~

0.012 341 94+, (N' + 5N + 4)u + (6N + 24) (u'v + u'm + vm')+
+10(3uv + 6uvm+ v + 3v ur) + (18N+ 12)um + (2N + 8)m (3.16)

Since critical exponents are measurable (observable)
quantities, the right-hand sides of Eqs. (3.15) and (3.16)
should contain for N = 2 only those combinations of u,
v, and tu which are invariant under the transformations
Eqs. (3.10) and (3.12). As may be seen, it is actually the
case.

IV. NUMERICAL RESULTS

So we perform the resummation of the three-loop ex-
pansions Eqs. (3.3a, 3.3b, 3.3c) by means of the gener-
alized Pade-Borel technique with the approximant [3/1]
being used for the analytic continuation of Borel trans-
forms. Coordinates of the fixed points of RG equations
thus obtained are found numerically for the most inter-
esting cases N = 2 and N = 3. They are presented
in Table I (N = 2) and Table II (N = 3) which contain

also, for comparison, the fixed-point coordinates obtained
earlier4~ Rom two-loop RG expansions resummed on the
basis of [2/1] Pade approximants. Three-loop contribu-
tions are seen to change appreciably the locations of all
nontrivial fixed points.

Let us first discuss the numerical accuracy of the values
found. Point 2 in Tables I and II is actually an O(2N)-
symmetric fixed point and its coordinates are to be com-
pared with those obtained for O(4)- and O(6)-symmetric
models with real fields rp from resummed highest-order
RG series available up to today. Four-loop calculations in
3D have resulted in u, = 1.377 for n = 4 and u, = 1.338
for n = 6. These numbers dier &om their three-loop
counterparts presented in the second columns of Tables
I and II by no more than 1%.

The third columns of Tables I and II contain coordi-
nates of the Bose (XY) fixed point. The most accu-

TABLE I. Coordinates of the Sxed points of RG equations for N = 2 obtained within three-loop (approximant [3/1]) and
two loop (appr-oximant [2/1]) approximations

uc

&c

[3/1]
[2/11

[3/1]
[2/11

[3/11
[2/1]

0.0
0.0

0.0
0.0

0.0
0.0

1.3671
1.4863

0.0
0.0

0.0
0.0

0.0
0.0

1.6838
1.8699

0.0
0.0

0.1872
0.0340

1.4914
1.8334

0.0
0.0

1.6833
1.8699

0.0
0.0

-0.8416
-0.9350

1.6787
1.8334

0.0
0.0

-0.7477
-0.6796

1.6832
1.8699

-1.6800
-1.8699

0.8400
0.9349

1.6789
1.8334

-1.4950
-1.3591

0.7480
0.6795

Quoted from Ref. 42.
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TABLE II. Coordinates of the Sxed points of RG equa-
tions for N = 3 obtained within three-loop (approximant
[3/1]) and two-loop (approximant [2/1]) approximations.

&c

[3/11
[2/11

[3/1]
[2/1]

[3/11
[2/1]

0.0
0.0

0.0
0.0

0.0
0.0

1.3310
1.4262

0.0
0.0

0.0
0.0

0.0
0.0

1.9646
2.1816

0.0
0.0

0.0780
0.0097

1.8845
2.1713

0.0
0.0

Quoted from Ref. 42.

rate estimate for v, obtained by the resummation of the
six-loop 3D RG series is v, = 1.405. ' To compare this
number with those presented in the Tables I and II, how-
ever, we should make some rescaling of v, for N = 2
and N = 3. The point is that the coeKcient for e2 in
P„[Eq. (3.3b)] is equal to N+4 difFering from unity for
N g 1. Since the six-loop value of v, has been calcu-
lated in the O(2)-symmetric model, i.e., for N = 1, the
numbers in the third columns of Tables I and II should be
multiplyed, before comparison, by the factors s and

&
re-

spectively. It gives v, = 1.4032 (N = 2) and v, = 1.4033
(N = 3). Practical coincidence of these two values is very
natural since they are actually coordinates of the Same
(Bose) fixed point while their closeness ( 0.1%) to the
six-loop value of v provides evidence of the high accu-
racy of the approximation scheme employed. Note that
the two-loop approximation leads to v, = 1.5583 which
is more than 10% away from the "exact" value.

Strong evidences of the high numerical accuracy of the
approach elaborated may be obtained on the basis of
symmetry arguments. As was shown above, the trans-
formations Eqs. (3.10) and (3.12) can only rearrange the
fixed points of RG equations (3.3a, 3.3b, 3.3c) for N = 2
not aH'ecting the values of u„v„and m, themselves.
Indeed, this is precisely what occurs when one applies
Eq. (3.10) to the content of Table I: The first four fixed
points stay at their places while points 5—8 undergo pair
transpositions 5 ~ 7, 7 ~ 5, 6 + 8, 8 -+ 6. Another
transformation, Eq. (3.12), practically does not change
the location of the fixed points 1, 2, 7, and 8 and causes
pair transposition 3 -+ 5, 5 ~ 3. The rest of fixed points,
the fourth and the sixth ones, however, are converted
one to another under Eq. (3.12) only within the three-
loop approximation. The corresponding two-loop results
turn out to violate the symmetry relations induced by
Eq. (3.12). More precisely, the differences between the
coordinates of point 4 and the transformed coordinates of
point 6 ("symmetry discrepancies") given by [2/1) Pade-
Borel approximants are about 0.3, while within the three-
loop approximation they are of order of 0.01.

So the three-loop terms being taken into account en-
able one to obtain results which are much more accu-
rate than those given by two-loop RG expansions. More-
over, it is seen that the field-theoretical RG approach
i.n three dimensions combined with a generalized Pade-

Borel resummation technique does really provide a reg-
ular, rapidly converging approximation scheme powerful
enough to treat a complicated model with three quartic
coupling constants. At the same time, the Chisholm-
Borel resummation procedure is found to give poor re-
sults in this case.

Let us discuss further the stability of the fixed points
and the structure of the RG flow diagrams. All fixed
points of the RG equations are unstable in the three-
dimensional parameter space (u, v, vi). The fourth and
the sixth ones, however, are stable within the planes
(u, v) and (u, iv), respectively. The existence of such
points is important since it implies the possibility of con-
tinuous phase transitions in numerous physical systems
described by the model Eq. (1.1) with N = 2 and vp = 0
or ivp ——0. RG fiows for N = 2 within the planes (u, v)
and (u, iv) and for N = 3 within the plane (u, v) are
shown in Fig. 1(b) and Fig. 2(b, c). One can see from
these figures that there is not a fixed point stable within
the plane (u, iv) for N = 3 while for N = 2 such a point
exists. Hence, the topology of the flow diagram should
change when N varies. It is interesting, therefore, to
study the structure of our RG flows for arbitrary ¹

The detailed numerical analysis of three-loop RG equa-
tions obtained shows that only two diverse u-v flow pic-
tures occur for 1 & N ( oo while the RG flow within
the plane (u, iv) may proceed in four difFerent ways. All
possible scenarios are depicted in Fig. 1 and Fig. 2. The
critical (marginal) dimensionality of the order parameter
N, which separates &om each other two regimes of RG
flows for m = 0 is found to be

N, = 1.47+0.01 (4.1)

N&N, (b) N &N,
(N=2, N=3)

FIG. 1. RG Bows in the plane (u, v) for N ( N and
N ) N, where N = 1.47 + 0.01. Shaded areas represent the
regions of instability of the Hamiltonian (1.1).

Since this number is less than 2, in all physically inter-
esting cases, i.e. , for N & 2, the O(2N)-symmetric fixed
point turns out to be unstable. So the system should un-
dergo either a continuous phase transition demonstrating
an anisotropic (v, g 0) critical behavior or a fiuctuation-
induced first-order phase transition. When N + oo the
anisotropic stable fixed point in the plane (u, v) is going
to the O(2)-symmetric one which becomes degenerate in
this spherical-model limit.

The behavior of our model in the plane (u, iv) is more
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E (N, ( (b)

(c) Nca(N(Nc3
(N =3)

N) N.3

FIG. 2. Four possible scenarios of RG Bow in the plane
(u, w). Marginal values of the order-parameter dimensionality
N, i, N, 2, and N, 3 are given by Eq. (4.2). Shaded areas are
the regions of instability of the Hamiltonian (1.1).

rich. It is characterized by three marginal values of the
order parameter dimensionality: N, i, N, 2, and N,3. Cal-
culated on the base of resummed three-loop RG series
Eqs. (3.3a, 3.3b, 3.3c) they are as follows:

N, i ——1.45 6 0.01

N, 2
——2.03 6 0.01

N, 3
——3.91 6 0.01

(4.2)

For N ( N, i [Fig. 2(a)] three nontrivial fixed points exist
in the plane (u, iv) with the O(2N)-symmetric point be-
ing stable. When N exceeds N, i this "Heisenberg" fixed
point loses its stability but the other, anisotropic fixed
point with iv, ( 0 acquires it [Fig. 2(b)]. In this domain
which includes the important case N = 2, our system
demonstrates an anisotropic scaling behavior or discon-
tinuous phase transitions. With increasing N the stable
fixed point in Fig. 2(b) is moving downward and "an-
nihilates" with the anisotropic saddle fixed point when
N approaches N, 2. There is only one nontrivial fixed
point in the domain N 2 ( N ( N 3 including % = 3
[Fig. 2(c)]; it is O(2N)-symmetric and unstable. So only
first-order phase transitions are possible, in principle, in
this case provided ivo g 0. At last, when N increases
further and crosses over the value N 3 the creation of
two new' anisotropic fixed points in the u-to fIow diagram
takes place [Fig. 2(d)]. One of them is stable and de-
scribes some anisotropic critical behavior with m ) 0.
This fixed point is known as a "chiral" point and corre-
sponding "chiral" phase transition has been extensively
studied during the last years. As follows from our esti-
mates [Eq. (4.2)], this point does really exist and governs

the scaling behavior of physical systems with N & 4.
For N = 2 and N = 3 the chiral critical behavior is not
actually realized.

Let us discuss the numerical estimates Eqs. (4.1) and
(4.2) in more detail. The value of N, 2 turns out to be
very close to N = 2 which is of prime physical impor-
tance. Can higher-order contributions to the P functions
being taken into account change N 2, invert the inequal-
ity N, 2 ) 2, and, hence, alter the structure of the u-m

Bow diagram for N = 2? No, they cannot. The point is
that the structures of the RG flows in the planes (u, v)
and (u, iv) are related to each other for N = 2 by the
symmetry relations discussed earlier. In particular, as
may be seen from Eq. (3.12) the total number of fixed
points in each of these How diagrams should be just the
same. Since the plane (u, v) definitely contains four fixed
points (N, lies far below the value of interest N = 2) the
plane (u, iv) for N = 2 should possess four fixed points
too. Moreover, since, for N = 2, the stable fixed point
has v, ) 0 its counterpart in the plane (u, w) should pos-
sess iv, ( 0 [see Eq. (3.12)]. It means that inevitably
N, 2 ) 2 in the exact theory. The estimate Eq. (4.2) is in
accord with this inequality.

Another point to be discussed is the near coincidence
of the calculated values of N, and N, i. It is not oc-
casional. Indeed, N and N, i are both the values of
N for which the O(2N)-symmetric fixed point becomes
degenerate and critical exponents describing its stabil-
ity change a sign. These exponents are completely de-
termined by the derivatives ~" and ~" taken at the
"Heisenberg" fixed point since ~ and ~ at this point
vanish. One can see from Eqs. (3.3b) and (3.3c), how-

ever, that ~" —— &~ along the whole line v = m = 0
up to the highest calculated order. So when N varies
the "Heisenberg" fixed point should lose its stability in
the planes (u, v) and (u, iv) simultaneously; i.e. , N, and
N, i should be equal to each other. The small diH'erence

between calculated values of N, and N, i reAects a finite
accuracy of our approximation scheme which is seen to
be of order of 0.01.

Having calculated the fixed-point coordinates we can
find the critical exponents for our model. To obtain accu-
rate estimates for p the expansion Eq. (3.15) is resummed
by means of the generalized Pade-Borel procedure de-
scribed above while the values of g are found by direct
substitution of fixed-point coordinates into Eq. (3.16)
since this very short series with very small and positive
three-loop term is not need in resummation. The results
obtained for N = 2 and N = 3 are presented in Table III
and Table IV, respectively, which contain also the val-
ues of p and g calculated earlier within the two-loop
approximation.

Three-loop contributions are seen to change the crit-
ical exponents values only slightly. For N = 2 critical
exponents calculated in fixed points 3, 5, and 7 turn out
to be almost identical, which is also true for fixed points
4, 6, and 8. In the exact theory each of these two sets of
fixed points indeed should possess identical critical expo-
nents since the fixed points belonging to the same set are
related to each other by symmetry relations Eqs. (3.10)
and (3.12); i.e. , they are actually the same fixed point.
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TABLE III. Critical exponents p and g for N = 2 calculated within three-loop (approximant
[3/1]) and two-loop (approximant [2/1]) approximations.

[3/1]
[2/1]

[3/1]
[2/1]

1.4260
1.4347

0.0257
0.0273

1.3099
1.3218

0.0261
0.0288

1.3360
1.3259

0.0261
0.0287

1.3098
1.3218

0.0260
0.0288

1.3355
1.3799

0.0261
0.0286

1.3102
1.3218

0.0260
0.0288

1.3357
1.3799

0.0261
0.0286

Quoted from Ref. 42.

v = 0.677, o. = —0.030, P = 0.347, (4.3)

TABLE IV. Critical exponents p and g for N = 3 cal-
culated within three-loop (approximant [3/1]) and two-loop
(approximant [2/1]) approximations.

[3/1]
[2/1]

[3/1]
[2/11

1.5164
1.5217

0.0238
0.0246

1.3099
1.3218

0.0261
0.0288

1.3291
1.3220

0.0261
0.0286

Quoted from Ref. 42.

So differences between the values of p and rl calculated
in such fixed points may be considered as a measure of
the numerical accuracy of our approximation. It is seen
to be better than 0.001. On the other hand, the difFer-

ence between the values of p calculated in fixed points 4
and 6 (or 8) within the two-loop approximation exceeds
0.05. Hence, the taking into account of three-loop terms
improves the situation essentially.

It is worthy also to compare the critical exponents
found in the Bose and "Heisenberg" fixed points with
their counterparts determined &om six-loop ' and four-
loopso RG expansions for a simple O(n)-symmetric
model. The most accurate estimate for the susceptibility
exponent of the 3D XY model is p = 1.315. The cor-
responding values in Tables III and IV (third columns)
differ from it by 0.005. Four-loop RG calculations for
n = 2N = 4 and n = 2N = 6 give p = 1.441 and

p = 1.541, respectively. DifFerences between these num-

bers and their three-loop twins presented in Tables III
and IV (second columns) are about 0.02. So we arrive at
the conclusion that the Pade-Borel resummed 3D three-
loop RG expansions provide an accuracy of order of 0.01
for all calculated quantities. This accuracy is sufficient
for making de6nite and reliable theoretical predictions
for physical systems described by the model Eq. (1.1). It
will be done in the following section.

Now let us return back to the calculation of critical
exponents. The rest of them may be found by making
use of well-known scaling relations. We present here nu-

merical values of the exponents v, o. , and P for the fixed
points which are stable within corresponding parameter
subspaces since only these numbers may be related to
experiments. So for equivalent 6xed points 4, 6, and 8
from Table III

while point 4 in Table IV is characterized by v = 0.673,
a = —0.020, and P = 0.345.

V. APPLICATION
TO PHYSICAL SYSTEMS AND DISCUSSION

All 6xed points of our RG equations were found to be
unstable within the three-dimensional parameter space
(u, v, iv) for N = 2 and N = 3. It means that only
discontinuous, 6rst-order phase transitions should occur
in physical systems with nonzero initial values of v and
m. Such systems are represented by cubic and tetrago-
nal unconventional superconductors and superconductors
with composite s-d order parameters. On the other hand,
fluctuation-driven 6rst-order phase transitions are known
to be extremely weak. So the absence, within experi-
mental accuracy, of discontinuous superconducting tran-
sitions in relevant heavy-fermion and high-T, compounds
does not actually contradict the above conclusion.

In hexagonal d-wave superconductors described by the
model Eq. (1.1) with N = 2 and vo ——0 second-order
phase transitions remain possible under strong supercon-
ducting fluctuations since there is a stable 6xed point
within the plane (u, iv) which possesses a sizable domain
of attraction. The corresponding values of the critical ex-
ponents [column 4 (6, 8) in Table III and Eq. (4.3)] turn
out to be close enough to those of the 3D XY model. So
it is actually impossible to distinguish between the BCS
s-wave pairing and the nontrivial one studying experi-
mentally the scaling behavior of superconductors. On
the other hand, anisotropic gradient terms omitted in the
Hamiltonian (1.1) can themselves change, in the course
of fluctuation renormalization, the order of phase transi-
tion, and the structure of phase diagram, as they do in
crystals undergoing structural (ferroelectric) and mag-
netic phase transitions. ' This will obviously result in
a nonuniversal behavior of hexagonal d-wave supercon-
ductors in the critical region.

In liquid He, where N = 3 and vo ——0 and, therefore,
RG equations have no stable 6xed points, fluctuations
should always force the superfluid phase transition to be
first order. Corresponding discontinuities of thermody-
namic quantities at the transition point, however, would
hardly be observed experimentally because of the nar-
rowness of the critical region in this Fermi-liquid (see,
e.g. , Refs. 17, 53 for numerical estimates).

Only first-order phase transitions should emerge also in
FFJJA's at T = 0, in spite of the existence of stable fixed
points in the planes (u, v) and (u, iv) for N = 2. Indeed,
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Nci ——2 —~ (5.1a)

RG trajectories starting &om physical initial points, i.e. ,
&om those having vo & 0 and mo & 0 for triangular
and square FF3JA's respectively, cannot achieve the
stable fixed points as is clearly seen from Fig. 1(b) and
Fig. 2(b). So these systems will demonstrate nonuniver-

sal critical behavior.
A mode of the critical behavior of STA's and HM's de-

scribed by the Hamiltonian (1.1) with vo ——0 depends on
the dimensionality of the order parameter. In materials
with Heisenberg spins, i.e., for N = 3, only (weak) first-
order phase transitions should occur. In easy-plane crys-
tals with XY-like spins continuous transitions are also
possible with critical exponents presented in column 4 (6,
8) of Table III and Eq. (4.3) which are practically undis-
tinquishable &om those of the 3D XY model. These ex-
ponents, however, govern transitions into somewhat triv-
ial phases, simple ferromagnetic or antiferromagnetic in
STA's and a sinusoidal (linearly polarized) in HM's, since
the relevant stable fixed point possesses m, & 0. Much
more interesting ordering with lustration in STA's and
a helical one in HM's are described by Eq. (1.1) with
DUO & 0. They may be realized only via first-order phase
transitions, as is clearly seen from Fig. 2(b).

We did not find any traces of chiral second-order phase
transitions and corresponding new classes of universality
for N = 2 and N = 3, i.e., for STA's and HM's with
Heisenberg or XY-like spins. This result is in contradic-
tion with conjectures and conclusions made on the basis
of the lower-order e-expansion analysis. ' Such conclu-
sions, however, cannot be referred to as reliable since the
method mentioned provides rather low numerical accu-
racy in three dimensions. To illustrate this point and to
clear up the situation let us discuss two-loop e expan-
sions (highest order now available) for marginal order-
parameter dimensionalities N, i, N, 2, and N, 3. They are
as follows:

2.20

1+0.26'
(5.2b)

21.8
1+ 1.07~

(5.2c)

For e = 1 these formulas give N, q ——1.33, N 2
——1.75,

and N, 3 ——10.5. The first number is much closer to
our estimate N, i —— 1.45 [Eq. (4.2)j than the value

N, i ——1 given by Eq. (5.1a). The second one is also
closer to the three-loop 3D estimate N 2

——2.03 than the
naive value N, 2

——1.63, but both violate the inequality
N, 2 & 2. The third number exceeds enormously the esti-
mate N, 3 ——3.91 which turns out to lie between this num-
ber and the naive estimate N, 3

———1.6. So we see that
a primitive resummation of very short expansions (5.1a,
5.1b, 5.1c) results in soxnewhat improved numerical es-
timates for N, i and N, 2 while being used for evaluation
of N, 3 it demonstrates that lower-order e expansions are
useless in this case. Hence, lower-order calculations in
4 —e dimensions cannot be considered as a tool for an-
swering the question whether 3D physical systems with
N = 2 and N = 3 undergo chiral phase transitions or
not.

Monte Carlo simulations would also hardly be re-
ferred to as evidence of chiral critical behavior of STA's
and HM's with Heisenberg or XY-like spins. The point
is that unusual values of the critical exponents given by
such calculations turn out to be close to tricritical ones.
That is why it was suggested2 that tricritical behavior or
the tricritical-to-critical crossover are really seen in these
computer experiments as well as in most of the physi-
cal experiments performed on several helimagnets (Tb,
Dy, Ho) and STA's (CsMnBrs, CsVCls, and others). We
completely agree with what is argued on this topic in
Ref. 23 where the reader can find also an overview and
analysis of relevant experimental data.

N, 2 ——2.20 —0.57' (5.1b)
VI. CONCLUSIONS

N, p
——21.8 —23.4e (5.1c)

2

1+0.5e
(5.2a)

When e ~ 1, N, 3 becomes less than 2 and a chiral fixed
point seems to exist for N = 2 and N = 3. In this
limit, however, N 2 also becomes less than 2, which is in
obvious contradiction with the inequality N, 2 & 2 proved
above. Moreover, another inequality N 2 ( N, 3 valid for
e « 1 turns out to be broken at e = 1 as well.

Is it possible to make e-expansion predictions more ac-
curate for e = 1'? Yes, of course. Higher-order (four- and
five-loop) e expansions are known to give rather good
numerical results for the 3D O(n)-symmetric model at
e = 1 provided some Borel-like resummation procedure is
applied. Unfortunately, we have no long enough e ex-
pansions for our model up today. So we try to "sum up"
expansions (5.la, 5.1b, 5.lc) constructing simple Pade
approximants:

The critical behavior of the model describing phase
transitions in superconducting and magnetic systems
with complex N-vector order parameter as well as in su-
per8uid 3He has been studied within the RG approach in
three dimensions. RG P functions and critical exponents
have been calculated as series in powers of renormal-
ized quartic coupling constants u, v, and m up to three-
loop order. The series obtained have been resummed
by means of the generalized Pade-Borel technique and
fixed-point coordinates, critical exponents values, and a
structure of RG Bows have been determined for N = 2
and % = 3. Marginal values of the order-parameter di-
mensionality at which the topology of RG Hows in the
planes (u, v) and (u, w) changes have been also found.
Several criteria have been used to estimate the accuracy
of numerical results obtained which had turned out to
be about 0.01, an order of magnitude better than that
given by resummed two-loop RG expansions. So the field-
theoretical RG approach in three dimensions combined
with a proper resummation technique provides a regu-
lar, rapidly converging approximation scheme powerful
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enough to treat complicated model with three quartic
coupling constants.

Relevant physical systems have been shown to un-
dergo, in most cases, Buctuation-induced first-order
phase transitions. Second-order transitions have been
found to occur only in hexagonal d-wave superconduc-
tors and in planar magnets (into somewhat trivial phases:
linearly polarized or unfrustrated). The corresponding
critical exponents have turned out to diHer &om those of
the 3D XY model by no more than 0.02—0.03; i.e., the
underlying critical behavior would hardly be thought as
experimentally distinguishable from the Bose one. RG
equations obtained have been shown to possess the chi-
ral fixed point but only for N & 4. It means that STA's
and HM's with Heisenberg and XY-like spins would not
really demonstrate the chiral critical behavior with un-
usual critical exponents approaching helical or &ustrated
antiferromagnetic states via first-order phase transitions.
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APPENDIX

In this appendix, some details of the resummation pro-
cedure employed are described. As was shown in Sec. III,
the resolvent series

f e '[I/M] Ch
0 A=1

(A4)

(Borel transformation) .
With three-loop expansions in hand, we can use two

different approximants [3/1] and [2/2] obeying the condi-
tion L & M. The former was shown (Sec. IV) to provide
rather good numerical results for all cases considered.
Moreover, an employment of this approximant kept us
away from the well-known problem of poles which often
arises when approximants with higher-order denomina-
tors are used. That is why we have chosen Pade approx-
imant [3/1] for our analysis. When expressed in terms
of renormalized coupling constants u, v, and m and the
variable t it is as follows:

[ / )
no + ait + a2t2 + asts

1 + b&t
(A5)

where ao, . . . , as and bi are known functions of u, v, and
tv. If the series to be resummed are those for P functions
the coefficient as in Eq. (A5) turns out to vanish and the
integral (A4) reads

where PL, (A) and QM(A) are polynomials of degrees L
and M, respectively, with coefBcients depending on x,
y, and z, which may be determined &om the following
relations:

QM(A)P(z, y, z; A) —PL, (A) = O(A™1)
(A3)

QM(0) = 1

Approximate expressions for P functions and critical ex-
ponents are then obtained by the replacement of variables
z = ut, y = vt, and z = mt in the Pade approximants
and by evaluation of the integral

F(z, y, z;A) = ) A„A"

~a~ + a2&+ a3t
te dt

0 1+bgt
(A6)

(A1)
Evaluating this integral we get the final expression (the
"sum" of the series) for the function of interest:

n n, —l
~tm~ —l—m l mn —l—m).7.

E=o ~=0
f (u, v, tv) = (ai + a2 + 2as) b —(az + as —ash) b

+(ai —a2b+ asb )b e Ei(—b) (A7)

QM(A)
(A2)

for Borel transforms of the original multivariable RG ex-
pansions, may be constructed to generate Pade approx-
imants [L/M] in the parameter A. These approximants
are defined in a conventional way:

where Ei(z) is the exponential integralss and b = bi
This is precisely the formula which was used for resum-
mation of the three-loop RG expansions Eqs. (3.3a, 3.3b,
3.3c) and for the determination of the fixed points. The
approximate expression for p i(u, v, iv) is quite similar
and not presented here.
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