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This method of correlated basis functions is applied at the variational level to give an optimized
description, at zero temperature, of the structure and elementary excitations of liquid He in the
geometry of a half-space. A trial ground-state wave function of Hartree-Jastrow form is assumed, and
the Feynman ansatz is adapted to construct trial elementary excitations based on this variational ground
state. Functional variation of the energy expectation value with respect to ground and excited trial
states leads, in conjunction with the Bogoliubov-Born-Green-Kirkwood- Yvon relations and the
hypernetted-chain (HNC) equations, to coupled Euler-Lagrange equations consisting of (i) a modified

Hartree equation, (ii) a paired-phonon equation, and (iii) a renormalized Bogoliubov eigenvalue equa-
tion. These relations and equations provide for simultaneous optimal determination of (i) the density

profile, the chemical potential, and the Hartree inhomogeneity factor, (ii) the anisotropic two-body pseu-

dopotential and two-body spatial distribution function, and (iii) the wave functions and energies of the
Feynman excitations as functions of the momentum parallel to the surface plane. In the numerical cal-
culation reported, the bulk liquid density is taken equal to the experimental value at saturation. Since
the corresponding Jastrow variational treatment of the bulk liquid does not produce a self-bound system

at this density, an external potential is introduced to stabilize the surface, its strength being adjusted so
that the calculated chemical potential matches the experimental saturation value. The calculation yields

dispersion relations for two distinct branches of bound surface states, extending from the continuum of
liquid states at small wave numbers to the continuum of liquid states close to the wave number charac-
teristic of a bulk roton. The two branches are distinguished by the number of nodes (zero or one) of the

corresponding wave functions in the surface region. At small wave numbers, the wave functions of the

lowest-lying surface states penetrate exponentially into the bulk liquid to a characteristic depth propor-
tional to wavelength. These modes are associated with surface phonons and capillary waves, being

driven by the external potential (renormalized by correlation effects due to the strong internal forces)
and by the surface tension. The spectrum of surface excitations of the first branch follows the hydro-

0

dynamic dispersion relation in the range of wave numbers 0 q 0.5 A . Employing a specialized ver-

sion of the renormalized Bogoliubov equation, analytic expressions are derived that permit evaluation of
the speed of surface sound and the surface-tension coefficient in terms of quantities generated by the mi-

croscopic calculation. In the opposite regime of large wave numbers corresponding to the atomic scale,

q
~ 1 A, the wave functions of the first branch are centered at a local density approaching that of the

bulk liquid. The dispersion curves of both branches appear to terminate by merging with the bulk exci-

tation curve near the roton minimum, in conformity with the interpretation of the bound surface states
in this wave-number range as trapped rotons.

I. INTRODUCTION

The propagation of surface and interface waves in

liquid helium continues to be of fundamental experimen-
tal and theoretical interest. Helium surfaces, interfaces,
and films present unique opportunities for studying the
effects of large quantum Auctuations and of strong corre-
lations in condensed matter. The associated elementary
excitations can be driven by external forces such as gravi-
ty or van der Waals forces exerted on the helium liquid

by the surrounding walls or by a supporting substrate.
They can also be driven by internal forces via the surface
or interfacial tension of the self-bound system. ' Experi-
mental information on the propagation of surface excita-
tions is best at small wave numbers where the dispersion
of gravitational waves, surface sound, and capillary

waves is theoretically described by quantized hydro-
dynamic models. ' References 3 and 4 report some ex-
perimental results on these modes and give an analysis
within Atkins' description. '

However, such a description is not suitable for the ele-

mentary excitations at large energies and at atomic wave-

lengths, which have been recently explored in neutron-
scattering experiments. ' To carry out a proper theoret-
ical analysis of surface or interface excitations at high
momenta parallel to the surface or interface plane, one
must go beyond the standard hydrodynamic model.
Ideally, one should pursue systematic improvements
within an ab initio approach. Important early steps in
this direction have been made by Chang and Cohen, Ed-
wards and Saam, Ji and W'ortis, and, more recently, by
Pitaevskii and Stringari.
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Restricting attention to surface phenomena of liquid
He at zero temperature, we may exploit the theory of in-

homogeneous quantum fluids that has been developed
within the method of correlated basis functions' '

by
Krotscheck and co-workers. ' ' This theory, which ex-
pands upon earlier work of Saarela, Pietilainen, and Kal-
lio, ' is an explicit realization of the correlated basis
functions (CBF) approach at the variational level, entail-
ing determination of the optimal correlated Hartree-
Jastrow ground state and the optimal wave functions and
energies of elementary excitations in Feynman approxi-
mation. ' The subsequent inclusion of backflow
effects"' does not pose any difficulties of principle.
Since, as in Refs. 20-24, we still ignore backflow effects,
the theoretical excitation energies calculated at large
wave numbers q are substantially higher than the experi-
mental results. We stress that CBF theory" ' ' affords
systematic means of incorporating backflow correlations.

Within this restricted context, we are at liberty to
study theoretically both the bulk and surface modes in
liquid He at arbitrary wave number q. Moreover, we

may simultaneously improve upon the hydrodynamic
description of the long-wavelength surface modes since
the optimization process yields incisive formal results for
the speed of surface sound and the phase velocity of
capillary waves that permit quantitative evaluation of
these physical quantities.

During the last few years the CBF theory of inhomo-
geneous Bose fluids has been primarily applied to thin
He films with or without a supporting substrate and not-

ably to the elementary excitations of these systems.
This emphasis is due to the special interest in the physics
of helium films, ' but also in part to the possibility of re-
ducing the complexity of the numerical task relative to
that of the free-surface problem.

Here, we shall concentrate on a microscopic CBF
treatment of the bound surface modes of liquid He at
zero temperature and at experimental saturation density,
considering a planar surface profile in the geometry of an
infinitely extended half-space. The density profile is
shaped by an appropriately chosen external single-
particle potential. This work continues along the lines of
a recent analysis of the excitation spectrum of the vapor-
liquid He interface and proceeds toward a consistent
optimization of the excitation energies within the special-
ization to zero temperature. We arrive at improved
theoretical descriptions of the elementary surface excita-
tions over the pertinent range in the momentum Aq paral-
lel to the planar surface. The improvement at small wave
numbers is of vital importance.

The ab initio study of liquid He with a planar surface
is based on the many-body Hamiltonian

H~=T+ V+ U,

which underlies the microscopic behavior of X He atoms
(with N~ ao in the thermodynamic limit). The surface is
parallel to the (x,y) plane and, consequently, the local
density p of the liquid depends only on the coordinate z,
i.e., p=p(z). As z ~—ao the properties of the system ap-
proach those of the bulk liquid, whereas the density p(z)
falls off to zero as z —+ao. The kinetic operator T is

represented by —(A' /2m) gN i V; and the internal po-
tential V by a sum of pair potentials v (ij ) of purely radial
form v(r,j ), where r;J. =~r;J ~

is the relative distance be-
tween He atoms i and j. The potential function v(r) is
assuined to be of Lennard-Jones (6,12) shape with the
standard He parameters c.~J=10.22 K and o.LJ=2.556

O

A, respectively. The external potential U, taken as a sum
of single-particle potentials U,„,(z; ), is introduced to bal-
ance the pressure inside the liquid.

It is well known that the theoretical value of the chem-
ical potential of homogeneous bulk liquid He at (experi-
mental) saturation density pL =0.0218 A, calculated
on the Jastrow variational level of CBF theory, is
positive —and thus fails to reproduce the experimental
value p= —7. 17 K. Accordingly, the Hartree equation
delineating the one-particle structure [Eq. (9) of Sec. II]
does not possess a self-bound solution at that density. To
circumvent this problem, we apply an external single-
particle potential of the form

Uo
U,„,(z) =

1+ exp [a(z —z ir ) ]

which varies strongly with z in the surface region and be-
comes constant in the homogeneous density regime. The
strength parameter Uo is adjusted so that the calculated
chemical potential p equals the experimental saturation
value. The choice of 11.4 A made for z~ is arbitrary and
localizes the Gibbs dividing surface at zG =12.8 A, while
a is specified by

a= [
—2m [p —VH(L2) —U,„,(Li)]/i)i ]

'~

where I.2 marks the "right" boundary of the finite box

[ L, & z ~ L2—] in which the numerical calculation is
performed. In addition to its role in pressure balance, the
external potential expedites the convergence of the
paired-phonon analysis (PPA) iteration scheme, particu-
larly in the low-density tail where the local particle-
number density is smaller than 0.1pL .

CBF theory furnishes Euler-Lagrange equations for
determining the optimal density profile p(z), the optimal
spatial distribution function g(ri, r2), and the optimal
wave functions and energies that describe the existing
volume and surface modes of the He system. These
equations consist of (i) a renormalized Hartree equa-
tion' ' for the square root of the density profile, &p(z),
(ii) a paired-phonon (PPA) equation' for the spatial dis-
tribution function g (r„r2)of the He liquid ground state,
which contains the excitations virtually, and (iii) a renor-
malized Bogoliubov equation or, equivalently, a Feynman
equation for the wave functions and energies of the ele-
mentary excitations. ' ' These equations are solved nu-
merically with sufficient accuracy by means of efficient
iteration procedures.

In accordance with the symmetry of the system, an ele-
mentary excitation carries a momentum fiq=R(q„,qr)
parallel to the surface plane. The associated states may
belong to differing classes of continuum states or to
differing branches of bound surface states. The latter
states have energies that are below the energy spectrum
of the continuum states at fixed wave number q = ~q~.
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The He system studied in this work possesses two dis-
tinct branches of bound surface states, extending in the
energy-momentum diagram from the continuum of liquid
states at small wave numbers q 0.5 A ' to the continu-
um of liquid states close to the wave number qz -—1.9
A ' of a bulk roton.

In our numerical explorations we are especially in-
terested in the nature of the lowest branch of bound sur-
face states. These states are localized and centered
within the inhomogeneous surface layer, having no nodes
therein. At long wavelengths (O~q ~0.8 A } the wave
functions penetrate exponentially into the bulk liquid, the
depth of penetration being measured by the inverse wave
number q . The corresponding excitation energies fol-
low the dispersion law of surface phonons and of capil-
lary waves. Exploiting the properties of the renormalized
Bogoliubov equation, we may extract explicit formal ex-
pressions for the phase velocity of long-wavelength sur-
face waves that admit quantitative evaluation. At atomic
wavelengths (1 A '

q ~
qit ) the new results for the opti-

mized wave functions and energies of the lowest branch
of bound states essentially confirm our earlier findings,
reported in Ref. 24. The associated wave functions are
localized in the surface layer, in general with a small
width, their corresponding energies approaching the bulk
roton energy regime at large wave numbers q=qz.
These states are interpreted as trapped rotons.

Section II collects the basic Euler-Lagrange equations
needed for numerical determination of the optimized
ground and excited states. Numerical results on the
bound surface wave functions are displayed and described
in Sec. III. Surface phonons, capillary waves, and
trapped rotons are treated in Sec. IV and Sec. V. The pa-
per concludes with comments on possible improvements,
applications, and future prospects (Sec. VI).

II. CBF FORMALISM AND PROCEDURES

The variational-CBF theory of liquid He with a planar
surface begins by adopting a correlated ground-state
wave function of Hartree-Jastrow form,

N ) N

%&(R)= exp —g t(z;)+ —g u (rt;, ,z, ,zj )
i=1 i (j

The single-particle function t (z; ) depends on the distance
z; of atom i from the (x,y) plane, which is taken parallel
to the He surface. It is sometimes convenient —but not
necessary —to measure this distance from the Gibbs di-
viding surface, positioning the origin of the r-space coor-
dinate system accordingly. The spatial correlations of
the strongly interacting He atoms (i and j}are described
by the pseudopotential u (il;,z;,z. ), which is a function
of the distances z, and z and of the projection
il,"=[(x;—x. ) +(y,. —y. ) ]' of the relative vector
r,, =r, r, onto the (x—,y) .plane. The correlated ground
state represented by Eq. (4) contains virtually the elemen-
tary excitations of the many-body system.

Based on the Hamiltonian (1) and ansatz (4),
variational-CBF theory provides a practical framework
for evaluating the functions t(z, ) and u (i),2,z„z2)and,

simultaneously, the local density p(z, ) (the density
profile), the spatial distribution function g(i),z,z„z2),
and the wave functions of the elementary excitations (or
the density-fluctuation operators} and their energies. The
formal relation between the functions t,u and p, g is given
by the Bogoliubov-Born-Green-Kirkwood- Yvon equa-
tion and the hypernetted-chain (HNC) equations. ' ' '

The latter set of equations rests on the decomposition of
the function g into nodal (N) and non-nodal (X) portions.
In the present case the HNC equations read' ' ' (with

XX(q,z3 z2)dz3 (7)

The hypernet equation (6} involves a function E(i),z„z2)
that embodies the elementary or bridge contributions.
It is set zero in the HNC/0 approximation adopted in
this study. The functions X(ri, z, ,zz) and N(7i, z„zz)
may be viewed as coordinate-space matrix elements
defining operators X and X, respectively. The chain
equation (7) is formulated in terms of the Hankel trans-
forms of the quantities X and N. The Hankel transform
%[f„]of a function f (ri, zi, zz)= f„(zi,z2) is

f (q, z, ,z2):f~(zi, z2)=2'—J f (ri, zi, zz)Jp(qY/)ride/,

wherein Jo is the zeroth-order Bessel function of the first
ki d

The reader may consult Refs. 14-17 and 20-23 for de-
tailed formulations of the variational-CBF approach, in-
cluding derivations of the Euler-Lagrange equations for
the density profile p(z), the spatial distribution function

g (rl, z, ,zz ), and the optimal Feynman wave functions and
their energy eigenvalues.

The optimal density profile is characterized by its
square root &p(z), which is determined by a renormal-
ized Hartree equation. ' ' In Dirac notation the latter
reads

[T,+ U,„,+ VH] iO) =piO), (9)

where ~0) is the one-body ground state in the mean field,
an eigenvector with vanishing momentum (irtq=O). The
amplitude (z~O) )0 gives the square root of the density
profile, (z~O) =&p(z). The state ~0) is generated by the
single-particle operator T„represented by

(fi /2m)d /dz, the —external potential (2), and the
Hartree mean-field potential VH, which is explicitly
defined in Eq. (19). The energy p, is the chemical poten-
tial of the system.

The Euler-Lagrange equation for the optimal spatial
distribution function g(il, zi, zi) may be written in the
form of a paired-phonon equation" for the correlation
operator X defined by the matrix elements

g (il,zi, zz)=1+X(ri, zi, z2)+N(ii, z&,zz),

X(rl, zi, z2) = expI u (7i,zi, z2)+N(rt, zi, z2)

+E(rt, z„z2)] N(rt, —zi, z2) —1, (6)

N (q, z i,z2 f p(z3 ) IX(q, z i,z~ )+N (q, z
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Qp(r, )p(r2)X(r„r2) in coordinate space. In Dirac nota-
tion we have' '

—
I HX+XH I +XHX =2V„. (10)

For a homogeneous boson fiuid, this prescription special-
izes to the original paired-phonon equation introduced by
Feenberg and Campbell. "' The name derives from the
fact that the equation is obtained within a paired-phonon
analysis (PPA) of the many-body Hamiltonian eigenvalue
problem of the uniform Bose system, which is carried out
in a wave function space generated by product functions
compounded from (a) a starting trial ground-state factor
of Jastrow type, (b) paired-phonon factors p~ & taken to
all powers (where pz is a phonon creation operator), and
(c) multiple-phonon factors pz pz. to all powers, with
neglect of processes in which phonons scatter, split, or
coalesce. Campbell and Feenberg established that the op-
timal ground-state trial function constructed within this
space is still a symmetrical product of two-body factors,
i.e., still of Jastrow form, and with the PPA equation as
the key ingredient, they formulated a consistent scheme
for practical determination of the optimal pair correla-
tions.

The solution X of Eq. (10) is driven by a re-
normalized particle-hole operator V „with elements

Qp(r, )p(r2)V~h(r, , r2). This operator is the appropriate
generalization of the bare particle-hole interaction that
appears in the familiar result for the static form factor
S(k) of a quantum fiuid in the random-phase approxima-
tion. ' Explicit expressions for the matrix elements of
the particle-hole interaction V & in coordinate-space rep-
resentation are given in Eq. (21}. The Hankel transform
of the coordinate-space representation of the one-particle
effective kinetic operator H appearing in Eq. (10)
may be cast into the form H(q)=Ho+so(q), where
eo(q)=A' q /2m is the energy of a free He atom with
momentum fiq (parallel to the surface) and

1 8 8 1Ho=- p(z) (11)
2m v'p(z) az az v'p(z)

A renormalized Bogoliubov equation' ' determines
the optimal Feynman eigenstates and energies corre-
sponding to the elementary excitations of the discrete and
continuous spectra. In Dirac notation we may rewrite
this equation as

IH'+2V, H) I@.,, & =s'.(q)l@.,,& . (12)

The continuum eigenstates are represented —deep inside
the bulk liquid —by plane waves ( r

~ g„z&
= exp( ik r )

(or, equivalently, by standing plane waves24) with wave
vectors k=q+k~. In this case, the continuous quantum
number ~ becomes the transverse momentum k~ orthogo-
nal to the (x,y) surface plane. A comprehensive discus-
sion of the various kinds of continuum states has been
given in Ref. 24. Here we wi11 focus on the bound surface
states. These are specified by a given parallel momentum
fiq and an integral quantum number ~, with x —1 equal to
the number of nodes possessed by the bound state wave
function in the inhomogeneous surface layer. We follow
the notation of Ref. 24 in characterizing and classifying

the various excited states.
Equivalently, Eq. (12) may be expressed in the more fa-

miliar form of a Feynman eigenvalue equation

IH —XH ) I y.,,& =s.(q) ly.,,& (13)

usv(Y/, z),zz )— 0+ i&p( i)p( 2)

"}/ri +(z) —zz }
(15)

with the parameters b0=2 8A a.nd b, =9.98 A taken
from Ref. 21. The term 5u represents the long-range part
that remains to be calculated. Analogous decompositions
are made for the nodal function N and the direct correla-
tion function X,

N =N„—5u,
X =X„+5u.

(16a)

(16b}

The quantities N„and X„areof short range, in contrast
to the correction 5u to the Jastrow pseudopotential. In
terms of these short-range functions, the spatial distribu-
tion function (5) may be given the equivalent expression
g = 1+X„+N„andthe hypernet equation (6) in HNC/0
approximation appears as

X„=exp( u sv+ Ns. ) N ~ (17)

The general computational scheme adopted to solve
the set of coupled HNC and Euler-Lagrange equations
begins with iterative solution of the renormalized Hartree
equation (9), using as inputs the Schiff-Verlet ansatz, i.e.,
5u —=0, and a parametrized density profile p of the form
employed in Ref. 30. It is of course necessary to solve the
HNC equations every time the actual density profile is al-
tered. This procedure generates a function p(z) that is
optimal for the short-range Schiff-Verlet pseudopotential
(15). With the resulting p(z) and usv(g, z„zz}as inputs,
we solve the PPA equation (10} to obtain an improved
two-body pseudopotential u =uzi+ 5u. Thereupon, the

The solutions of Eq. (13) yield the optimal wave functions

(r~f„~& if the correlation operator fulfills the paired-
phonon equation (10) (see Refs. 16 and 22). In the cases
of immediate interest, all wave functions contain a
plane-wave factor carrying the parallel momentum Rq,
i.e., we have

(r~g„q&=exp[i(q„x+qyy)]f„(z,q) .

Therefore the discussion of bound surface excitations
(which will engross Secs. III-V}centers on the nontrivial
factor g„(z,q).

In solving the HNC equations (5}—(7), the technique
commonly applied to the homogeneous phase"'3 is fol-
lowed as closely as possible, especially with regard to
separate treatment of the short- and long-range portions
of the various two-body quantities. Thus we assert the
decomposition

u =usv+5u

where the short-range part is assumed to be of Schiff-
Verlet form

'5
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HNC equations are solved once more before finally up-
dating the density p(z) via Eq. (9), keeping the long-range
function 5u fixed. At this point the first full PPA cycle
has been completed. In our present study, eight PPA cy-
cles are required to achieve satisfactory convergence of
the entire procedure. After eight PPA cycles, the values
for the (free-system) chemical potential lirn, „VH(z)
and the surface tension, as well as the values for the sur-
face and bulk excitation energies, are stable within =2%%uo.

To the same accuracy, we reproduce the optimized exci-
tation energies of the homogeneous bulk liquid at any of
the wave numbers considered. Specifically, we reproduce
the precisely calculated bulk excitation energies within

=2%%uo accuracy. Furthermore, the speed of ordinary
sound obtained for the inhomogeneous system is in
reasonable agreement with the corresponding result for
the homogeneous problem (see Sec. IV).

At prescribed bulk density pL and chemical potential
p, , the renormalized Hartree equation (9) is solved by
means of a Newton-Raphson procedure' with input
function

psT(z) =
pL ( 1+ exp[(z —zo ) /a ] )

0 0

taking parameters a =1.5 A, and z0=15.5 A. The Har-
tree mean-field potential VH reads explicitly

00 00 00
VH(z))=2m' p(zz) FH(rl, z),zq)ridrjdzq 2n — p(zz) f (B, N)(B, X)(r},z),zz)r}dridzz

2n f—p(z )f (BQ)(BQ)(g,z, ,z )ridgdz (19)

wherein B, N (for example) denotes the partial derivative of the function N with respect to the variable zz, the other ar-

guments of N being held fixed. The function FH appearing in the integrand is defined as

f2
F ( r,iz„z,)=[g U]( r,iz„z )+ [gI2[B„u +B+„]+[B, u +B, N„]+[B, u +B, N„]'j](ri,z„z)

[g(B, u +B, N„}(B,N)+g(B, u +B, N„)(B,N)](7},z„z)

2

[g(B„u„+B@„)(B@)](q,z, ,z, ) . (20)

The PPA equation (10) contains a particle-hole operator determined by

R (q, z&,zz) —=R (z&,zz }=2so(q}N(q,z&,zz)+ C(q, z&,zz) .

The function C is defined by

C(q, z„zz)= p(z3)[B, X~(z, ,z3)][B,X~(z3,zz)]dz3+so(q)[X~oX~](z„z&),
2m

where the last term involves the convolution operation

[foh](z&,zz)= f p(z3)f(z»z3)h(z3yzp)dz3

Equation (21) involves the operator

B(z)=- 9(z)
2m Bz

'
g2 $2

2m Bz2

V z(r},z, ,zz)=[gu](r},z, ,z )+ [g[2[B„usv+BQ„]+[B, us +B, N„]+[B, usv+B, N„]j)(ri, z&, z&)

—
—,
' [(g —1)[& '[R ]+[8(z ) )+D(zz ) ]N j ](q,z „zq) .

In the second line, the inverse % ' of the Hankel transform operates on

(21)

(22)

(23)

(24)

(25)

with Q(z }=( ln[p(z) ] )'.
For the purposes of numerical analysis, we make use of the HNC equations (7) and (17) and the decompositions (14)

and (16) to recast the PPA condition (10) into the form

[2so(q)+8(z, )+8(zz)]5u (q, z„zz)=—25V(q, z„zz)+5C(q,z„zz). (26)

In this guise the PPA condition becomes an equation for the optimal correction 5u (q, z „zz) to the Schiif-Verlet pseudo-
potential. It is this equation which, at any wave number q, is solved numerically for the quantity 5u (q, z„zz)by means
of an iterative relaxation procedure, in order to obtain the optimal pseudopotential u via the decomposition (14). The
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quantity 5V appearing in Eq. (26) is given by

5V(q, zi,z2}=gf[5Vi ](q,zi, z2) ——,'C„(q,zi, z2), (27)

where C„is the short-range portion of Eq. (23} (obtained by taking X„instead of X). The function 5V, is constructed
as

5V, (rl, z„z)=[gv](q,z„z)— [g[2[B„u +BQ„]+[i},u +i},E„]+[8, u +i},N„]I](g,z, ,z )

+ g — [~-'a„+a'„]u,„+-,'[8(z, )+8(z, )]u,
„2m

+—,'[(g —1)[& '[G ]+[8(z,)+8{z )]5u ]](rl,z„z), (28)

where

the quantity 5C may be written as

5C(q, z„z2)=( [5u eX„]+[X„»e 5uv ]

+[5u e5u ])(z„z2).

(30)

(31)

To calculate the excitation energies and eigenfunctions
of the Bogoliubov equation (12), we essentially follow
Ref. 24, imposing the boundary conditions

Gq =—G(q, zi, zp) =2eo(q)5u (q, zi, zg) —C(q, zi, zp),

(29)

with C defined in Eq. (23). In addition to the contribu-
tion —25V, a second term 5C enters Eq. {26). Introduc-
ing the abbreviation

[feh](z»z2) —so(q)[foh](z„z2)

fi+ [8, f(zi, z3)oB, h(z3, z2)](zi,z2),

ishes exponentially as z~+ 00. The surface has a
90-10% width of approximately 4.9 A. Within the
liquid, the total one-body potential Vz(z)+ U,„,(z) (dot-
dashed curve) approaches the experimental binding ener-

gy per particle, i.e., the chemical potential at saturation,
by construction. This function has a shallow minimum in
the center of the surface region and vanishes as z ~+ oo.

Selected results for the optimal spatial distribution
function g(q, z„zz)are presented in Fig. 2. We display
numerical data for the case that atom 2 is localized at
z2 = L, and a—tom 1 is displaced in either the q or the z
coordinate, where L, denotes the "left" boundary of the
box [ L, ~ z ~ L—z] employed for our numerical calcula-
tions. Since these data points probe the correlations deep
inside the bulk region, we expect the results for
g(ri z&

= L„z2= L, ) —and fo—r g(q=0, z„zz= L, ), —
as functions of r, z =g and r, 2 =z& —z2, respectively, to
agree well with each other and with the results for the ra-
dial distribution function g (r,2 ) calculated within
variational-CBF theory for bulk liquid He at density pL.
Inspecting the results for the first of these functions (open
dots), for the second (full dots), and for the radial distri-

and

f„(z,q) =0 (32)
I ' I ' I

10—
I ' I ' I ' I ' I

P„(z,q) =a/„(z,q) (33} 5—

at the liquid and low-density sides, respectively. The nu-
merical results for the energies and wave functions will be
discussed in the following sections.

Figures 1 and 2 show some of our results for the op-
timal density profile p(z) and optimal spatial distribution
function g (q,zi, z2). The Euler-Lagrange equations are
solved at the experimental saturation density pL =0.0218
A, employing the external potential (2) with the
choices of a and zz. indicated previously and the strength
Uo chosen such that the chemical potential
p= Uo+ lim, „Vli(z)of the system matches the ex-
perimental value at saturation, —7. 17 K. Figure 1

displays the numerical results for the local density p(z),
the external potential U,„,(z}, and the total one-body po-
tential V~{z}+U,„,(z}. The density profile (solid curve}
approaches its asymptotic value pL as z~ —~ and van-

/
/

/
/

/
/

/

/r

I i I i I i I i I

e 8 10 12 14 16

i(L}

I i I

18 20

FIG. 1. Optimal density pro61e p(z) (full curve), chosen
external potential U,„,(z) (long-dashed curve), and the superpo-
sition U,„,(z)+ VH(z) (dot-dashed curve) entering the Hartree
equation (9), as functions of position z (in units of Kelvin). The
Gibbs surface of the inhomogeneous system is located at
zG = 12.8 A. On the scale employed, the bulk density

pL =0.0218 A corresponds to 10 K.
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FIG. 2. Optimal spatial distribution function g(r&, r2) versus

two-particle distance r»=~r, —r, ~. Shown are the particular
cases (i) z

&
=z2 = —L, , „r»=g (open dots) and (ii)

i)=0, r&, = ~z, —
z2~ with z2= L, fix—ed (full dots). The results

are compared with the radial distribution function g(r») of
bulk liquid He at saturation density pL (solid curve). As ex-

pected, the three sets of results are in excellent agreement, since
they describe correlations deep inside the liquid.

cussed in Ref. 24. The domain of continuum states may
be divided up into three distinct areas labeled L, V, and
VL, corresponding in turn to the volume excitations in
the bulk supported at liquid densities (L states), continu-
um excitations confined to the low-density regime (V
states), and continuum VL states. In addition, accidental
two- or threefold degeneracies may occur. The relevant
taxonomy is explained in some detail in Ref. 24.

Here, our primary concern will be the bound states
that can be excited in the surface layer. The calculations
reveal the existence of two branches of bound states
characterized by eigenvectors

~ pi z ) and
~ 1(2 z ) and

respective energy eigenvalues si(q) and E2(q). In the
energy-momentum diagram (Fig. 3), these branches ex-
tend between the domain of energetically low-lying L
states and the roton region of the bulk He liquid found
at wave numbers q=qz —-1.9 A '. The first branch is
represented by wave functions g, (z, q) without nodes in
the surface layer and begins at zero wave number. At
small wave numbers q ~0.8 A ', the amplitudes f,(z, q)
penetrate exponentially into the liquid domain with a
characteristic penetration depth 1 approximately propor-
tional to the inverse wave number. Typical examples are
included in Fig. 4. These states describe surface phonons

bution of the isotropic bulk liquid (full curve), this expec-
tation is seen to be confirmed with excellent accuracy.
The indicated agreement is in accord with the findings of
Ref. 31 on the spatial distribution function in the center
of a thick planar He film.

III. BOUND SURFACE MODES

20

15

I
4

P

L

I I I i I i I I I I I I I i I I,I I I I I I ~ I I

To provide a basis for quantitative considerations of
the nature of the elementary excitations of liquid He
with a planar surface, we have solved, simultaneously,
the Hartree equation, the paired-phonon equation, and
the Bogoliubov equation, in conjunction with the HNC
equations in HNC/0 approximation. The input external
potential (2) is chosen such that the chemical potential p
reproduces the experimental binding energy per
atom of 7.17 K at saturation density pL =O.0218 A
Figure 1 depicts the shape of this potential together with
the resulting optimal total one-particle potential
U,„,(z)+ Vrr(z) entering the Hartree equation. The cor-
responding optimal He density profile p(z) is drawn in
the same figure. It is a smooth function of the distance z,
monotonically approaching the bulk density pi in the
homogeneous liquid regime. In the region of very low
densities, the profile vanishes exponentially. The inho-
mogeneous surface layer has a thickness of about 4.9 A.
This may be compared with the value 7.6 A determined
experimentally for the thickness of the free He surface
and values of around 6.0 A found in HNC calculations
carried out by other authors. ' ' The relatively small
theoretical value found here is inQuenced by the presence
of the external potential in the Hamiltonian (1).

Numerical results on the optimized excitation energies
as functions of wave number q are displayed in Fig. 3.
The boundaries of the continuum regions are indicated
by short-dashed lines and demonstrate the features dis-

10

5—

0 -'

0 0.5 1.5 2.5

FIG. 3. Dispersion relations for elementary excitations of
liquid He with a planar surface. Excitation energies c(q) are
plotted against wave number q. The boundaries of the continu-
ous spectra of L, V, and VL states (see text and Ref. 24) are
demarcated by short-dashed lines, which represent the energy
cL(q) of an elementary excitation of bulk liquid He at density

pL, =0.0218 A and the energy E~(q)=~)u~+eo(q) of an eva-
porated 4He atom with momentum Aq. Here

~ p~ =7.17 K is the
binding energy per particle of the bulk liquid, while

co(q) =A' q /Zm is the energy of a free He atom of wave num-
ber q. There are two branches of bound surface states, with en-

ergies z, (q) and c,(q) ordered accordin~ to E,(q) (r2(q) & cL(q),
cL(qz), and c.q(q), where qz -—1.9 A is the wave number at
the roton minimum of the bulk liquid. The numerical results
for the dispersion relations of the bound surface modes are en-
tered as solid dots. The solid lines interpolate these data. At
wave numbers q 0.8 A, the bound excitations are associated
with surface phonons and capillary waves. The linear disper-
sion law of surface phonons is traced by the straight long-
dashed line; inclusion of the dispersive contribution of capillary
waves yields the upper long-dashed curve (see text, Sec. IV}.
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FIG. 4. Optimal wave functions f,(z, q} of bound excitations
having no nodes in the surface region, plotted against the verti-
cal coordinate z at small values of wave number q. Curves
(1)-(4) correspond, in turn, to q =0.1, 0.2, 0.4, and 0.8 A
The curve labeled P is the square root of the density profile
&p(z), which represents the ground state of the Bogoliubov
equation (12). Exponential penetration into the liquid is ob-
served. These bound surface modes may be interpreted physi-
cally in terms of surface phonons and capillary waves.

and capillary waves. As q~0, the associated excitation
energies exhibit the dispersive properties known from
quantized hydrodynamic treatments, ' while the wave
functions g, (z, q) smoothly approach the function &p(z)
that represents the ground state of the Bogoliubov equa-
tion (12). For sufficiently small wave numbers, the wave
functions are therefore expected to have the asymptotic
dependence'

f,(z, q) —&p(z)e s' (z~—~;q —+0) . (34)

At atomic wavelengths (q ~ 1 A ' } the excitations
change their character and the wave functions are in gen-
eral strongly localized in the inhomogeneous surface re-
gion centered at a local density of about 0.8pL. Figure 5

gives examples of bound-state wave functions t, (zi, q) at
three different values of the wave number q (1.6, 1.75, and
1.9 A '). On the high-q end, the energy spectrum be-
longing to the first branch merges with the bulk excita-
tion curve at a wave number close to qz =1.9 A . Ac-

0

cordingly, we interpret the surface excitations in this
energy-wave-number regime as rotons trapped in the sur-
face layer. The behavior of these states and of the states
of the first branch at sma11 wave numbers wi11 be dis-
cussed more fully in the next two sections.

In Fig. 6 we plot the wave function fz(z, q} at q =0.4
A . (The corresponding energy eigenvalue is a=6.5 K.)
This figure illustrates the typical features of the states be-
longing to the second branch of bound excitations, which
have one node in the surface layer. At large wave num-
bers their energies approach the bulk roton energy c,(qz )

from below. The states (or eigenvectors) ~P2 q) have en-

ergies that are close to the continuous energy spectrum of
unbound He atoms described by V states.

FIG. 5. Optimal wave functions g, (z, q} of bound excitations
having no nodes in the surface region, plotted against the verti-
cal coordinate z at large ("atomic") wave numbers q. Curves
(1)-(3) correspond, in turn, to q =1.6, 1.75, and 1.9 A . The
curve labeled P is the square root of the density profile &p(z).
These bound surface modes are interpreted as trapped rotons.

IU. SURFACE PHONONS AND CAPILLARY %AUES

In this section we present a detailed analysis of the
bound surface modes of the first branch, at low energies
(s, & 10 K) and at small wave numbers (q & 1 A '). Our
discussion of the propagation of these waves is framed in
terms of a specialized version of the Bogoliubov equation
(12). We first extract the optimal excitation energy e, ,(q)
of the branch of states ~f, ) as a function of wave num-
ber q. For economy of notation the subscripts 1 and q
will be dropped; thus ~P), g(z, q), and s(q) denote a
bound state of the lowest branch, its wave function, and
its energy, respectively.

The proposed specialization has been formulated in
Ref. 21 so as to yield a useful stability condition on the

4 I I I I I I I I I I I I I I I I i I I I I I I I I I I I I I
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FIG. 6. Optimal wave function Pz(z, q) of a bound excitation
having one node in the inhomogeneous surface layer, plotted
against the vertical coordinate z for the wave number q =0.4
o —]
A . This wave function represents a surface state of energy
F2=6.5 K that belongs to the second branch of bound states.
The curve labeled P is the square root of the density profile,
&p(z).
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elementary excitations [see Eq. (3.8) therein]. For present
purposes it is convenient to cast the dispersion relation
into the form

e'(q) =q 'Ep(q)F(q)D (q)

with a driving potential

D (q) = c,"(q)+2 Vs(q) .

(35)

(36)

& yl(Hp+ sp) P(q)(Hp+ sp) I q &

Vs(q) =
& yl(Hp+sp)'Ig&

(38)

with ep=sp(q) =A'
q 1'2m, the operator Hp being defined

by Eq. (11). The particle-hole potential operator 0'(q) at
given wave number q is defined by the coordinate space
matrix elements Qp(z, )p(z2) V~h(q, z&, z2), where

V~„(q,z, ,z2) is the Hankel transform of the particle-hole
potential V h(ri, z, , z2).

The dispersion relation (35) furthermore involves a
penetration factor

q& pl(H, +e,)'lq&
F(q)=

ep & i/i I Hp +'E,p I It| &

(39)

The function F(q) and the energy E (q) are positive quan-
tities by construction. The energy expression (35) with
the driving potential (36) is the analog of the familiar
dispersion relation"'

s (q) =ep(q)[ep(q)+2Vr (q)] (40)

The energy components e (q) and Vs(q} at given wave
number q are defined by the expectation values

& ql(H, +so)'ly&
e (q)=

& 1pl(H, +E,)'Iq&
(37)

and

roton wave number qz =1.9 A, closely approaches the
—1

penetration factor FL (q) =q that characterizes the homo-
geneous bulk liquid. Figure 8 shows the numerical re-
sults for the energy e (q) of Eq. (37) in the whole range of
wave numbers q at which surface states exist. This ener-

gy is nonzero at q =0 and depends quadratically on wave
number in the range q 0.8 A . We may check the
numerical calculation of ct(q) at zero wave number by
comparing with the analytic result for s (0) implied by
the asymptotic formula (34). Insertion of Eq. (34} into
Eq. (37) yields

Using the numerical results on the density profile p(z) as
input data, we may calculate the integrals and arrive at
the value s (0)=1.4 K. This value is in good accord
with the data on s (q) plotted in Fig. 8.

The numerical results for the optimal particle-hole en-

ergy (38) of bound surface states at wave numbers q 1

A ' are presented in Fig. 9. The data for the quantity
Vs(q) (calculated at q =0. 1 A ', 0.2A ', . . . ) arelinear-
ly extrapolated to zero wave number and matched to the
condition

D (0)=e (0)+2 Vs(0) =0 . (43)

This condition is required by classical fluid dynamics if
gravitational waves are absent. We could, of course, in-
corporate the effect of waves due to external gravitational
forces by supplementing the potential (2) with an additive
term —gzz, where gz is the gravitational acceleration at
the earth's surface.

e (0)= f [p(B lnp) ](z)dz f [p(Blnp) ](z)dz.

(42)

of the elementary excitations in bulk liquid He described
by plane waves. In the latter case, the quantity VL (q) is
the dimensionless three-dimensional Fourier transform of
the isotropic particle-hole potential at density pL, and the
penetration factor F(q} reduces to F(q)=q. The speed c
of ordinary sound waves follows directly from expression
(40) by taking the limit q ~0 to obtain

2 ~ 5

2.0—

5

I I l
I I I I

mc =Vr(0). (41) 1.0—

To check the accuracy of our numerical techniques for
dealing with the inhomogeneous system, we employ the
results on the potential V~h(ri, z&, z2) deep inside the
liquid (i.e., at large negative values of z, and z2) to calcu-
late the corresponding speed of sound via Eq. (41). The
result is mc =20. 14 K or c =204. 51 m/sec. This is in
fair agreement with the result mc = 18.67 K or
c =197.34 m/sec determined for homogeneous liquid
He within the analogous variational ansatz for the

homogeneous fluid.
The numerical findings on quantities (36)—(39) are sum-

marized in Figs. 7—11. The penetration factor (Fig. 7)
has a, finite nonzero value F(0) at q =0 and displays an
initia11y linear increase with wave number q. At q=1
A the curve F(q) has an infiection point and, near the

0 I-' i

0
I i i i i 1 i i i i I ) « i I

0.5 1 1.5 2

FIG. 7. Penetration factor F(q) of Eq. (39) as a function of
wave number q. The numerical results from the optimization
procedure {dots) are suitably interpolated (solid curve) and ex-
trapolate toward the appropriate value at wave number q =0
(open circle). The trend of the data indicates that at high q the
function F{q) merges into the bulk penetration factor q of ro-
tons (lower short-dashed line). The upper short-dashed line
shows the approximation for F(q) based on the analytic ansatz
(50), applicable for low wave numbers (0 q 0.8 A ).
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FIG. 8. Expectation value c~(q) of Eq. (37},plotted as a func-

tion of wave number q. This quantity contributes to the driving

potential (36) of energy relation (35). The numerical results

from the optimization procedure are represented by dots and

are suitably interpolated by the solid curve. As q~0 the solid

curve behaves quadratically, taking a nonzero positive value at
zero wave number [cf. Eq. (42}]. In the roton region of large

momenta, it approaches the kinetic energy co(q}=R q /2m of a
free 4He atom. The lower short-dashed curve is the parabola

c&(q). The analytical result for e, (q) based on the ansatz (50)

yields the upper short-dashed curve.

FIG. 9. particle-hole energy Vst(q} [Eq. (38}) of bound sur-

face states without nodes in the surface region, plotted against
wave number q in the long-wavelength regime. Numerical data
from the optimization procedure are shown as dots and are suit-

ably interpolated to yield the solid curve. The open circle
marks the value V&(0) derived from condition (43). This circle
is joined to the first data point by a straight long-dashed line,

the slope of which coincides with the slope of the driving poten-

tial D(q) (see Fig. 10). The approximate result for Vzt(q) corre-
sponding to the simple analytic ansatz (50) is included as the
short-dashed curve.

The driving potential D (q) defined by Eq. (36) depends
linearly on q at sufficiently small q values. This behavior
is indeed clearly demonstrated by our numerical results
on the energy factor D(q), as may be seen in Fig. 10.
Strong deviations from linearity appear at wave numbers

q ~0.5 A
To make contact with the quantized hydrodynamic

theory, ' it is assumed that the penetration factor (39)
and the driving potential (36) may be expanded in powers
of the wave number q. In accordance with our numerical
results and condition (43), we thus assert

mc,'=dy, (49)

20 t I I~ I I I

/

sound cs in terms of the penetration factor F (0) and the
driving factor D(0), which is generated by the external
potential and takes account also of correlation effects due
to the strong internal forces. This relation is the analog
of Eq. (41) describing ordinary bulk sound. More impor-
tantly, it replaces the phenomenological formula'

F(q) =F(0)+F(0)q +
D (q) =D(0)q + ,'D(0)q +— (44)

(45)
15—

Substitution of these series into the dispersion relation
(35) generates the expansion

zez(q) = mcszq + q'+
m p&

(46)

for the excitation energy of the lowest bound state of
wave number q, with the coefficients I I I I I I I I I I I t I I t l I I

and

2mcs =F(0)D(0), (47)
0 0.5 1.5 2

o = [F(0)D(0}+—,'F(0}D(0}]. (48)

The first term in expression (46) is attributed to surface
phonons or surface sound, while the second is associated
with capillary waves driven by the surface tension. The
result (47} permits evaluation of the speed of surface

FICx. 10. Driving potential D(q} of Eq. (36}as a function of
wave number q. The solid dots are the numerical results from
the optimization procedure, and the solid line interpolates these
data. The function D(q) vanishes linearly as q —+0 (dashed

straight line}. Its slope D(0) at wave number q =0 determines
the velocity of surface phonons. The numerical prediction for

D(q} levels o6' around the bulk roton wave number qs -1.9
A
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1 I t ~ I I I I I t I I I I choose the origin z =0 to be at the Gibbs surface. Inser-

tion of Eq. (50) into the expectation values (37)—(39) and
evaluation of the corresponding integrals leads us to ap-
proximate results for the functions F(q), s (q), Vs(q),
and D(q) which are indicated in Figs. 7—10. These ap-
proximations match the numerical results of the
variational-CBF approach quite well for wave numbers

q ~0.6 A
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FIG. 11. Particle-hole energy Vs(q) [Eq. (38)] of bound sur-

face states without nodes in the surface layer, plotted against
wave number q at atomic wavelengths (and hence referring to
trapped rotons). The solid curve interpolates the numerical
data from the optimization procedure, which appear as solid
dots. In the roton region corresponding to wave numbers

o —)q=q+=1.9 A, the solid curve approaches the analogous
particle-hole energy VL(q) of bulk excitations (traced by the
short-dashed curve).

P(z, q) =&p(z)e~'(1+aoe~') (50)

as an approximate representation of the optimal wave
function g(z, q) calculated within variational-CBF theory.
The ansatz (50) is, of course, in agreement with the
asymptotic property (34). The numerical data are best
fitted by adopting a parameter value a0=0.2, if we

involving the film or surface thickness d and the strength
f of the external force, by an ab initio dispersion rule de-
rived from CBF theory.

Similarly, the result (48) provides a microscopic
prescription for calculating the quantity cr that controls
the phase velocity of capillary waves. In the absence of
an external potential, U,„,=—0, and assuming that the sys-
tem is incompressible, the coefficient cr may be identified
with the surface tension.

Using the actual values F(0)=0.433 A ', F(0)=0.92,
D(0)=11.9 K A, and D(0}=0determined by extrapolat-
ing our numerical results for the penetration factor F(q)
and for the driving potential D(q) to q =0, we arrive at
the value mc& =2.6 K or cs =73 m/sec for the speed of
surface sound and the value o =0. 12 K A for the
coefftcient (48). The excitation energies of the lowest-
lying surface modes, as given by numerical solution of
Eq. (12), essentially follow the hydrodynamic dispersion
law (46) in the range of wave numbers q ~ 0.8 A . This
can be clearly seen by comparing the numerical results
for the excitation energy s, (q) with results from expan-
sion (46), which are represented in Fig. 3 by the lower
long-dashed line (surface sound only) and the upper
long-dashed line [surface sound modified by the cubic
term in Eq. (46)].

Finally, we point out that the various quantities
(36)—(39) at wave numbers q «0. 6 A ' may be well
reproduced by assuming the simple analytic expression

V. TRAPPED ROTONS

We now turn to a detailed analysis of our numerical re-
sults for the optimal bound states and their energies at
large wave numbers (q &1 A '). We proceed in the
same manner as in the preceding section, examining the
wave functions and explicating the dispersion law (35).

For large q the wave functions g(z, q) of the bound sur-
face modes of the first branch are centered at relatively
high local density on the liquid side of the Gibbs surface
(see Fig. 5}. For this class of states, the influence of the
energy operator Ho on the expectation values (37)—(39)
should become very small at such densities and wave
numbers. Neglecting the effects of Ho in Eqs. (37)—(39),
we are led to the approximations F(q) =q and
s (q) = eo(q). The particle-hole quantity Vs(q) for the
bound surface states, given by Eq. (38), then reduces to
the approximate form

Vs(q) = Vs(q) = (51)

The dispersion relation of bound surface modes with
large wave numbers, q =qz, may therefore be given the
approximate expression

s'(q) = so(q) (eo(q)+ 2 vs(q) ] . (52)

The result (52) should be compared with the energy-
momentum relation (40) for bulk excitations in liquid
He. Patently, relations (52) and (40) differ only in the

potential portion. Equation (52) involves the surface
particle-hole energy Vs(q) instead of the analogous bulk
quantity VL(q). Since the states ~g) are localized at a
density p rather close to the bulk density pL, the surface
potential operator 0'(q) = V~„(q,z „zz) should not
differ much from the corresponding quantity

pL V~h(q, ~z&
—

z2~ ) generated from the bulk particle-hole
potential V z( ~r&

—
rz~ ). Accordingly, the difference

Vi(q) —Vs(q) should be quite small in the range of q
around the roton wave number qz where the bound sur-
face state branch approaches the liquid domain of the
continuous spectrum.

The properties educed above are confirmed by the nu-
merical results on the optimal functions F(q) and e (q)
for q =qz. These data are plotted in Figs. 7 and 8. We
see from Fig. 7 that the penetration factor F(q) does
indeed closely approach the straight line q that represents
the bulk penetration factor as q~qz. The analogous
feature of the quantity s (q) is seen in Fig. 8. At q near

qz our numerical results for s (q) are very close to the
kinetic energy so(q) =A'

q /2m of a free ~He atom.
It is particularly illuminating to compare the numeri-
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cal results for the optimal particle-hole energies V&(q)
and VL (q) in the region of the roton wave number qa (see

Fig. 11). The surface quantity Vs(q) reaches a maximum
at q =0.7 A ' (see also Fig. 9) and thereafter decreases
with increasing wave number, approaching the very steep
potential VL (q) close to qz. The latter behavior is indica-
tive of a level-crossing phenomenon around the bulk ro-
ton minimum. The similarity between the dispersion re-
lations (40} and (52} on the one hand, and the nature of
the results for the driving forces Vst(q) and VL (q) on the
other, point to an intimate relation between rotons and
the surface modes at large momenta. Bulk rotons at

q =qR respond to the strength VL (q), while the surface
modes at atomic wavelengths are driven by the corre-
sponding surface quantity Vs(q). We therefore interpret
these surface modes at large energies as rotons trapped in
the surface layer.

Figure 10 displays the driving term D(q) over the
range of accessible wave numbers. This function begins
to deviate from the linear behavior characteristic of small

0

wave numbers at about q =0.5 A and becomes essen-
tially constant at large q values around the wave number

qa of a roton. Using these properties it would be
straightforward to construct a simplified dispersion law
for the trapped rotons that effectively approximates the
corresponding numerical results on the first-branch exci-
tation energies, as generated by the variational-CBF ap-
proach and sketched in Fig. 3.

VI. CONCLUDING REMARKS

This paper has continued and expanded upon the in-

vestigation of the vapor-liquid He interface that was be-

gun in Ref. 24. Specifically, we have devised and imple-
mented an appropriate and emcient computational pro-
cedure for ab initio analysis of the bound surface states
and their energies, at zero temperature. The treatment
employs the variational-CBF approach to calculate the
optimal density profile p(z) and the optimal non-nodal
elements X(q,z„zz}that characterize the spatial distri-
bution function g(r„rz),while determining the optimal
Feynman excited states and excitation energies. Results
of this ub initio theory for the bound states and their
dispersive properties have been obtained over the fu11

range of wave numbers 0 & q & qa at which these surface
excitations can be generated. We have given an explicit
microscopic description of the optimal excitation ener-
gies at small wave numbers by evaluating the speed of
surface sound and the phase velocity of capillary waves.
The attendant analysis and computation improve upon
the familiar quantized hydrodynamic description' of
surface phonons and waves driven by surface tension.
Further, the present variational-CBF treatment facilitates
a systematic theoretical discussion of the surface excita-
tions at atomic wavelengths. However, since we ignore
backflow effects, the numerical results for the wave func-
tions and energies of trapped rotons must still be regard-
ed as semiquantitative. The incorporation of backflow is
tractable within the CBF formalism and should be at-
tempted in future work. Based on this more sophisticat-
ed treatment, it would be important to pursue a CBF

study of the He surface when external forces are absent,
i.e., the free helium surface.

However, we believe that in the near term it would be
more fruitful to exploit the formalism and the numerical
techniques developed here in a variety of interesting
problems that conform to the existing framework. For
example, one could vary the strength Uo or replace the
external potential (2} by realistic adhesive potentials or
van der Waals forces and examine in detail their in6uence
on the energy spectrum, and, notably, on the phase veloc-
ity of surface sound and capillary waves. This project
would be especially timely in light of recent measure-
ments on third sound.

In fact, a Srst step in this direction has already been
taken. Calculations have been performed over quite wide
ranges of the strength and width parameters of the poten-
tial (2}, without seeing drastic changes of the excitation
spectrum on the scale of Fig. 3. Such manipulations of
the external potential primarily affect the values of the
quantities cs and o in the dispersion relation (46). The
number of surface excitation branches depends mainly on
the surface thickness and thus indirectly on the strength
and width of the external potential. Over fairly broad
ranges in these potential parameters and in the surface
thickness, two branches of surface modes appear in the
spectrum. This is the same number of branches as found
in studies of symmetric He films in Refs. 14, 21, 22, and
31. A comparison with the findings of Ref. 24 is useful,
although there the density profile and two-body correla-
tions were not calculated within CBF theory (as has been
done here); instead, phenomenological forms for these
quantities were employed. The very thick surface profile
of Ref. 24 evidently leads to a larger number of branches
of surface modes. The calculations of this earlier work
were carried out without an external potential, which is
not needed if one is content with phenomenological one-
and two-body correlations.

A more challenging goal is to extend the variational-
CBF optimization to interfacial modes at nonzero tem-
perature. This effort may begin with further formal de-
velopment of the correlated density-matrix theory,
which would entail certain advances necessary for a prop-
er account of the effects generated by temperature and
density variations. Other interesting possibilities include
the use of variational-CBF theory to study the inhuence
of a two-dimensional lattice of electrons on the liquid He
surface and on the excitation of bound surface states,
and to gain a quantitative microscopic understanding of
Andreev states.

Concluding this discussion of future prospects, we
point out that the methods we have explored may be
adapted to the treatment of elementary excitations in oth-
er quantum many-body systems of quite different nature,
such as popular lattice gauge models of Seld theories or
correlated spin models of interest in condensed-matter
physics.
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