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We propose a modi6ed Landau-Ginzburg theory for arbitrarily shaped vortex strings in super8uid
He. The theory contains a topological term and directly describes vortex dynamics. We introduce

gauge 6elds in order to remove singularities from the Landau-Ginzburg order parameter of the
super8uid, so that two kinds of gauge symmetries appear, making the continuity equation and
conservation of the total vorticity manifest. The topological term gives rise to the Berry phase term
in the vortex mechanical actions.

Since the existence of quantized vortices was predicted
by Onsager and Feynman, vortices have been observed in
super8uid He and He, and in superconductor systems.
At low temperature in superfluid helium the quantized
vortex obeys the classical hydrodynamical law that the
vortex moves with the local velocity of the fluid, while
the vorticity quantization comes from the fact that the
superQuid is a quantum state described by a wave func-
tion. The vortex dynamics is governed by classical hy-
drodynamics and the quantum aspects of the system is
governed by a nonlinear Schrodinger equation which is
equivalent to the Landau-Ginzburg theory for superBuid
developed by Ginzburg, Pitaevskii, and Gross (GPG).i

By inserting a suitable form for the phase of the field

by hand on a case-by-case basis it has been shown that
a Landau-Ginzburg theory produces vortex dynamics. '

However there is no satisfactory theory which describes
both vortex dynamics and quantum properties of the vor-
tex.

In this paper we propose a topological Landau-
Ginzburg theory for vortices in superBuid He. The char-
acteristic features of our formalism are as follows. (i) We
introduce a gauge field, A„, in the GPG theory in such a
way that A„carries the singularities in the phase of the
Landau-Ginzburg order parameter: the phase therefore
becomes single valued. In order not to change physi-
cal observables we introduce A„gauge covariantly, and
we choose the condition that the dual field strength of
A~ coincides with the vorticity tensor. This condition is
imposed by using a rank two antisymmetric tensor La-
grange multiplier, B„. There are two kinds of gauge
symmetries, which lead to the continuity equation and
to the conservation of the total vorticity. (ii) A topo-
logical term, "BF term" (e""~"B„„F~p),where F„„is
the field strength, E~ = 0~A„—B„A~, and a coupling
term, B„„J"",to the vorticity tensor J& are required
to reproduce the Berry phase term. Because the BI"
term does not couple to the (3+1)-dimensional metric, it

is a so-called topological term. In general the BF term
is used in evaluating linking numbers which are topo-
logical numbers counting how many times a string and
a membrane are entangled in (3+1) dimensions, «while
the Berry phase term in the vortex mechanical action is
similar to the Hopf term which counts the instanton num-
ber in the O(3) nonlinear sigma model. The topological
BF term is a generalization of the Chem-Simons term
which plays an important role in the study of the frac-
tional quantized Hall effect and anyon systems in (2+1)
dimensions. s It is desirable to include such a topological
term since a vortex is a topological excitation in the sense
that it is not obtained by a continuous deformation from
the ground state. (iii) The vorticity tensor, whose time
components, J ', correspond to a vorticity vector, has a
general form so that it can describe arbitrarily shaped
vortex strings or rings. Regularization, if needed, in-
volves regularizing only this tensor, so that the density

p and the velocity, e, never become singular. (iv) Since
the vorticity tensor contains vortex coordinates explic-
itly, this action directly leads to the equation of motion
of vortices as w'ell as the Beld equations for the order pa-
rameter. This action also reproduces the correct vortex
mechanical action which contains the Berry phase terra.

In connection with point (ii), the rank two antisym-
metric tensor field B„„(Klab-R amodnfield) has been
used to describe the vortex dynamics in superfIuid.
However the theory used was the Kalb-Ramond theory
which completely differs kom our approach. In the Kalb-
Ramond theory, the action contains the square of the
field strength for B„„,H„„~H""~,so that B„becomes
dynamical and propagates in space time. The essential
difference is that the form of B;~ is set by hand to be
B;~ = e;zyx" in the previous approach, while the con-
dition B;~ = e;~gx" appears naturally in our approach
as we show later. Therefore our formalism is perhaps
more natural when describing the vortex dynamics in a
sup erflui.
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One of the motivations of this work is how to treat
the nucleation of quantized vortices. Among the most
interesting problems in vortex physics are the nucleation
and annihilation of quantized vortices and the mecha-
nism of breakdown of the superfluidity and the super-
conductivity through the vortex nucleation. Nucleation
involves the creation of a vortex &om nothing, and an-
nihilation destroys an existing vortex ring. Although re-
cently interesting classical numerical simulations of vor-
tex nucleation have been reported, 9 quantum field theory
is required for a complete treatment of such processes.
However, for a theory of these processes and for other
problems involving vortices, we need to develop a suit-
able parametrization in which the slowly changing co-
ordinates, such as the path of a vortex ring, separate
easily &om the high-&equency modes. Then by taking
into account suitable instantonlike solutions of the low-

frequency sector we can calculate the nucleation rates or
other quantities of physical interest. We hope that our
new theory will be useful for this purpose.

We begin by proposing a gauged Landau-Ginzburg the-
ory with a topological term

h2S= d z 5 i o+Ao — i;+Ai
2m

—V(g) + e""~ B„„Fp + B„„J"",(1)
2m

N @xi"ax"'
J""(z)= ) p d7do 6~ l(z —X (7., o)),

BT Bo'
a=1

(2)

where e""l' is the complete antisymmetric tensor and
V(Q) is a potential which is a gauge-invariant function of
g. In general, one assumes that V(g) = A(i/i —po) so
that the number density i/i does not deviate too much
&om po which is a constant. J""is the vorticity tensor
representing vortex strings or rings on which singulari-
ties appear while X",p, and N are the vortex position,
the vorticity of the ath vortex and the total number of
vortices, respectively, and AI"B"~ = A"B"—A"B".The
condition that the wave function be single valued results
in quantization of p; p = (h/m)n where n is some
integer. Because of the form of the vorticity tensor, the
variation of the action with respect to the vortex coordi-
nates X" gives the equation of motion of the ath vortex
directly. Since singularities appear only through the vor-
ticity tensor, it is possible to regularize, if necessary, by
modifying the form of the vorticity tensor, for example,
the b function can be replaced by some other distribution.

An important property of our action is that there are
two gauge symmetries. The first one is a usual gauge
symmetry; A„~ A„+ B„A and @ m e'+@ with a
regular function A, which leads to the continuity equa-
tion Bp/Bt + V. (pe) = 0. The second is given by
B~„m B„„+B„A„—0 A~, where A„ is also a regular
function. The corresponding conserved current is J"",so
that the total vorticity jdsx J * is conserved.

If we consider three-dimensional vortex rings, the tra-
jectory of a vortex ring, which is a sheet, may be

parametrized by v and cr. Since the trajectory of a vortex
ring is a sheet, the vorticity tensor which describes vor-
tex trajectories becomes a rank two tensor. On the other
hand, for the trajectory of a point vortex it becomes a
vector. In order to describe the nonrelativistic situation
we can identify ~ and X with the time axis, that is,
w = X = t. We may rewrite J""in terms of two vectors
J = (J ') and j = ( 2e' ~sJ~"), and J' just coincides with
a usual vorticity vector

BX~ BX BX."
Ho; —H;

where H&„~ ——B„B„~+ B„B~„+B~B„„,and Ho;~ and
H;~i, are determined by the equations of motion of Ao
and Ai to be

mp
+ijIc = &ij Ie&

2
mp

Hoij = &ijk& )
2

(6)

where e = (5/m)(Ve+ A.). Here, 0 is a regular phase of
g. Substituting Eqs. (6) and (7) into (5), we obtain the
equation of motion of the vortex as

OX BX=e(X )+a (8)

where cx are arbitrary coefBcients re6ecting the
reparametrization &eedom of 0". there is a parametriza-
tion of o such that the last term in (8) vanishes. The
vortex equation of motion is the same as the equation
obtained in classical hydrodynamics, and specifies that
vortices move with the local fluid velocity. Note that
we have also shown that the equation BX /Bt = e(X )
holds not only in an incompressible superfluid but also in
a compressible superfluid, since we did not assume any
condition such as p = po in the above derivation.

As well as the equation of motion for vortices, we have
the following field equations, obtained by varying the
density p(x) which is i@i and the phase of g, 8(x):

m 2 h 1 BV
ae —SA. + —~' — a~p+ = 0,

2 2m ~p Bp

Op—+ V. (pe) = 0.
Bt (10)

J(~) = ) p dX' 6~ l(e —X' (t, o)),
a=i
N

j(&) = ) p X x dX 6~st(e —X (t, o)),
a=y j"o

where I' is a ring configuration of the ath vortex ring.
The conservation law of J""written in terms of these
vectors becomes V J = 0 and BJ/Bt = V x j.

An important feature of our theory is that the equation
of motion of vortices can be obtained from our action
directly. The variation of the action with respect to the
vortex coordinate X' gives
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The first equation is similar to the Bernoulli theorem and
the second is the continuity equation. The field equation
for p gives the dependence of p on the position of the vor-
texringÃ . In general, p(m; (X )) = p, (x)+bp(a, Ã )
where p, (a) is the density in the absence of the ath vor-
tex ring and bp(m, X'

) is the modification due to the
presence of the ath vortex ring. Indeed bp(a, X ) con-
tains the contribution &om the core of the ath vortex
ring. Variations with respect to B;p and B;z lead to

VxA. ™J,
(i2)

The first equation is a constraint which restricts the space
component of the gauge field and the second equation
determines the time component of the gauge field.

Now we will show that our new action reproduces the
vortex mechanical action. Since this theory is a macro-
scopic theory, there is a cutoff of the theory which must
be bigger than the atomic scale A. of the underlying
microscopic dynamics. Since the coherence length of the
vortex core in the superfluid, (, is of the order of 1 A
which is comparable with the cutoff of this theory, we ne-
glect contributions from vortex cores which are O((s/Ls)
with a container size L. We assume that time and spatial
derivatives of X are small. We also assume incompress-
ibility, p(x) = po ——const, and that the phase of g, 8, be
zero for simplicity, so that the velocity e almost coincides
with (fi/m)A except at the vortex cores. According to
the constraint (6) which is V b(x) = —(m/2)p(x), the
integrand of fd4xb

. BA/Bt, which is a part of the BF
term, is a total time derivative except near the vortex
cores, so that this contribution is also neglected. Using
the conditions (6) and (11) with the above assumptions,
then the original action (1) reduces to

h,24 . A pp

2m

where b = (ze'~"B~") and 2b j = B;zJ'~. Imposing
gauge fixing conditions V A = 0 and V x 6 = 0 and
solving (11) and (6), we obtain

adiabatic process in which the final configuration co-
incides with the initial configuration, the first term in

(16) can be interpreted as the Berry phase, ii which is
—ihgdt (4(X (t))~d)I'1(X (t))/dt) where 4 is a micro-
scopic Feynman-type wave function. The second term
in (16), which was a kinetic term of the local fluid corre-
sponding to —(5 po/2m) fd zA in (13), represents the
interaction between vortex rings. Thus our new the-
ory naturally includes the vortex dynamics. Note that
by using field equations there is an interesting relation
fd zB;~J'~ = h fd4xpAO it. is clear that the left-hand
side gives the phase change when the vortex ring is moved
around a closed trajectory, that is the Berry phase, but
it is not obvious that the right-hand side also does.

It is easy to get the vortex mechanical action in the
compressible case. For example, the term corresponding
to the Berry phase term fd42:2b j = fd4xB;~ J'~ is given
by

4n
—) p d z dK, (X, x 't) p(t. ). (17)

The Berry phase for a compressible case can be calculated
by using this formula.

We now proceed to discuss the more familiar two-
dimensional case in which point vortices move in a thin
superfluid film which is lying vertical to the z axis. The
vortex string is directed to the z axis and has no z-
coordinate dependence, so that 0 is identified as 0. = X3.
The vorticity tensor in two dimensions is then given as

N

J(v) = ) p e, b~ l(r —R (t)), (18)

j(r) =) p R xe, h~ l(v —R (t)),
a=1

where e, is a unit vector along the z axis, v' is the two-
dimensional coordinate, and R is the two-dimensional
position of the ath point vortex. Solving the con-
straint conditions (6) and (11) analogous to the three-
dimensional case with the same conditions in the three-
dimensional case, we get

N

A(m) = —) p dX' x
~*-x.~'

b(a) = — x.
6

(14) m ~ —R.(t)
h - '

(7 —R.(t))'a=1

b(r) =—
4

(20)

(2i)

Here we stress that these solutions are fully determined
by the theory.

We substitute A and b into the action (13), which
becomes

As a result the action for point vortices in incompressible
trvo-dimensional super8uid becomes

N

S2=ppm dt —) p e, (R xR )
a=1

1
p pi, ln(R —R(, (

.
ahab

(22)

This is of the same form as the action of a vortex ring
in an incompressible perfect Quid. If we consider an

Taking into account the equation of motion, we can check
that the velocity of the vortex R coincides with the local
velocity field at R (see, for example, Refs. 12 and 13).

It is interesting to formulate (2+1)-dimensional the-
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ory by dimensional reduction of the original (3+1)-
dimensional theory: assuming z independence of the
fields g, A„, and B„and As = 0, surviving terms
s""P B„„Fp and B„„J""in (3 + 1)-dimensional ac-
tion (1) become 2c—""PB„F„pand 2B„J" in (2 + 1)-
dimensional action, respectively, where B„:—B3„and
J"= Js", p = 0, 1, 2. Using this (2+1)-dimensional BF
term, we can also obtain the vortex dynamics.

Now let us compare our formalism with that of the
GPG theory. The GPG action is given by

2

SGPG —— d X Z 0 — V' —A —Po )
2m

(23)

where P is a complex Bose field which is allowed to have
a singular phase. The phase 8apa of P includes both a
regular part and a singular part which is multivalued:

~GPG = ~reg + ~sing. (24)

The singular phase 8„„g is the sum of the solid angles
subtended by the vortex rings

8„g ) n ds V
1"-

/ 1
(25)

where S is any surface bounded by the ath vortex ring,
BS = I' .2 An important property of 8„„g is the non-
commutativity of the difFerential on it

m Pt7
(~p re —cd

clap

)88 ing = — gp vpo J
2h

(26)

If we take —8„8„gas the gauge field A„, Eq. (26) be-
comes the same as the constraint condition which is

given by varying our action (1) with respect to B„„
Fiirthermore, substituting e*" sP„g into P we obta, in

P'Bpg = Q;, (Bp —i Ap)g„g and ]V/] = ~(V' —iA)g„g] .

Therefore, it turns out that if one solves the field equa-
tions of A„and B„„in our formalism and our field g is
taken as P„g, then our action (1) becomes equivalent to
the GPG action (23) whose phase is 8Gp~ = 8„g + 8„„g
in the case where V(g) = A(]vP] —pp) . Our formalism,
however, has some advantages as previously mentioned.
Since the dependence of the vortex coordinates appears
only in J", ours is useful to investigate the vortex dy-
namics. The topological BF term and the gauge invari-
ance play important roles.

Towards the nucleation of the vortex, the next step
is to 6nd an instantonlike solution which makes action
Bnite. As for future problems, the statistics of three-
dimensional vortex rings are interesting because they are
directly related to linking number. Our theory can be
applied to the superconductor in which the contribution
from vortex cores may be important since the coherent
length is relatively large. Applications to the quantum
Hall system are also interesting.

The topological BE term appears in various areas of
theoretical physics, for example, it is induced by one-
loop efFects in a model with an anomalous U(1) charge in
superstring theory and it is also used in a gravity theory
which is called 2-form gravity. Therefore it is interesting
to consider some connections between such theories and
the present theory on the vortex in the superHuid.
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