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Pearl's vortex near the film edge
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The problem of a vortex situated near the edge of a thin superconducting 6lm is solved. The fiux
associated with the vortex is shown to be less than the Bux quantum in a broad domain adjacent
to the film edge. The suppression of the vortex Qux is strong in narrow thin-film bridges and scales
with the ratio of the strip width to the 61m penetration depth. The magnetic moment of a vortex
in a finite thin film is shown to depend on the sample size and on the vortex position.

The recently renewed interest in thin superconducting
films is primarily due to the high critical current den-
sities j, which approach values of the depairing current
cPo/16m AL, ( (Pp

——hc/2~e~ is the flux quantuin, Ag is
the London penetration depth, and ( is the coherence
length). i 4 The question of high j, is related to the bar-
rier for the entry of vortices at the film edges; the latter
cannot be studied without precise knowledge of the mag-
netic structure and energy of a vortex near the film edge.
Also, this knowledge is needed in studies of vortices in
thin-film superconducting quantum interference devices
(SQUID's) and other extended Josephson structures. s

As was first stressed by Pearl, s the situation in a thin
film difFers from that of a bulk since vortices in films inter-
act mostly via the stray Gelds in the surrounding space.
In this paper, a vortex near the edge of a thin film in
zero applied field is considered. A thorough discussion
of the current Bow in thin Glms was given by Likharev7
and recently Brandt; however, the basic question of the
magnetic structure of a single vortex near the Glm edge
is still open. At first sight, the problem is similar to that
of a vortex parallel to the fiat surface of a bulk super-
conductor; the solution for a film, however, is not that
simple since —as is shown below —the method of images
per Se cannot be used.

Let us consider a film of thickness d (& Al. occupying
the x & 0 part of the xy plane. For a vortex at x = a,
y = 0, the London equations for the Glm interior read

h+ 4mA&curlj/c = Posh(x —a, y).

Averaging this over the thickness d, one obtains

h, + 4+Apcurl, g/c = Ppb(r —a),
where g(r) is the sheet current density, r = (z, y),
a = (a, 0), and A~ = A &/d2is the Pearl's film penetration
depth. Other components of Eq. (1) turn identities after
averaging. Equation (2) plays a major role in physics of
thin superconducting Bllns; it is valid everywhere at the
film except a narrow belt of a width g adjacent to the
edge, where the London equation (1) no longer holds.

The distribution g(r) can be found by solving Eq. (2)
combined with the continuity equation and the Biot-
Savart integral which relates the Beld h to the surface

current:

divg = 0, h, (r)c = f d r'[g(r') x R/s ], ; (3)

R = r —r'. The specific feature of the thin-film limit
should be noted: since all transverse derivatives 8/Bz
are large relative to the tangential i9/i9r, the Maxwell
equation curlh = 4m j/c is reduced to conditions relating
the sheet current to discontinuities of the tangential Geld:

2mg /c = —h„(+0), 2vrg„/c = h (+0) . (4)

Here, h „(+0) = —h „(—0), and +0 stand for the up-
per and lower faces of the film. The field component
perpendicular to the Glm, h„ is related to currents by an
integral (3), rather then by a differential equation.

Equations (2) and (3) suffice for the determination of
the current distribution. To this end, it is convenient to
deal with a scalar function G(r) such that g = curlGz:s

gz = BiiG ) gy = —BeG. (5)

Then the first of Eqs. (3) is satisfied.
The kernel R/R of the Biot-Savart integral is strongly

singular. To reduce the degree of singularity one can
write R/Rs = V'(1/R) (the prime specifies r' as the vari-
able of differentiation) and integrate by parts. Equation
(3) then gives

h, c = curl, g r' + dy'
d'r', , /g„(r') )

x')0 )o
(6)

+4m A„V G(r) = —cdioh(r —a). (7)

This is to be solved with respect to G(x, y) for z ) 0
subject to boundary conditions g(oo) = 0 and the van-
ishing normal component of the current at the Blm edge
g (0, y) = 0. These conditions imply a constant G at in-
Bnity and at the Birn edge; one can set G = 0 at the Blm

where the subscript 0 stands for x' = 0. Substituting
Eqs. (5) and (6) in (2) one obtains

2,V2G(r'), (0 G(r') l
d r + dy.)o a ( & )o
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boundaries since only the derivatives of 0 have physical
meaning.

Solving the integro-differential equation (7) on the
half-plane seems difficult; one can get around the diK-
culty by extending formally the domain where G is de-
fined to the whole plane. To have 0 = 0 at the edge
x = 0, one sets G(—x, y) = —G(x, y); the source (a vor-

tex) at the right of Eq. (7) should then be complemented
by a singularity of an opposite sign (antivortex) situated
at (r = —a), to assure the odd solution G(x).

As the next step one performs the Fourier transform
(FT) of Eq. (7) with respect to the variable r. In
the integral terms of Eq. (7), only B depends on r:
FT(1/B) = (2z/k)e ' '

T. hen,

~

~

OO OO

dz'e '" * (8, —k„)G(z', k„) + dy'[8 G(r')]oe '"&" —2A&k G(k) =i ksink a.
p —OO

(8)

Had the lower limit of the first term here been —oo, the integral would be just the FT of V2G. To evaluate the
complementary part for this FT, f dx', one writes Eq. (8) for —k, replaces the integration variable z' with —x',
and utilizes G(—x') = —G(z'):

~

~dz'e '" (8 —k„)G(x', k„) + dy'[8 ~G(r')]oe '""" + 2A„k G(k) = i ksin—k a.
p —OO

(9)

Subtracting now Eq. (9) from (8), one obtains

2cgo sink a
i7r k(l + 4A„k)

(10)

It is worth noting that for a vortex-antivortex pair at
a distance 2a in an infinite film, the result is different:

its FT one finds

dq G(q„k„)
2' k —q —ih

'

dq q G(q, k„)
2z k, —q —i6' (i6)

ego ( [r —a[ l ( [r + a[ )
16zA, g 4A„) (i2)

where 4p ——Yp —Hp, and Hp and Yp are the Struve
and the second kind Bessel functions in the notation of
Ref. 12. Lines of the current g = curlGz are contours of
constant G(z, y). Far from the vortex core,

ego sink a
iver k(1+ 2A, k)

Thus, the "plain" method of images cannot be applied for
the problem at hand. Still, at short distances (kA& )& 1)
the current distribution described by Eq. (10) is the same
as that given by Eq. (11).

In the real space, the solution (10) reads

h(Q) = . 2[g(k) x Q], Q = (k, k,). (i7)

As an example, let us evaluate the fiux P, (a) through
the film due to the vortex at a, i.e., integrate Eq. (2) over
the film at x ) 0:

4~A„4.(a) =4o+ ' dye, (z =& y) (18)

where s -+ +0 (the integral is over the supe@conducting
side of the edge). Writing here gz(s, y) as a Fourier inte-
gral with g„(k) given in Eqs. (16) and (10), one has for
the last term in Eq. (18)

where b —i +0 indicates how the pole at q = k should
be treated. The field h(r, z) can now be evaluated using
the Biot-Savart law:

G(r) =

where r2 = z2 + y2. In the vicinity of the core,

2igoA& dq q sinq a dk e'""
[q ~(1+4A~[q [) k —q —ih

' (19)

cPp 2 8A„ ( 21x —a—»,"++0 —
i
Oi+ —

I
(14)

16m%~ x e&p ~)

here p = g(x —a) + y is the distance from the core,

p = 0.577..., functions 4 are taken at a/2A„, and the
terms of the order p2/A2 are neglected.

In some applications the Fourier representation is more
convenient. According to (5) and (10), the current is
given by

g(x & 0, y) = (ik x z)G(k)e' ',2' 2

g(x ( O, y) = 0. (i5)
The function g(x, y) is discontinuous at x = 0; evaluating

The last integral is taken by closing the integration path
in the upper half-plane of the complex k; it is 2mi. One
then obtains

4, (a) 2 ( a )
q4A, ~

(20)

where the monotonic function f (g) = Ci(g) sing-
si(g) cosg (the notation of Ref. 12) has the following
properties: f(g && 1) m/2 + g(lng + p —1) and
f(g &) 1) 1/g. Thus, the fiux P, (a) goes to zero
when the vortex approaches the edge and to Po at large
distances, as expected. The reduction of the Qux carried
by vortices in restricted geometries has been discussed in
the literature. However, unlike the bulk where the full
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f dq (kz+k q )G(q, k„)
2vr k(k —q —ib')

km0

2cgp (k ) dq sinq a
iver q k ) z p 2z Iq*l(1+4A~lq*l)

(23)

This contrasts the case of a vortex in an infinite film
where P, = f d rh (r, z) = Pp for any z.

Another quantity of interest is the vortex magnetic
moment )M = f(r x g)d r/2c. In an infinite film, p di-
verges due to the slow decay of vortex currents (g oc r 2)
at distances r )) Az. For the half-plane film, 2cp,
—f r VG dzr can easily be rearranged to

2cp, = —[x G(x, ky ——0)]p + 2 dx G(x, k„= 0),
0

(24)

where G is evaluated using the FT, Eq. (10):

'G( k 0) 1
+ I(l

— Il+
l

*+
cPp

' "
lx —al g 4A~ ) (4A„)

(»)

value of Pp is reached (exponentially fast) on distances
about the London length AL, kom the surface, in thin
filins the change from 0 to Pp is quite slow: P, (a) reaches
90% of Pp at about a = 24A„. Since A„can be 10 or 100
micron large in sufBciently thin films, the width of the
domain where the vortex Hux is substantially less than
the Hux quantum Pp can be macroscopic. Physically, this
happens because the short-range exponential screening of
the bulk superconductors is replaced in thin films by the
long-range Coulomb interaction via vacuum.

In applications one might be interested in the vortex
Hux P~ which crosses the half-plane x & 0 in the free
space to the left of the film edge:

f,a=, ~„(.= ., „,.=o)

=A„(x = —s, k„= O, z = 0),

where the vector potential A(Q) = 4zg(k)/cQz and the
arguments of A„(x, k„,z) indicate in which variable the
FT is performed. Calculation similar to that leading to
Eq. (20) results in P, = —4)„ i.e., the whole Hux P,
crossing the film from the lower half-space to the upper
one, returns back round the edge. Moreover, the Aux
4), (z) through any plane z =const is zero. Indeed, using
Eq. (17) we have

g4 (z) = f d r h. (r, z)

g (k)k„ —g„(k)k,
ZC k

where integrations over r and k, yielded h(k) and
z e "'/k (for z & 0), respectively. With the help of Eqs.
(16) and (10), the integral at the right-hand side (RHS)
of (22) is further transformed:

Here g(q) = —df/drI with f(rI) defined above [see Eq.
(20), the notation of Ref. 12]. The first term at the RHS
of Eq. (24) is then —2c()))pa/vr . The integral in the second
term is logarithmically divergent since ln[(x + a)/(x-
a)] 2a/x at x » a. One therefore should introduce a
finite sample size L to cut off the divergence:

p(a « 4A ) = a
l

ln + p —0.5
l

.2&p ( L
vrz ( 4A„

(27)

This dependence is somewhat slower at intermediate dis-
tances:

p(4A~ && a && L) = aln2$p L e
(28)

At large distances of the order L, p = PpL/vr2
Let us now turn to the question of energy, starting with

the general situation of a vortex in a finite bulk sample.
The energy consists of the London energy (magnetic + ki-
netic) inside the sample, e~'1 = f [h2+(4zAI j/ ) c]dzV/8 z
and the magnetic energy outside, e1 1 = f hzdV/8vr.
Since curlh = divh = 0 outside, one can introduce a
potential so that h = V'y and V' y = 0. Then, for the
potential gauged to zero at oo (which is possible in zero
applied field) one has

8~~~ ~ = ph dS, (29)

where the integral is over the sample surface with dS
directed inward the material. The London part is trans-
formed integrating by parts the kinetic term: 8vre~'~ =
(47rAzl /c) g(jxh) dS where the integral is over the sample
surface and the surface of the vortex core. The integral
over the sample surface is further transformed: jdS (j x
V'p) = $ dS p(V' x j) (see Ref. 10). Combining the result
with e~ 1 of (29), one obtains jdS &p(h+ 4mAI cur)j/c).
The expression in the parentheses is the LHS of the Lon-
don equation (1), i.e., it is Ppvb& 1(r —r„) where v is the
direction of the vortex crossing the surface at the point
r„, and hlzj (r —r„) is the two-dimensional b function. We
then obtain:

4~%'
8z c = 4'p[rp(r „i) —p(r,„)]— dS (h x j),

core

(30)

with r „q and r,„being the positions of the vortex entry
and exit at the sample surface (the vortex is assumed to
cross the sample surface at right angles; otherwise, one
should multiply the potentials by cosines of correspond-
ing angles).

For thin films, the integral over the core surface (oc d)
can be neglected in Eq. (30). The potential p(r, z = +0)
at the upper face of the film, is simply related to the

p = aln — A„1— f—
l l

. (26)
7rz a vr vr ) 4A~)

Thus, the vortex magnetic moment depends logarithmi-
cally on the sample size and changes with the distance
a from the edge. Near the edge, the moment is propor-
tional to a:
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function G(r) introduced above; Eqs. (4) and (5) yield

&p(r, +0) = —2z G(r)/c (31)

V G = —(cPp/4z Ap)b(r —a) (34)

with the boundary condition G = 0 at the strip edges
x = 0 and z = W. Thus, the problem is equivalent
to that of the electrostatic potential of a linear charge
q = cPp/16m A„situated at r = a between grounded
metal plates at z = 0 and z = W (see, e.g. , Refs. 14 or
15):

G sin(7ra/W) sin(z z/W)
tanh —=

2q cosh(z. y/W) —cos(za/W)cos(vrz/W)

A rich library of the 2D electrostatics is instrumental in
solving for vortex currents for a variety of film shapes
with linear dimensions less than A„; see, e.g. , Ref. 15 for
the solution of Eq. (34) for a rectangular film.

The FT of the solution (35) can be obtained directly
Rom Eq. (34): Extend the domain where G is defined to
the whole plane and introduce two systems of images to
satisfy the boundary conditions at the edges, so that the
source term reads —4z qb(y) [P b(x —x ) —g b(z-
z )] with x = a+2mW and x = —a+2nW (m, n are
integers). The function G(x) is then periodic with a unit
cell (—W, W) with the FT

(a possible additive constant is set zero since both q) and
G are gauged to zero at oo). Therefore, the energy in
question is

e = ——(p(a, + 0) = —G(r m a) .4p 4p
(32)

4m 2c

As is seen from Eq. (14), G(r ~ a) is logarithmically
divergent, and one has to introduce the standard cutofF
at p=(c:

; 8A,
,

(
16'2A„e&( 2 (2A„j

where Cp is defined following Eq. (12). As expected,
the London description fails when the distance a Rom
the edge is on the order (. The energy (33) describes
the Coulomb attraction of the vortex and the edge at
a » 2A~: —49 e —()t)p/4za; compare this with a vor-
tex in the bulk parallel to the sample surface where the
interaction oc exp( —a/Ag). At short distances, a « 2A„,
the force is —qg/16m'zA~a (the a dependence is the same
as in the bulk case, but the coefficient is much smaller).

The formal method employed above is designed for
the semi-infinite film; it cannot be applied to other film
shapes and in particular to thin-film strips, the case of
practical interest. The problem seems diflicult for strips
of an arbitrary width W; however, for narrow strips,

(& Az, it becomes manageable again because the
field Ii, in Eq. (2) can be disregarded with respect to
the term with current derivatives. r One can see that at
short distances f'rom the vortex core, r « A~, the field

Pp/rA„, the sheet current g cPp/rA~, and the
ratio of the second term in Eq. (2) to the first one is of
the order Az/r » 1. Then, Eq. (7) for G reads

(36)

To evaluate the flux P, through the strip, one starts
with the Biot-Savart equation (3) and expresses h, in
terms of G:

G
d 'V'G( '). = —— dR3 c R3 (37)

where the integral is over the strip 0 & x' & W (see Ref.
16). Then, one obtains for P, = jh, d2r

y(p) = yp .
( (N , ~ ) . (40)

CoefBcient Jo can be obtained making use of Gauss'
theorem for the "potential" G: take a surface contain-
ing the linear "charge" q as made of two yz planes at
z = xq & a and at z = x2 & a:

ByB,G(pp, y) —f ByB,G(Tp, y) =4pp, (41)

or J'(xi) —J'(z2) = 4z'q. This yields

cc)|)p W —a
''=4-A, W (42)

Substituting J(z) thus obtained in Eq. (38), one has

P, (a) =
~

aln y Wln
~

. (43)
Pp ( W —a W

W —a)
The flux P, (a) turns zero at the edges (as —a lna at a ~
0) and reaches maximum of PpWln2/2z'Az in the strip
middle. Thus, the flux carried by a vortex in a narrow
(W « Az) thin-film bridge scales with the ratio W/A~,
depends on the vortex position, and is much smaller than
the Bux quantum.

Similar to P„one can estimate the flux which goes
around the Glm edges &om the half-space above the strip
to the lower half-space. With the help of Eq. (37), one
obtains for the flux P~ = I p h, d2r crossing the plane
z = 0 left of the edge x = 0:

2 2, G(r') /pa W
c x' 2z.A„a (44)

The flux 4f drops fast when the vortex approaches the
left edge (P, oc alna), whereas the decrease is slow for
the vortex moving toward the opposite edge: 4)~ oc (W—
a). The flux PP = f ~ h, d2r at the right of x = W is

cP. . . G(r') dz
2W x'(W —z') z(W —z)

where J(x) = J' G(z, y)dy can be evaluated by inte-

grating Eq. (34) over y:

J"(x) + [B„G] = —4zqb(z —a) .

The term B&G = g vanishes at y = +oo, and therefore
J is a linear function of z. Since J(0) = J(W) = 0, the
function J(z) (which is continuousir) must have a break
at x = a:
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evaluated in a similar manner to show that P, +P, +P, =
0. Moreover, one can show that the total Bux crossing
any plane z =const vanishes, unlike the case of a vortex
in an infinite Film where it is Po.

For the vortex magnetic moment in the narrow strip
one obtains utilizing again the representation of g in
terms of G

p,, (a) = (W —a)a.
8+4

(45)

Be;„, P() BGi Qo
Q$+ (G2)

lgg2 Q gg2 C
(47)

The energy of a vortex in a narrow bridge is obtained

Note that unlike the bulk situation, p is size and position
dependent (as for a vortex in a semi-infinite film).

It is worth noting that though a vortex in a strip carries
less than Po of a flux, the interaction of such a vortex
with the transport current is still described in terms of
the common Lorentz force. Consider as an example the
interaction energy of two vortices at ai ——(ai, 0) and

a2 ——(a2, 0); according to Eq. (32)

[Gi(az) + Gz(ai)] = —Gi(az) . (46)4o 4o
2c C

Then the force of the first vortex upon the second is

directly from Eqs. (32) and (35) by introducing the cutoff
at [r —a] = f to a divergent G(r -+ a):

(2W . era).(a) =,' ln] sin —
~

.
167rzA„ i n W) (48)

As expected, this expression fails at distances of the order

( from the edges.
In short, analytic expressions are obtained for the cur-

rent distribution of a vortex near the edge of a semi-
infinite thin film and in a narrow thin-film strip. It is
shown that the magnetic flux P, carried by vortices is
reduced relative to the flux quantum Po, the region adja-
cent to edges where this happens may become macro-
scopic in sufficiently thin films. In narrow thin-film
strips, the vortex flux P, scales with the small ratio of the
width W to the film penetration depth Az, in other words,

(( Po. Closed formulas for the position-dependent
energy and the magnetic moment of the vortex are pro-
vided.
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