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Momentum- and frequency-dependent self-consistent field theories provide a potentially powerful tool
for analyzing condensed-matter models for interacting electrons. Such theories generally require the

solution of multidimensional integral equations. Solutions are limited by demands on computational
time and storage, which increase rapidly for calculation of low-temperature properties. A
renormalization-group technique which allows the sequential elimination of regions of high frequency
and momentum is presented in detail, and is then applied to the solution of the fluctuation exchange ap-

proximation for the two-dimensional Hubbard model. Effective meshes with as many as 10 frequencies
and 512' k points can be analyzed on a vector supercomputer using this approach. As a sample applica-
tion, it is demonstrated that the fluctuation exchange approximation exhibits non-Fermi liquid behavior

near half filling for sufficiently large interaction strengths.

I. INTRODUCTION

The thermodynamic and transport properties of a
number of experimentally interesting materials, including
the heavy electron metals and cuprate superconductors,
are believed to be strongly influenced by the presence of
short-range electron-electron correlations. ' The simplest
model which incorporates the effect of local Coulomb
repulsion on states in an electronic band is the Hubbard
model. Numerous theoretical techniques have been used
to investigate the low-temperature properties of this mod-
el and its generalizations. Direct numerical approaches
include exact diagonalization of the Hamiltonian matrix
and quantum simulation. The principal restriction on
these methods is the presence of finite-size effects for
small systems.

Self-consistent field (SCF) theories provide a partially
analytical alternative to the direct approaches. SCF
methods are not restricted by size effects, but are limited

by the necessity for approximations. By comparing re-.
sults for correlation functions with simulation studies, ' '

it has been possible to demonstrate the semiquantitative
(and in some cases, quantitative) validity of certain
Hubbard-model SCF approximations in a wide parameter
range. This opens the possibility of using SCF methods
to study more detailed models which are not well suited
to large-scale study by simulation techniques.

General SCF theories require the solution of multidi-
mensional integral equations on a finite grid. Computa-
tional problems associated with rapid growth in the num-
ber of grid points at low temperatures constitute the prin-
cipal limitation on future applications. In the present pa-
per we address this problem by formulating a
renormalization-group (RG) technique for the sequential
solution of SCF equations on multiple frequency and
momentum scales. This approach is not limited by de-
tails of the approximation or the model, but is here ap-
plied in detail to the so-called fluctuation exchange
(FLEX) approximation for the two-dimensional (2D)

Hubbard model. The paper is organized as follows:
In Sec. II we briefly review the rationale for SCF general-
izations of Hartree-Fock theory and discuss the motiva-
tion for developing accelerated solution techniques. In
Sec. III we describe our RG prescriptation in detail, ad-
dressing first the removal of high-frequency regions of pa-
rameter space and then the removal of high-momentum
regions. In Sec. IV we present a comparison of results for
one-particle correlation functions obtained with and
without use of the RG technique. As an aside, we briefly
discuss the appearance of non-Fermi liquid behavior in
the one-electron self-energy for a range of parameters.
Finally, we conclude with a brief summary in Sec. V.

II. MOTIVATION FOR ACCELERATING
SCF SOLUTIONS

SCF theories have long played a central role in the ap-
proximate solution of models for interacting electrons in
solids. Such theories vary considerably incomplexity. In
many cases a qualitatively correct description of proper-
ties may be obtained by examining the interaction of elec-
trons with a time-averaged background (the so-called
Hartree, or Hartree-Fock, approximation). In simple
cases the electron-electron interaction is instantaneous
and only weakly dependent on momentum transfer (as,
for example, in simple theories of itinerant ferromagne-
tism). Hartree-Fock approximations may also be formu-
lated for frequency-dependent effective interactions, such
as that which arises from the exchange of phonons.
Migdal*s theory of phonon corrections to the electronic
normal state and Eliashberg's extension of this theory to
the superconducting state' are examples of highly suc-
cessful frequency-dependent Hartree-Fock approxima-
tions.

Hartree-Fock approximations are generally not quanti-
tativeIy accurate. Exceptions rely on the existence of a
small parameter, such as the ratio of the phonon Debye
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energy and electronic Fermi energy in the Migdal-
Eliashberg approach. The chain of reasoning which rules
out the need for fluctuation corrections to the averaged
background in these exceptional cases is sometimes
known as Migdal's theorem. Such a theorem can only
be expected in systems with a strongly retarded effective
interaction. Narrow-band systems, in which the
Coulomb interaction between electrons must be treated
from first principles (rather than replaced by a pseudopo-
tential), automatically violate the requirements for
Migdal's theorem, and so are expected to be poorly de-
scribed by a Hartree-Fock approximation.

A number of extensions of the SCF approach for
narrow-band systems have been proposed in recent
years. " These approaches have proceeded from the fol-
lowing assumption: The violation of Migdal's theorem
for the unrenormalized interactions (i.e., the "bare"
Coulomb interactions between electrons) requires the in-

troduction and self-consistent treatment of multielectron
excitations. The simplest such excitations are just
electron-hole and electron-electron pairs. The propaga-
tors for these pairs are infinite order in the Migdal expan-
sion parameter, so the approach is from the outset essen-
tially different from a low-order correction of the
Hartree-Fock approximation by "vertex corrections. "

The simplest extension of the Hartree-Fock approxi-
mation which remains within the family of conserving
Baym-Kadanoff approximations' and incorporates in-
teraction with electron-hole (and, optionally, electron-
electron) pairs has been called the fiuctuation exchange,
or FLEX, approximation. The FLEX approximation
may be viewed in turn as the first step in the solution of a
more general "parquet approximation" for one- and
two-electron correlation functions. '

The principal difficulties with implementing these self-
consistent generalizations of Hartree-Fock theory are
computational, rather than conceptual. Since the in-
teractions experienced by an individual electron are high-
ly nonlocal in space and time, the self-consistency condi-
tions take the form of integral equations in d+1 dimen-
sions, with d the spatial dimensionality. So long as elec-
tron motion is restricted to a discrete set of orbitals on a
periodic lattice, the spatial degrees of freedom may be
conveniently Fourier-transformed, producing a bounded
Brillouin zone. The number of electronic bands just cor-
responds to the number of orbitals per unit cell (one, for
the simplest Hubbard models). If thermodynamic prop-
erties are of interest (or if one is willing to calculate dy-
narnic properties by numerical analytic continuation), it
is convenient to perform a %ick rotation on the time
variables and then to Fourier-transform to imaginary
(Matsubara) frequencies. At finite temperatures, the al-
lowed frequencies of the temperature-averaged electronic
correlation functions are discrete and take the values
co„=(2n+1)nT, with T the system temperature. Since
the number of allowed frequencies is still infinite,
temperature-independent imaginary-axis cutofFs must be
established for numerical calculations.

At high temperatures a coarse momentum-space
discretization is sufficient to obtain high numerical accu-
racy, and the number of Matsubara frequencies which fit

within the cutoff range is small. In this case computa-
tional storage and time requirements may be minimal.
However, as the temperature decreases, an increasingly
fine momentum-space mesh is generally required to ob-
tain accurate results, particularly in the region of the Fer-
mi surface, where correlation functions vary rapidly.
Furthermore, the number of required Matsubara frequen-
cies within a fixed cutoff is inversely proportional to the
system temperature. The requirements of decreasing
temperature rapidly begin to tax the storage and speed
capabilities of even the largest computers. Increased
computational efficiency is clearly essential, particularly
for the treatment of models with realistic orbital struc-
tures and Coulomb interactions.

In certain cases time requirements for SCF calculations
may be reduced drastically from "brute-force" estimates
by the use of fast Fourier transforms (FFT's).6 Studies of
the FLEX approximation for the two-dimensional Hub-
bard model have demonstrated the power of this ap-
proach, which leads to a reduction from O(N } to
O(N inÃ) in scaling with the size of the variable domain¹ The FFT s utility is limited, however, to approxima-
tions in which time requirements are dominated by the
computation of convolution integrals. Baym-Kadanoff
approximations for more complex models and general
parquetlike approximations are dominated instead by the
computation of matrix inverses, for which FFT methods
are not applicable. Furthermore, the FFT approach
leads to no reduction in storage requirements.

An appealing alternative approach to dealing with the
proliferation of mesh points in general SCF theories is
provided by renormalization-group concepts. The cen-
tral idea, as in all numerical RG applications, is that the
need for increasing magnification is not uniform
throughout the space of interest (in this case, frequency
and momentum space}. Correlation functions evaluated
at high frequencies or at momentum points distant from
the Fermi surface eventually become temperature in-
dependent as the temperature is reduced. The tempera-
ture below which variations "freeze out" depends on the
particular values of co„and k selected. Regions of fre-
quency and momentum may therefore be sequentially re-
moved from calculations. To study the low-temperature
limit, it is only necessary to tabulate the values of correla-
tion functions at their lowest "active" temperatures and
then to carry forward temperature-independent contribu-
tions from the eliminated regions to functions in the
remaining active regions. As regions af high frequency
and momentum are eliminated, it becomes feasible to in-
crease the magnification scale in those regions which
remain without greatly increasing time or storage re-
quirements.

In the sections which follow we describe explicitly a
RG prescription for solving the two-dimensional Hub-
bard model at arbitrary filling within the FLEX approxi-
mation, and compare results for one-particle correlation
functions obtained with and without the RG. The
prescription is not specific to the Hubbard model or to
the FLEX approximation, but could be used to accelerate
the solution of any Baym-Kadanoff approximation for an
electronic normal state.
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III. RKNORMALIZATION-GROUP APPROACH
FOR THE FLEX APPROXIMATION

The Hamiltonian of the simplest 2D Hubbard model
takes the form

t —g ( c; c, +H. c. ) + U g n, & n, &

—p g n,
{lJ)CT l ICT

where t is the nearest-neighbor hopping integral, U is an
on-site Coulomb repulsion, and p is the chemical poten-
tial. The one-electron Green's function may be written

G(ki,cu )„=[6o'(kic,o )„—X(k, iso„)]

where

(2)

co„=(2n + 1)n.T, (4)

with n an integer and T the system temperature.
In writing down the FLEX approximation for the

self-energy, it is convenient to introduce the notation

k =(k, ice„),

f =—NETS
n

The FLEX self-energy' (see Fig. 1) is

r(k)= f V„(k—k )G(k'),

where

V,a(q) = U y(q)+ —,'U y(q) —1
1

1 —Uy q

2 1+ —,'U y(q) 1

Go(k, i co„)= [ico„—( Eq
—p ) ]

and X(k, ice„)is the self-energy. Note that co„ is a fer-
mion Matsubara frequency, i.e.,

—:f h( k, k') g(k') +b f(k) .
k'eL

(10)

Clearly, if the function 6f were available from some oth-
er source, the labor of solving the integral equation would
be greatly reduced: only an integration over L, rather
than over the full space, would be required.

For calculations carried out at a sequence of decreasing
temperatures, an iterative method for systematically di-
viding the variable domain and obtaining b,f may indeed
be devised. The procedure is as follows.

(1) In the first stage, lay down a finite mesh which cov-
ers the initial variable domain. For a specified initial
temperature To this amounts to choosing a Matsubara
cutoff 0 such that

proach first investigated by Chen and Bickers in the con-
text of parquet-equation solutions for the Anderson im-
purity model. ' The central idea in the RG approach is
the separation of a variable domain into "low" and
"high" regions. For the 2D Hubbard model the initial
variable domain is just the set of all k, i.e., the set of all
Matsubara frequencies ~„smaller in magnitude than a
specified cutoff 0 and all wave vectors k within the
square Brillouin zone. For convenience the low and high
regions of the variable domain may be denoted L and H.

Suppose a function f on the variable domain is deter-
mined by an integral equation of the form

f(k)= f h(k, k')g(k'), (9)

where g depends implicitly on the unknown function f.
The FLEX equations written above take this form with

f +X, h ~—V, and g~G. The situation is slightly more
complicated, however, since V also depends implicitly on
the values of G and X throughout the entire space. %e
ignore this crucial point for the moment and return to it
after developing a general technique for solving Eq. (9).

The integration in Eq. (9) may be broken into two parts
as

f(k)= f h(k, k')g(k')+ f h(k, k')g(k')
k'eL k'eH

with the polarizability

y(q)= —f G(k+q)G(k) .
k

A number of techniques exist for the self-consistent
solution of the preceding nonlinear integral equations.
An alternative to the brute-force or fast-Fourier-
transform techniques is a renormalization-group ap-

FICr. l. Schematic representation of the one-electron self-

energy X. Self-consistent Green's functions are denoted by solid
lines, the basic interaction by a dashed line, and the effective po-
tential V,& by a double-dashed line. The first term is the Har-
tree correction, which may be eliminated by a redefinition of the
chemical potential.

Ao =2N( To )tr To

for some integer N( To) and dividing the square Brillouin
zone I k: rr & k„n., —tr & k & m. j into—a set of uniform
squares centered on a finite set of k points. (Note that
the fermion Matsubara frequencies automatically form a
discrete set with 2N(TO) elements spaced uniformly be-
tween —[2N( To) —1]rrTo and [2N( To) —1]rrTo).

(2) Solve integral equation (9) for the unknown function
f within the discretized variable domain.

(3) Divide the variable domain into two parts L and H.
The precise condition for the division determines the re-
normalization group to be employed. The simplest (and
most useful) division of the frequency space amounts to
the choice of a new cutoff 0&, which separates L and H.
The most useful division of the momentum space invokes
the concept of a Fermi surface SF, with L consisting of
wave vectors "close to" Sz and H the complement of I..
Specific conditions for frequency- and momentum-space
RG's are discussed at length in Secs. III A and III B.
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~x(q) = —f G(k+q)G(k) .
k:k or k+q&H

(14)

At each temperature the renormalization correction 5y
must be calculated along with hX and then interpolated
onto the mesh to be used in the next RG stage [steps (4)
and (7) of the preceding algorithm]. The calculation then
proceeds as described above. '

The motivation of the RG procedure is clear: Accu-
rate low-temperature calculations require the use of fine
meshes in frequency and momentum space. The frequen-
cy discretization scale is inherently hco=2~T, while the
momentum discretization scale must also tend to zero if
one is to resolve possible Fermi surface singularities in
correlation functions. Nevertheless, brute-force calcula-
tions (and, to a lesser extent, FFT calculations) consume
an enormous amount of time in computing functional

(4} For discrete points k in L, calculate the contribu-
tion to f(k) from points k in H, i.e., explicitly compute

bf(k)= f h(k, k')g(k') .

(5}Choose a temperature T, (To for a subsequent cal-
culation of the unknown function f. The new tempera-
ture must be consistent with the new frequency cutoff Q&

(see Sec. III A}.
(6} Lay down a new finite mesh covering the reduced

space L As. in step (1), the choice of a temperature Ti
specifies a frequency mesh, which will be finer than the
initial mesh since T& & To. The momentum space may
also be regrained, e.g., by dividing each k-space square in
L into four new squares, each centered on a new mesh
point.

(7) Interpolate the function b,f(k) determined in step
(4) onto the new L mesh.

(8) Solve Eq. (10) within the reduced domain L using
the predetermined function 6f from steps (4}and (7).

(9) Iterate steps (3)—(8) as desired to study additional
temperatures and meshes. Note that the "renormaliza-
tion correction" hf obtained at temperature T, is a sum
of terms obtained from the previous i iterations.

The FLEX approximation may be solved using this
technique (b,f~AX) with one important extension. The
effective potential V,s which enters Eq. (6) and plays the
role of h in Eq. (9) is itself a functional of the one-electron
Green's function (and hence the self-energy). For this
reason it too must be renorrnalized in a stage-by-stage
fashion. The necessary procedure is the analog of vertex
renormalization in quantum field theory, just as the cal-
culation of AX is the analog of mass and wave-function
renormalization. For more general models this renorrnal-
ization is nontrivial, since V,z depends separately on the
external variable k and the variable of integration k'. In
the present case renormalization can be accomplished rel-
atively simply, since V,z depends only on the combina-
tion k —k through the polarizability y defined in Eq. (8).
Just as in the case of X, y may be divided into contribu-
tions from the L and H regions of the variable domain:

x(q) = —f G(k+q)G(k)+by(q), (13)
k:k and k+q&L

with

contributions from regions of high frequency or momen-
tum. One expects that such contributions invariably be-
come temperature independent below some scale (which
depends on the specific frequency or momentum in ques-
tion). By carrying out a series of calculations on meshes
of increasing magnification in domains of decreasing size,
the total labor required to solve a problem may be enor-
mously reduced. In some cases the total calculational
time to reach a temperature T using the RG approach
scales as ~lnT~, rather than as T (brute-force approach)
or T '~lnT~ (FFT approach}.

In order for the FLEX RG procedure to work, the
contribution to b,X from a given domain H must (a) be
nearly independent of temperature for all temperatures
below the scale at which it is actually calculated and (b)
vary smoothly on the scale of the mesh for which it is cal-
culated. The first condition is essential since once a
domain H is eliminated, it appears at no subsequent stage
(i.e., lower temperature) in a calculation. The second
condition is also important since any useful RG sequence
introduces meshes of increasing magnification, for which
interpolation is required. By renormalizing sufBciently
slowly (i.e., by choosing L sufficiently close to the initial
variable domain), both conditions may be satisfied. As
shown in Sec. IV, accuracy at the 1% level may be ob-
tained using surprisingly large RG steps, with improve-
ments in efficiency of several orders of magnitude at low

temperature. Such accuracy is completely acceptable for
thermodynamic applications and for a limited range of
dynamic applications as well. '

A. Frequency-space renormalization group

and

QO~Q) ~Q2~ (16)

These quantities cannot be chosen at random, but must
satisfy several conditions discussed below. The tota1
number of positive fermion Matsubara frequencies in the
initial stage of the calculation can be denoted N(TO).
This number defines the frequency cutoff Qo through Eq.
(11). This initial cutoff must be chosen sufficiently large
that calculated quantities are cutoff independent.

The cutoffs and temperatures for subsequent RG stages

In general the FLEX equations for a 2D system may be
solved using (a) a frequency-space RG with fixed momen-
tum discretization, (b) a momentum-space RG with fixed
frequency discretization (and fixed temperature), or (c) a
general RG which eliminates regions of frequency and
momentum space concurrently. We have found it
suScient to use composite RG's based on alternating
stages of (a) and (b) in order to reach very low tempera-
tures. For this reason we treat cases (a) and (b) separate-
ly, beginning in this section with a discussion of
frequency-space RG's.

A frequency-space RG sequence may be defined by
choosing a set of temperatures T; and frequency cutoffs
Q,. such that

Tp) Ti )T2)



1590 CHIEN-HUA PAO AND N. E. BICKERS 49

must satisfy the conditions

0;=2N(T; )mT, .

and

(17)

(a)

I I I I i I, I I l~ ( I i J I

0; =2K(T, )n T;

for some integers N(T, ) and K( T, ) such that

1 ~K ( T; ) ~N( T, , ) .

(18)

(b)

Ql
Q2

2nTO g 1=2m To[2 N(T o)]=2QO . (20)

After the first RG division into L and H, this total length
can be rewritten as

2n T, g 1+hf =2m T, [2N(T, )]+hf
N (T )EL

where

=2m. TO[2K(T, )]+6f, (21)

Both conditions are essential if the RG is to be length
preserving on the imaginary frequency axis. The total
length of the initial frequency domain is

II I I I I I II (II ) I I( I (I I i II(

0

FIG. 2. Imaginary frequency discretization for two
frequency-space renormalization groups: (a) Initial three stages
of the "factor-of-2" RG. The cutoffs Qp 0] and fL2 are
represented by arrows. Four positive and four negative fermion
frequencies appear for each cutoff. The fermion frequencies are
represented by tick marks of varying length, the longest for i =0
and the shortest for i =2. (b) Initial three stages of "constant-
cuto6" RG with N(Tp) =4, N(T& )=5, and N(T2)=6. In this
case there is effectively no renormalization, since the entire
space is retained as L (i.e., H is the null set). As in (a), fermion
frequencies are represented by tick marks, the longest for i =0
and the shortest for i =2.

hf =2+T g 1=2mT [2N(T )
—2K(T, )] .

co„(Tp)GH

(22)

The total length of the original frequency interval is
preserved. This is insured by requiring that the cutoffs
coincide exactly with boson Matsubara frequencies: If
this were not true, the length of the original frequency
domain could not be reproduced exactly by repeated RG
iterations, and more complicated summations would also
be distorted.

As shown in Sec. IV, a convenient choice for rapid re-
normalization is

efficiency, it may in some cases be necessary to scan slow-

ly through a specified temperature range. For example, a
slow scan may be preferable in the vicinity of a phase
transition, where one or more susceptibilities exhibit
power-law divergences. The simplest way to accomplish
a slow scan is to keep the cutoff jinxed while slowly de-
creasing the temperature, i.e., to set

K(T;)=N(T;, ), (24)

with N( T; ) a slowly increasing integer function of i [For.
a pictorial illustration of this process, see Fig. 2(b).] The
temperatures T, satisfy the relation

K(T, )/N(T; ) = T, /T,

K(T;)/N(T; i)=Q;/II;
(23)

for i =1,2, . . . . This amounts to simultaneous reduction
of the temperature scale and the frequency cutoff by a
factor of 2 at each RG stage [see Fig. 2(a)]. The total
number of fermion frequencies employed in each stage is
then the same as the number employed in the first stage,
i.e., 2N(TO). This means that if the number of iterations
to reach convergence remains constant from stage to
stage, each stage takes exactly the same calculational
time. The total calculational time to pass from a temper-
ature T0 to a temperature T~ =2 To is then just N+ 1

times the calculational time for temperature To. This
logarithmic scaling with T& should be compared with the
performance of brute-force (time ~ T~ ) or FFT (time
~ Tz 'IlnTNI) algorithms. (In fact, the number of itera-
tions to reach convergence at a single stage slowly in-
creases as the temperature decreases. Since this is true
for each type of algorithm, it does not alter the basic
comparison of efficiencies. )

While rapid renormalization is the key to calculational

(25)

After scanning the temperature range of interest, more
rapid renormalization can again be introduced.

B. Momentum-space renormalization group

dk dkj j" f(k)=(2~) g f(k, )A, . (26)

Once an initial discretization is specified (e.g., a uni-
form 4 X4 breakup for high temperatures), it is necessary

In order to obtain accurate correlation functions at low
temperatures, a fine discretization of momentum space is
generally required. This is particularly true in the vicini-

ty of the Fermi surface. A momentum-space RG may be
devised in order to carry out integrations over a11 parts of
the Brillouin zone efficiently.

Our basic k-space integration algorithm is as follows:
Cover the Brillouin zone [k: —vr(k„~m., ~(k ~m. ]
with a set of squares, centered on points k, with area A, ;

then estimate a k-space integral as
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gl(T)=(sl, —JM)+ReX(k, imT) . (27)

For T—+0, this variable should vanish precisely on the in-
teracting Fermi surface.

A reasonable condition for splitting the momentum
space into L and 0 regions is

(28)

to develop a method for dividing the momentum space
into L and H. In the imaginary-frequency domain a sim-

ple division into low and high frequencies separated by a
cutoff is possible. In the present case the important vari-
able is distance from the Fermi surface. Two Fermi sur-
faces come to mind for a system with fixed electron filling

( n ): the noninteracting Fermi surface with chemical po-
tential po and the interacting Fermi surface with chemi-
cal potential p. While the locus of points defining the
Fermi surface in k space is expected to change only
slightly when interactions are turned on, the value of the
chemical potential may change significantly.

The simplest measure of distance from the Fermi sur-
face in a noninteracting system is the energy sl, —po. (If
the Fermi surface were spherical, the distance lk —

krak I

would also be a convenient variable. In lattice systems
the Fermi surface is never precisely spherical, and the
perpendicular distance is difficult to compute. ) This ener-

gy variable could be used as the basis for an RG even in
an interacting system, but difficulties would likely arise at
low temperatures where the interacting and noninteract-
ing Fermi surfaces differ slightly in shape. We have
found it more convenient to use an energy variable based
directly on the interacting system, namely,

is successful (i.e., leads to acceptably small errors), then a
comparable momentum-space division can be devised us-

ing the correspondence between Z(k, ico„)co„and
g(ki,co„}.Let Z be a typical value of Z(k, ico„)in the
frequency space-H region (so that lco„l&Q). Then the
choice

Q =ZQ (32}

for a momentum-space RG condition should lead to er-
rors comparable in magnitude to those from the
frequency-space division based on Q. In many cases, Z
turns out to be no larger than 2 or 3 (particularly in the
early stages of a calculation); since Eq. (32} only gives
order-of-magnitude estimates, it is then sufficient to just
set Q~=Q. "

Once a choice has been made for the cutoff Q, the
discretized momentum space may be divided. Our con-
vention is that a momentum square labeled by i falls en-
tirely within L or H depending upon the condition
satisfied by its center point k;. If a square falls within L,
it must be rediscretized for the next RG stage. In con-
trast with our treatment of imaginary frequencies, for
which the discretization scale is automatically set by the
temperature, we only allow two possible rediscretizations
of momenta: (1) a 2 X 2 division of each square into uni-
form smaller squares, each centered at a new point k, , or
(2) no rescaling, i.e., an identity operation. The amount

denominators have an imaginary part Z(k, i co„)co„anda
real part g(k, ico„) .If the RG condition

Ico, I
& 0 co„EH,

(31)

where

= [Z(k, ico„)(ico„)g(k, ico„—) ] (29)

with Q a suitably chosen cutoff energy. An accurate
RG requires the choice of a sequence of cutoffs 0; which
do not decrease too rapidly.

The accuracy of results from a particular choice of 0
may always be gauged directly by repeating a calculation
without reducing the k space from the previous stage.
However, since the momentum-space RG will, in prac-
tice, always be used in combination with a frequency-
space RG, it is useful to obtain a rough correspondence
between Q; and the current value of the frequency cutoff
Q;. Such a correspondence can be obtained by examining
the form of the one-electron Green's function. The
Green's function may be written

G(k, ico„)= [ico„—(Eq —p) —X(k, ico„)]

+

+

+ t 0 4 t 0 +
+ t 't 4 t + + + + ~ t yyyy++yy + ~ t 0 0 + 4 +tttt'tttt

+ t + t t yyyyyyyyyyyyyyyy t t 4 + 4' 0 +tttttttttttttttt
+ t o + + + + + +++++'"""""""""'++~++o o o + +

, ,yy t
+ + e o i i+++++

+ e + i o ~++++ +++++o++ o ottt I I ++++++\ II I +00+ tttttt+ttttt g~ +tat ttttt+ 0'+ttttt 0 t ttttt'0t
+ ++++ttt: to+++ ~ ~ + + + + +++++tttt
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ImX(k, ico„)
Z(k, ico„)=1—

g(k, ico„)=(eq —p)+ReX(k, ico„}.
(30}

In terms of the Green's function, the success of the
frequency-space RG depends on the appearance of large
energy denominators in the H region. The energy

FIG. 3. Brillouin-zone discretization for a sample
momentum-space renorrnalization group. Three stages are il-
lustrated. The initial mesh has 32 points, while the next two
meshes have reduced areas, with scales corresponding to 64
and 128 points within the full zone. The cuts were made for
the FLEX approximation with U/t=8 and p/t= —3, corre-
sponding to filling (n ) =0.53 at zero temperature. The energy
cutoffs are 0& /t =1.51 and 02/t =0.76.
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of work required at the next RG stage depends on the
number of rediscretized squares in L. If no rescaling
occurs, the work will be reduced in comparison with the
current stage; if a 2 X 2 rescaling occurs, the work may be
either reduced or increased depending on the number of
squares dropped in the H region.

Note that the boundary between the L and H regions
in our approach is composed entirely of straight-line seg-
ments, since our elements of integration are always
squares. Figure 3 shows a typical momentum-space RG
discretization starting from a 32 mesh and ending with a
128 mesh. The emergence of a Fermi surface (i.e., a
one-dimensional curve within the two-dimensional Bril-
louin zone) is graphically illustrated.

0.0

(n) = 0.87, U/t = 7

in agreement in the 2 —4%%uo level for the self-energy, and
at the 1/o level for the Green's function. The calcula-
tional time per convergence iteration for the brute-force
approach is 1800 Sun-400 CPU sec, while the time for the
RG approach is only 6 sec, a savings of a factor of 300.
The total storage required for the brute-force calculation
is 0.4 Mbytes, while the storage for the RG approach is
0.03 Mbytes, a savings of a factor of 13. The advantage
of the RG approach continues to improve as the temper-
ature is lowered: Eventually, the brute-force solution be-

IV. RESULTS

In this section we examine results for one-electron
self-energies, Green's functions, occupancy factors, and
instability eigen values obtained using a variety of
different RG's. Our principal conclusion is that RG
methods can be used in high-accuracy imaginary-
frequency calculations at a small fraction of the labor re-
quired for more conventional approaches. We will com-
pare results obtained by the RG approach and by a
straightforward brute-force solution of the FLEX equa-
tions. For the simplest Hubbard model considered here,
the most efficient alternative to the RG is not the brute-
force solution, but an FFT technique relying on the ap-
pearance of convolution integrals in FLEX. While time
requirements for the brute-force technique scale as N,
with N the total number of (k,ir0„}points, time require-
ments for the FFT technique scale only as N lnN. This
should be taken into account in interpreting efficiencies
for this particular model: The RG approach is more
efficient than the FFT-based solution by an amount
which scales asymptotically as T ', rather than as T
In more general problems (viz. , those in which the
effective potential V,z depends separately on the external
and internal momentum variables k and k', rather than
on their difference), the FFT approach is not applicable.
In such cases the only solution techniques we know of are
a brute-force solution and an RG approach (somewhat
more complex than the approach used here}. The time
comparisons generated below for the Hubbard model are
also indicative of the RG's potential advantage in these
cases.

To begin with, we examine the accuracy and efficiency
of a frequency-space RG for a fixed momentum-space
mesh. Results are shown in Fig. 4 for a 16 mesh at a
generic filling ( n ) =0.87. The Coulomb energy is
U/t =7 and the temperature T/t =0.03. Results for the
real and imaginary parts of the self-energy [Fig. 4(a)] and
the Green's function [Fig. 4(b)] were obtained using a
brute-force solution of the FLEX equations (solid lines)
and a frequency-space RG in which the temperature and
cutoff were reduced by a factor of 2 at each stage (sym-
bols). Both calculations assume an initial frequency
cutoff Qo/t =25, and the RG calculation proceeds from
stages i =0 to 5 with a constant number of positive fer-
mion frequencies N( T, ) =4 at each stage. The results are

—0.2 -4

~2 n

—0.4

-0.6
2

u„ t

0.0
(I1) = 0.87, Ujt = 7

—0.2

—0.4

tG

—0.6

I

I—0.8

(b)

—1.0

FIG. 4. Comparison of self-energies X&+iX2 and Green's
functions G, +iG, obtained using the factor-of-2 frequency-
space RG and a brute-force approach. The model parameters
are Ult=7 and (n)=0. 87, and the k-space mesh has 16
points. The temperature is T/t =0.03. The selected k point is
k=(2.95,0.20). Results from the five-stage RG are represented
by symbols, and results from the brute-force calculation by
lines. (a) Real (solid squares and line) and imaginary (open
squares and dashed line) parts of the self-energy. Note that
X~/cu„, rather than X,/t, is plotted (Ref. 15). (b) Real (solid
squares and line) and imaginary {open squares and dashed line)

parts of the Green's function.
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+ iy(ico„)ln(ico„/cop), (33)

where Xp Zp and ~p are real valued and y =—y &+iyz is
complex, with y& & 0. This function analytically contin-
ues to

X(k~, co+i 0+;T 0)-(1—Zp )co+i yco in~Ico/cop~

—myco 8( —co) (34)

on the real axis. The predicted Fermi liquid behavior of
X, and Xz/co„ is (for co„&0)

X&(i co„)—Xp+ y &co„ln~ co„/cop~ +—,
'

m y ]co„,
(35)

Xz( ico ) /co ( 1 Zp ) y ]co ln
~
co /cop ~

+ fly pco ~

The function in Fig. 4(a) cannot be adequately fit to the
form in Eq. (35}within the range of frequencies and tem-
peratures studied. On the other hand, it can be fit quite
well by the assumed dependence

X(i co)=X +pI (i co) +(1—Zp)(i co„),
r=r, +ir, ,

(36)

i.e.,

X,(i co„)= Xp+ [I icos(an /2) —I &sin(an /2)] ~co„~
(37)

Xz(ico„)/co„=[I zoos(an /2)+ I',sin(an /2)] ~co„~

+(1—Zp ),
where a (1. This is the simplest analytic functional form
consistent with a violation of Fermi liquid behavior.
Note that the same noninteger exponent a must be com-
mon to both the real and imaginary parts of the self-
energy.

The parameters which follow from a nonlinear least-
squares fit to the RG data in Fig. 4(a) are a =0.24+0.01,r= —0.2 —1.5i, Xp= —0.73, and Zp =1.2. This analysis
provides strong evidence that the FLEX approximation
yields non-Fermi liquid behavior for a range of electron
fillings near ( n ) = 1 when the Coulomb energy U/t is
made suSciently large. Serene and Hess have estab-
lished previously the existence of non-Fermi liquid
behavior at half-filling even for weak U/t, and the ab-
sence of such behavior at quarter filling for U/t =8. The
results above do not contradict these findings: The singu-
lar behavior of X in Fig. 4(a) is due to the presence of a
highly singular effective interaction induced by the ex-
change of spin fiuctuations. For sufftciently weak U/t
and (n )Wl, V,s would remain bounded for T~O, since
the noninteracting density of states is nonsingular (i.e.,

comes completely impractical, while each new stage of
the RG calculation requires roughly the same time as the
preceding stage [because N( T; ) is fixed].

Although our main intent in this paper is to emphasize
the development of the RG approach, it is perhaps useful
at this point to comment on the functional form of the
self-energy in Fig. 4(a). The low-frequency asymptotic
form expected for conventional Fermi liquid behavior in
two dimensions is (for co„&0}

X(k~, i co„;T~0}-Xp+ ( 1 Z—
p )(ico„)

the lattice is not perfectly nested). In the present case,
U/t is large enough to cause a divergence in V,~ for
T~O and a related singularity in the self-energy. The
implications of this result are difBcult to gauge for several
reasons: First, the FLEX approximation need not yield
the same result as an exact solution. Second, the singu-
larity appears in a normal-state solution, which will gen-
erally be preempted as low temperature by a broken sym-
metry solution of lower free energy (an anisotropic super-
conducting state in the present approximation}. Despite
these caveats, the appearance of non-Fermi liquid
behavior in the analysis of a microscopic model is of con-
siderable interest. This subject is addressed at length in a
separate article.

At this point we return to our analysis of the RG solu-
tion technique. The factor-of-2 frequency-space RG in-
troduced previously is used in most of the figures which
follow. Some freedom remains in choosing the constant
N( T, ), the number of positive fermion frequencies at each
stage. Note that in a brute-force (or FFT) calculation
this number is Qp/2m T;, i.e., it grows as T, . In Fig. 5
results are shown for the self-energy and Green's function
calculated using the factor-of-2 RG with the choices
N(T, )=2, 4, a.nd 8. The model parameters are U/t=8
and (n ) =0.53, and the temperature T/t =0.0075. The
initial frequency cutoff is Qp/t =96, and a 32 Brillouin-
zone discretization is employed. (This fine discretization
allows a choice of k very close to the Fermi surface,
where the Green's function is most sensitive to small er-
rors in the self-energy. ) The real and imaginary parts of
the self-energy [Figs. 5(a) and 5(b)] and Green's function
[Figs. 5(c) and 5(d)] are shown for k = ( 1.18, 1.18 ), just
below the Fermi surface along the Brillouin-zone diago-
nal. (It is interesting to note in passing that, as concluded
previously by Serene and Hess, the self-energy exhibits
conventional Fermi liquid behavior in this range of filling
and interaction strength. )

Clearly, the RG cannot be expected to remain accurate
if N(T, ) is made too small. In fact, the results for
N(T; ) =2 are surprisingly accurate at high frequencies
(or temperatures; not illustrated here}. The results for
N(T, )=4 and 8 are nearly the same at all temperatures,
illustrating rapid saturation to the N~ Do limit. In the
plots which follow we choose N(T, )=4, which allows a
stage-by-stage savings over N(T; ) =8 of roughly a factor
of 2 in storage and 4 in calculation time. As a reference
point, the calculation described above (with no
momentum-space RG improvement) requires 90 CPU sec
per convergence iteration for N(T;)=4 on a Sun-400
workstation. A speed increase by a factor of 40 can be
obtained using a Cray Y-MP. The corresponding brute-
force calculation would be completely impractical: the
required value of N(T;) rises to Qp/2n T; =2000, giving a
calculation time per iteration of

(2000/8) (240) CPU sec=4200 CPU h .

As an illustration of the frequency-space RG's use in
computing a simple thermodynamic function, Fig. 6
shows results for the momentum-space occupancy factor
nz(T) [Fig. 6(b)], computed along a triangular Brillouin-
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zone contour [Fig. 6(a)]. The occupancy factor is just an
equal-time Green's function:

with

~m+& =0 . (40)

nt (T)=2G(kr~0 )=2T g e " G(k ice)

=1+2T g G(k, iso„).
leo„l &no

(38)

M
n t(T M)=1+ g 2T,

j=o ~ +) & l~„(T)1&0J

G(k, icy„), (39)

Like any time-dependent correlation function, the occu-
pancy factor has contributions from all frequency scales.
For this reason, its RG representation at temperature TM
takes the form

The results in Fig. 6(b) are for U/r =8, (n ) =0.53, and
T/t =0.0075, with an initial cutoff Qo/t =96. Brillouin-
zone discretizations of 16 (squares), 32 (circles), and 64
points (solid line) were employed. All calculations were
performed on a Sun-400 workstation (for which the
brute-force approach at this low temperature is unfeasi-
ble). The results for the 32 and 64 discretizations are
essentially identical at this temperature, but show
signi6cant deviations from the 16 results near the Fermi
surface. To study the shape of the occupancy factor at
even lower temperatures, it is convenient to introduce a
momentum-space RG, as discussed below.

(n) = 0.55, U/t = 8 (n) = O.55, u/t = 8

(b)

un t
2

un t

(n) = 0.55, U/t = 8 (n) = 0.55, U/t = 8

tG) tG2

—3

(c)
0

2
4)g/t

2

FIG. 5. Comparison of results from the factor-of-2 frequency-space RG with varying N(T;). Results are shown for N(T;)=2
(squares), 4 (circles}, and 8 (solid lines). The model parameters are U/t =8 and (n )=0.53, and the temperature is T/t =0.0075.
The self-energy X, +i X2 and Green's function G, +iG, are plotted for the point k=(1.18, 1.18). (a) X, /t; (b) X2/co„,(c) tG, ; (d) tG, .
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The sequential elimination of high momenta is concep-
tually as easy as the elimination of high frequencies.
Care must be taken, however, not to eliminate momenta
too rapidly, as noted in Sec. III B. Results are shown in

Fig. 7 for the self-energy and Green's function at a single
k point [k=(1.33, 1.33)] for a range of temperatures.
The k point is chosen to be close to the potential dividing
line between L and H regions of momentum space. As in

Fig. 5, U/t=8 and (n) =0.53. The temperatures are
T/t =0.06 (squares), 0.03 (circles), and 0.015 (lines). The
factor-of-2 frequency-space RG was employed with

Q0/t =96, and the Brillouin-zone discretization is fixed at
64 . At low frequencies the results for T/t=0. 06 and
0.03 vary by significant amounts [roughly 10% for the
imaginary part of the self-energy in Fig. 7(a)]. On the
other hand, the results for T/t =0.03 and 0.015 are near-

ly identical. This indicates that any momentum-space
RG which eliminates the point k=(1.33, 1.33) at temper-
atures above T/t=0. 03 tends to introduce errors of
several percent. The value of g&(T)/t is in this case about
0.58. The value of the cutoff Q/t for T/t =0.06 is 1.51.
The corresponding momentum-space cutoff 0 for this
stage should be at least as big. This is larger than gz(T),
indicating that k should definitely be retained at this
stage. On the other hand, at T/t=0. 015, the value of

Q/t is 0.38. In this case, Q =Q is smaller than gi,(T),
indicating that k is a candidate for elimination at this
temperature. [If Eq. (32) is strictly applied as a criterion,
k would be retained for one additional stage. )

The dependence of results on the choice of 0 is illus-
trated directly in Fig. 8. The parameter choice is as in

Fig. 7, the k point is chosen as above, and T/t =0.015.
The results were obtained using two different RG pro-
cedures: the factor-of-2 frequency-space RG on a fixed
64 mesh (lines) and a combined frequency+momentum-
space RG (symbols). The latter procedures employs the
frequency-space RG to reach T/t =0.03 on a 32 mesh,

(n) = 0.55, U/t = 8

4/&n

/
/ 0

0.0
(n) = 0.55 . U/t = S

1.0

(n) = 0.55, U/t = 8

-0.5

T/t = 0.0075 tG

-1 0

0.5

-1.5
(b)

0.0

FIG. 6. Calculation of the occupancy factor nz by the
factor-of-2 frequency-space RG: (a) Triangular Brillouin-zone
contour for plotting nk. (b) Occupancy factor for U/t =8 and
( n ) =0.53 at temperature T/t =0.0075. Results are shown for
Brillouin-zone discretizations with 16 (circles), 32 (squares),
and 64 (line) points.

+n t

FIG. 7. Accuracy test for implementation of the
momentum-space RG. The self-energy and Green's function at
a point k=(1.33, 1.33), just outside an L-region boundary, are
plotted for three different temperatures. The model parameters
are U/t=8 and (n)=0.53. The temperatures are T/t=0. 06
(squares), 0.03 (circles), and 0.015 (lines). (a) Real and imagi-
nary parts of the self-energy, X&/t (solid symbols and line) and
X2/co„(open symbols and dashed line). (b) Real and imaginary
parts of the Green's function tG& (solid symbols and line) and
tG2 (open symbols and dashed line).
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—1.0
(n) = 0.53, U/t = 8

~2 &n

—1.5

—2.0

reduces the momentum space as described above, then
rediscretizes to a 64 mesh, and finally employs the
frequency-space RG one last time to reach T/t =0.015.
This procedure has been carried out for three different
choices of 0 /t: 0.76 (squares), 1.51 (circles), and 3.02
(triangles). The first choice corresponds to 0 =0 at
T/t =0.03, and the other choices are more conservative.
The only significant error from a small cutoff appears in
the low-frequency quantity ImX(k, trT)/mT Note, how-
ever, that the absolute error in ImX remains acceptably
small even at this point and that the percentage error in

the Green's function b, G/~G
~

is of order 1 —2% even for
A~/t =0.76.

Results for the occupancy factor nz(T) from the com-
bined frequency+momentum-space RG are shown in
Fig. 9. The model parameters are U/t =8 and
t, n ) =0.53, with an initial frequency cutoff Qo/t =96.
Two calculations are illustrated, both using the factor-
of-2 frequency-space RG to reach a final temperature of
T/t =0.0075. The first (squares) employs a 32 discreti-
zation at all temperatures. The second (circles and inset)
begins with a 32 discretization and then applies a set of
momentum-space RG operations to reach an effective
mesh size of 512 near the Fermi surface. Note that at
T/t =0.0075, a 32 mesh is completely sufficient to elimi-
nate finite discretization effects, as shown in Fig. 6: The
purpose of further magnification is to obtain a sample test
of the momentum-space RG's accuracy and time and
storage requirements. The ability to magnify near the
Fermi surface is essential, however, in problems with Fer-
mi surface singularities (as illustrated subsequently).

The combined set of frequency+ momentum-space RG
operations for Fig. 9 is as follows: (1) A 32 mesh is em-

ployed at the outset, and the frequency-space RG is
iterated seven times, from To /t =3.84 down to
T7 /t =0.03; (2) the momentum space is reduced at fixed

temperature T7/t =0.03 by introducing 0 /t =0.75 and
then rediscretizing the resulting L region with a 64
mesh; (3) the frequency-space RG is applied to reach a

0.0

0.0
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FIG. 8. Sensitivity of results to varying choices of the
momentum-space energy cutoff 0 . Model parameters are as in

Fig. 7, and the temperature is Tjt =0.015. The k point is also
chosen as in Fig. 7. Results are shown for a 64 mesh within the
full Brillouin zone (lines) and for reduced k-space meshes with

cutoffs of 0 /t =0.76 (squares), 1.51 (circles), and 3.02 (trian-

gles). (a) Real (solid line and symbols) and imaginary (dashed
line and open symbols) parts of the self-energy. (b) Real (solid
line and symbols) and imaginary (dashed line and open symbols)
parts of the Green's function.

FIG. 9. Results for the occupancy factor nz from a combined
frequency+ momentum-space RG. The model parameters are
U/t =8 and (n ) =0.53, with temperature T/t=0. 0075. The
squares were obtained using the factor-of-2 frequency-space RG
on a fixed 32 mesh. The circles were obtained by a combined
set of frequency- and momentum-space operations to reach an
effective 128' mesh near the Fermi surface. Regions of
magnification are represented by tick marks on the I M axis:
The outermost region is 32, then comes a narrow band of 64,
and, finally, the 128 region. The boxed portion of the plot is

further magnified in the inset, where two additional
momentum-space operations at fixed temperature carry the
mesh scale to 256 (triangles) and, finally, 512 (crosses).
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temperature Tslt=0. 015; (4) the momentum space is

again reduced at fixed temperature, this time with
f}, It =0.38 and a 128 rediscretization; (5) the
frequency-space RG is applied to reach the final tempera-
ture T9/t =0.0075; and (6) the momentum space is re-

duced twice more at fixed temperature, first using
0 It=0. 19 and rediscretizing to a 256 mesh, and then
using 0 /t=0. 15 and rediscretizing to a 512 mesh.
(Note that there would be no difficulty in passing to even
lower temperatures via the frequency-space RG).

Results from the frequency+ momentum-space RG are
in excellent agreement with the 32 benchmark results.
Equally important, however, is the enormous savings of
storage and time which the momentum-space RG pro-
vides over comparable high-magnification calculations
within the full Brillouin zone. (As noted above, high
magnification is not crucial in this case, but is in the case
which follows. ) Timing and storage data from runs on a
Cray Y-MP are summarized in Table I for the RG se-
quence described above and for a sequence of frequency-
space RG calculations on meshes of various sizes. Note
that an increase in the total number of Brillouin-zone
points by a factor of 4 leads to an increase in computa-
tion time of roughly a factor of 16 if the integration re-
gion is the full Brillouin zone. In contrast, the CPU time
per iteration in Table I for the frequency+momentum-
space RG only increases from 2.5 to 3.0 sec in passing
from the 32 to the 64 mesh using the momentum-space
RG, and from 3.0 to 23 sec in passing from the 64 to the
128 mesh. (The factor of increase depends on the num-
ber of k points retained: If all points were retained after
each rediscretization, the calculation time would increase
by roughly a factor of 16. The actual number of points
retained varies with the choice of 0 It.) The total in-
crease in time in passing from a 32 to a 512 mesh is only
a factor of 440, considerably smaller than the expected
increase for an FFT algorithm and a factor of 150 smaller
than the increase for a brute-force algorithm.

X2(k,in.T)/n T= 1 —Z—q(T), (41)

along the Brillouin-zone diagonal I —M. The results
shown here were obtained using the same combined
frequency+momentum-space RG described above, this
time with momentum-space cutoff's of 0 /t =1.51, 0.75,
and 0.38 for passing sequentially from a 64 mesh in the
full Brillouin zone to a 512 mesh near the Fermi surface.
Since the momentum-space RG automatically locates the
Fermi surface, it is equally straightforward to treat singu-
larities of this type at general fillings [e.g., for the param-
eter set used to generate Fig. 4(a)]. As stated previously,
we defer a discussion of the physics at general fillings to a
separate paper. '

The normal-state calculations presented here may be
viewed as a preliminary to studies of the d-wave super-
conducting state which emerges in FLEX calculations
away from half filling. In order to locate the transition
temperature T, for the d-wave phase transition accurate-
ly, it is necessary to solve the linear eigenvalue problem

f V„„(k—k', T)~G(k';T)~ p( 'kT}=A (dT}p( kT),

Ad(T) =1~T= T, ,
(42)

In order to illustrate the sensitivity of the RG ap-
proach for detecting singularities, it is convenient to ex-
amine the form of the FLEX self-energy for a weak in-

teraction strength at precisely half filling, where the Hub-
bard model's Fermi surface is perfectly nested. It has
been demonstrated by Serene and Hess that the imagi-
nary part of the self-energy exhibits a delicate cusplike
singularity in this case. As noted previously, ' in the
variant of the FLEX approximation considered here, we
do not consider the exchange of singlet-pair Auctua-

tions. ' Nevertheless, the singularities which accompany
the nested Fermi surface for arbitrarily weak U/t persist
in our treatment. We follow Serene and Hess by plotting
in Fig. 10,

TABLE I. Memory and timing comparisons for the sample RG procedure used to produce Fig. 9.
All calculations were performed on a Cray Y-MP. To benchmark the increase in performance brought
about by the momentum-space RG, results are shown first for a pure factor-of-2 frequency-space RG
operating within the full Brillouin zone on meshes of varying sizes (rows labeled "co RG"). The second
set of results was obtained using the sequential frequency+momentum-space RG described in the text
(rows labeled "co+i RG"). Note that no timing results are shown for the pure frequency-space RG on
the 256' and 512 meshes. Such calculations are impractical on the Cray Y-MP, i.e., the use of the
momentum-space RG becomes essential at this point.

Mesh
T/t

Memory (Mbytes)
u RG only
co+k RG

Time per iteration
(CPU sec)
co RG only
co+k RG

Time to convergence
(CPU sec)
~ RG only
co+k RG

322

0.03

0.1

0.1

2.5
2.5

5.5
5.5

64
0.03

0.4
0.3

38
3.0

410
38

64
0.015

0.4
0.3

38
3.0

611
35

128
0.015

1.3
1.0

344
23

4920
228

128
0.0075

1.3
1.0

344
23

4576
205

2562

0.0075

6.3
3.6

880

512
0.0075

24
16

1 100
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(n) = 1.0, u/t = 0.5 (n) = 0.87, u/t = 7
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FIG. 10. Singular FLEX self-energy for the half-filled Hub-
bard mode1. The quantity I —Zi, (T) defined in the text is plot-
ted along the Brillouin-zone diagonal for five different tempera-
tures. As in Fig. 9, the results were obtained using a combined
frequency+momentum-space RG. The effective mesh sizes are
64 (T/t=0. 12 and 0.06), 128 (T/t=0. 03), 256 (T/t=0. 015),
and 512~ (T/t =0.0075).

FIG. 11. Calculation of A,z(T), the d-wave instability eigen-
value. Results are shown for two calculations on a fixed 16'
mesh. The model parameters are U/t =7 and (n ) =0.87. The
squares were obtained by a brute-force technique, while the
solid line is the result of a frequency-space RG with both
factor-of-2 and fixed cutof operations. The predicted transition
temperature is T, /t =0.026.

with

V q
—3 U2 X{'q) 1 U2 X(q)

1 —UX(q )
' 1+UX(q)

(43)

„(T~) j=0 0 +l (ll~„(T)I (Q.
(44)

where, as before, Q~+, =0. The required values of
~
G

~

have been previously stored, and the values of g required
for computing V„-„haveeither been stored or may be
calculated accurately by interpolation. Results are
shown in Fig. 11 from two calculations of the instability
eigenvalue A.d(T) for the parameter set U/t =7 and
( n ) =0.87 with an initial frequency cutoff Qo/t =25 and
a 16 Brillouin-zone discretization. The 6rst calculation
(squares) begins at To /t = 1 and proceeds down to
T/t =0.03125 with no frequency-space RG. The num-
ber of positive fermion frequencies increases from
N{TO)=4 to N{T)=128. The second calculation (solid

In principle, a quantitative RG procedure may be applied
to reduce this eigenvalue problem to an equivalent prob-
lem in a smaller variable domain; this is exactly the idea
behind the so-called Coulomb pseudopotential in
electron-phonon models with frequency cutoffs of the or-
der of the phonon Debye frequency. At this point, how-
ever, we prefer to solve the eigenvalue problem within the
full frequency and momentum space, drawing the values
of V„„sand

~
G

~
from different RG variable domains, as

in the calculation of nk( T) described above.
For simplicity, we restrict attention to frequency-space

RG's with a fixed Brillouin-zone mesh. The frequency
sum implicit in Eq. (42) for temperature T=TM may
then be rewritten as

line) again begins at To/t= 1 and then employs the
factor-of-2 frequency-space RG to reach T4/t =0.0625.
From this point, the transition temperature is ap-
proached smoothly by maintaining a constant cutoff and
slowly increasing N(T; ) (see Sec. III A). In this case the
eigenvalue reaches unity near Ti 5 /t =0.025, where
N(T&&)=28. The results of the two calculations are in

excellent agreement, but the second approach is more
than 40 times faster than the first. (This advantage may
be improved even further by continuing the factor-of-2
RG procedure to lower temperatures. )

V. CONCLUSIONS

The FLEX approximation, a Baym-Kadanoff generali-
zation of Hartree-Fock theory, has been used in the
present work to investigate frequency-space and
momentum-space renormalization groups for the sirn-

plest 2D Hubbard model. Frequency-space renormaliza-
tion groups have been previously applied in the solution
of a more complex approximation, the so-called "basic
parquet, " for the effectively zero-dimensional Anderson

impurity model. ' In both studies RG methods have pro-
duced gains in computation time and storage which allow
the treatment of previously unreachable parameter re-
gimes. As noted previously, the factor-of-2 frequency-
space algorithm used in the present work requires corn-
putation time which scales roughly as ~lnT~ at low tem-
peratures, in comparison with brute-force and FFT algo-
rithms which scale as T and T '~lnT~, respectively.

Due to the simplicity of the basic on-site interaction in
the Hubbard model, the FLEX approximation for one-
electron Green's functions may be renormalized using
only two functions, b,X(k ) and AX(q). In order to inves-
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tigate two-particle correlation functions, it is necessary to
renormalize more complicated vertex functions as well.
Such a vertex renormalization has already been success-
fully carried out within the basic parquet for the Ander-
son impurity model. ' It is conceptually much simpler to
carry out a vertex renormalization within the FLEX ap-
proximation, since two-particle vertices may be expressed
directly in terms of self-consistent one-particle self-
energies;" ' in contrast, the basic parquet requires that
the two-particle vertices themselves satisfy a complicated
set of consistency relations (the parquet equations). "'
The only complication in setting up vertex renormaliza-
tion for the 2D Hubbard model within FLEX arises from
storage limitations. Since the vertex functions depend on
three independent "three-momenta" k, they cannot be
stored in full generality on the same meshes used in the
one-particle studies reported above. The problem of in-
telligently calculating two-particle correlation functions
is a major area for further investigation.

A second area which requires further study is the use
of RG techniques in broken symmetry phases. As

remarked earlier, the Coulomb pseudopotential intro-
duced in the early 1960s is a semiquantitative RG con-
struct for treating electron-phonon superconductivity us-

ing a frequency cutoff of the order of the Debye energy,
rather than the electronic bandwidth. A quantitative RG
treatment of superconductivity in simple model approxi-
mations requires a renormalization of the off-diagonal
self-energy ((), as well as the diagonal self-energy X treated
above. Even within the FLEX approximation, this is a
considerably more involved task than the treatment of
the normal state.
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