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The proclivity of paramagnetic solutes to degrade the transition temperature of a traditional singlet-

pairing superconductor is studied anew. T, degradation is proportional to the (conduction electron)
spin-disorder scattering rate, 1/~„caused by the solute spins. Accordingly the T, loss increases with
solute concentration. The initial slope (versus 1/~, ) is found to depend on the superconductor and
therefore is not the universal constant proposed by Abrikosov and Gor'kov. Instead the decrease is in-

versely proportional to A,, the electron-phonon coupling constant. Consequently a weak superconductor
is doubly jeopardized by paramagnetic impurities: Its superconductivity is easily suppressed not only be-
cause T, is small to begin with, but also because the initial slope is steeper. Another unexpected conse-
quence of the theory involves potential scattering which, acting alone, does not significantly influence T,
(as surmised by Anderson). Nevertheless, the T, reduction caused by exchange scattering wi11 be partial-
ly suppressed when the overall mean free path becomes smaller than the coherence length. This com-
pensation has been demonstrated experimentally by comparing the influence of magnetic impurities in a
pure host superconductor with that in a similar host having (also) nonmagnetic solutes. Such observed
recovery of T„expected from this study, contradicts prior theories for magnetic solutes.

I. INTRODUCTION

During an investigation of the theory of impure super-
conductors we found that prior treatments needed
modification. For nonmagnetic impurities T, is insensi-
tive to the solute fraction c. This conclusion, proposed
by Anderson, was apparently confirmed by the work of
Abrikosov and Gor'kov (AG), who studied both ex-
change scattering and potential scattering. A power
series can be used to express the dependence of T, on c:

T, =T,0+ac+bc +
where T,o is the transition temperature of the pure host.
Both previous theories alleged that, for nonmagnetic
solutes, a =0, b =0, etc. However, we found that the
only probable conclusion is a =0. As long as c is not too
large, Anderson's theorem remains intact. Furthermore,
we noticed an unallowed mathematical approximation in
AG's theory and found that their method (when correct-
ed) actually leads to large negative values for the
coefficient a. (Such values are contradicted by experi-
ment as well as by Anderson's theorem. ) So it appears
that the AG method is fundamentally unsound.

The foregoing discernment indicates that the effect of
exchange scattering by paramagnetic impurities needs to
be reexamined. Although it is well known that
paramagnetic solutes cause the coefficient a of Eq. (1) to
have a large negative value, quantitative comparison be-
tween theory and experiment is thwarted by unknown
microscopic parameters, e.g., the exchange parameter J.
In view of the foregoing uncertainties, the response of a
superconductor to the presence of magnetic impurities is
once again a theoretical frontier.

The present study, which is carried out within the orig-
inal framework of BCS theory, leads to conclusions
which contradict the extensive theoretical literature span-

H =Js S, v, 5(r —R;), (2)

where s= —,'cr and uo is the atomic volume. We will refer
to scattering (real or virtual) caused by H as exchange
scattering. (The exchange constant J has the dimension
of energy. The three components of cr are the Pauli ma-
trices. )

(viii) The paramagnetic spins [S,. I have fixed orienta-
tions, which are randomly directed in 4n. solid angle. Ac-
cordingly, when a conduction-electron spin is rotated
during scattering events, the directions of IS,. I remain
unchanged. (S, S . interactions are consequently ir-
relevant. )

ning more than 30 years. Therefore, it is necessary to
motivate strongly our approach and to call forth intui-
tions which may perhaps not be known to some workers.

The influence of impurities on T, can be complex (for
many reasons); so it is traditional to embrace a number of
simplifications in order that a tractable theory ensues.

(i) The conduction band has a constant density of
states, No per spin, and has a width 2EF (i.e., electron-
hole symmetry).

(ii) The superconducting gap parameter 6 of the host
superconductor is isotropic in k space.

(iii) The Frohlich pairing interaction, V(k, k), is a
constant, —V, independent of q =k' —k.

(iv) The weak-coupling version of BCS theory may be
used; i.e., I, =No V & 1.

(v) Solute additions alter neither the band structure,
the phonon spectrum, nor the electron-phonon interac-
tion.

(vi) The Coulomb repulsion between electrons is
neglected; i.e., p and p* are set to zero.

(vii) The magnetic interaction between a conduction
electron at r (having spin s) and a magnetic solute (having
spin S), randomly located at R;, is
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n J S(S+1}Noc
2nA

(3)

where n is the number of atoms per cm, i.e., nvo = 1, and

c is the magnetic solute fraction. This relation is useful

because it allows final results to be expressed in terms of
the one (unknown) parameter r„ instead of the two (or
three) unknowns on the right-hand side of Eq. (3). Final-

ly, we stipulate our intention to develop a theory involv-

ing effects only to order c J . Suggestions that alterna-
tive theories are valid to higher powers of c are without
merit because, as we shall show, the alternatives fail even

in first order.

II. INSIGHTS FOR SPIN-DEPENDENT SCATTERING

Spin-flip virtual scattering of conduction electrons can
be expected to influence superconductivity because a BCS
condensation, based on the simplified, phonon-mediated
Frohlich interaction, (iii) above, requires singlet pairing.
The coherent matrix elements which would arise if triplet
basis pairs (kT, —kl) were chosen would be zero: Each
direct element, e.g., to (k'1, —k'1), is canceled by an ex-
change term. For conventional (kg, —kg }basis pairs, the
exchange terms vanish. One should remember that the

Alxnost all workers have used this classical, fixed-S;
model, having imitated AG in this regard, as was noted
by Jensen and Suhl. A more correct model is, of course,
to treat S; dynamically, each spin having 2S+1 magnetic
sublevels; so that when a conduction electron suffers a
spin flip, S; undergoes an appropriate transition between
its magnetic sublevels. We have carried out the theory
for both models and, although the results are different,
the relation between them is not complex and will be re-
ported in Sec. VIII. Of course, when ~S~ appears in the
fixed-spin theory, it will be replaced by S(S+1). (The
difference between the two models is deeper and more
significant than this standard, trivial substitution. )

For simplicity we choose to present here the theory
having fixed spins, a motivation apparently persuasive for
most authors. Consider the alternative: A Cooper pair,
as well as a BCS condensate, arises from the coherent
coupling between eigenstate pairs. For a sample having
N magnetic solutes, there are Z=(2S+1} magnetic
eigenstates tg I. Coherent coupling occurs between one
eigenstate pair, P (r&, rz)y;, and another, P„(r„r2)g~,
only if i =j. The appropriate formalism involves a Z XZ
density matrix, since H causes off-diagonal matrix ele-

ments to arise. Had AG employed the dynamical-spin
model, their Eq. (2) would have had to involve 2Z cou-
pled equations instead of only 2. (P and P„are four-

component electron functions on account of the spin de-

grees of freedom for the electrons at r„and r2. ) Obvious-

ly the fixed spin model is much simpler. Exchange
scattering does not then destroy quantum coherence.

In the normal (electronic) state, the effect of the mag-
netic Hamiltonian, Eq. (2}, is to cause spin-disorder
scattering. From golden-rule scattering theory, the spin-
disorder scattering rate of a conduction electron (includ-

ing spin-flip and nonflip events) is

Slater determinant of a (kl, —k$) basis pair is 50%
singlet and 50% triplet. Pure singlet character ensues
only after a properly phased, equal-amplitude superposi-
tion with the ( —kt', kg) basis determinant is incorporat-
ed.

Spin-flip virtual scattering by magnetic solutes will
cause the pure-singlet superposition, just mentioned, to
be contaminated with a triplet component; and this ad-
mixture weakens the coherent pairing matrix elements:
Not only is the direct matrix element smaller, but the
(newly acquired) exchange term cancels part of the
remaining reduced value. These features will be shown in
detail below.

It is of interest to consider also spin-flip virtual scatter-
ing that arises from spin-orbit coupling with nonmagnetic
impurities. It is already known that this effect does not
reduce T„even though the direct matrix elements are
also reduced. Remarkably, the exchange terms which
arise cancel exactly the reductions. The purpose of this
section is to provide intuitive understanding of these phe-
nomena and to see why they are so different. We will

need the spin-orbit interaction for reference:

Pa0 = a"(EXp),
2mc

(4)

where p~ is the Bohr magneton, p is the conduction-
electron momentum operator, and E is the electric field

arising from impurity potentials.
One-electron wave functions are two-component, Pauli

spinors. We will choose the time-reversal operator to be

0
T (5)

A. Lemma I

BCS theory is unchanged if every pair, (6), has its own
("private") axis of spin quantization. Instead of (6), one
can use

(t., a(k)
P(k)

—i k.r2
—P'(k)
a'(k) (7)

where a and p are arbitrary (even pathological) functions
of k, subject only to ~a~ + ~p~ =1, and to the require-
ment that (a,p) be the same for k and —k. (This last
condition preserves orthogonality. ) Proof of the lemma

requires that the matrix element of the Frohlich interac-
tion between the pair (7) and any other pair

~ig t
ik'-r —i k'-r

2 1

e n e IQ
CX

where E is complex conjugation. The usual presentation
of BCS theory employs basis pairs:

r

0
1 e 2 (6)

1 . 2.

(The second function is always T times the first. ) We
shall now prove two lemmas which will be useful in due
course.



49 MAGNETIC IMPURITIES IN SUPERCONDUCTORS: A THEORY. .. 15 801

b' a.r,'e ' p, e
1

—ikr Y2 (13)

(14}

to another one. There is no loss of generality if we select
the axis of the final pair to be along z and the canting
direction along x, i.e., for a canting angle 8',

cos8'/2, „., sin8'/2

sin8'/2 cos8'/2

(a)
-b'

(b)

After the (6-dim) spatial integration, the required
canted-pair matrix element, M,~, between the two Slater
determinants generates a direct term,

FIG. 1. (a) Two different axes of spin quantization for basis
pairs (k, b; —k, b) a—nd (k', b'; —k', b') —(b) .Canted spins for a
basis pair (k, d; —k, b).

8' . 8' 8I 8I—V acos—+Psin —X ysin —+5cos—
2 2 2 2

and an exchange term,

(15)

still equals —V regardless of a' and P'. Assumption (iii}
of Sec. I is equivalent to an attractive potential,—V5(r, —r2); so that all that remains after the (6-dim)
spatial integration is a direct term,

8' . 8' 8I
V ycos —+5sin —X asin —+Pcos—

2 2 2 2

The sum of (15) and (16) is

(16)

—V(a"a+P"P}(a'a*+P'P* ), (9) M,~
= —V(a5 —Py )cos8' . (17)

and an exchange term,

V(P"a' —a"P')(a'P —P'a) .

The sum of (9) and (10) is

—V(lal'+ IPI') X(la'I'+ IP'I') = —V

(10)

Now the canting angle 8 for the pair (13) is half the angle
between a and b Acco—rdi. ngly,

~ ~

cos28= —+— cr cr

which after evaluation is

cos 8=la5 —Pyl

Consequently, on comparing (17) and (19),

Figure 1(a) illustrates this lemma. The spin directions,
+b and +b', for the basis pairs, {k,b; —k, b I and-
Ik', b', —k', b'I, can —be completely different. Never-
theless, the phonon-mediated coupling which connects
such basis pairs when forming a BCS condensate is still—V.

(19)

B. Lemma II

Canted basis pairs are states, {k, &; —k, b ), for which 8
and b are not antiparallel. The axis of a canted pair,
shown by the dashed line in Fig. 1(b), lies in the plane of
& and b and is perpendicular to the direction which
bisects the angle between & and b. The canting angle 8 is
the angle between a and the axis. (8 is also the angle be-
tween b and the axis. ) Lemma II states that the matrix
element of the (simplified) Frohlich interaction between
canted pairs, one with canting angle 8 and the other with
8' (generally having different axes) is

M, = —Vcos8cos8' . (12)

Note that M, does not depend on the axis directions. In
this respect, lemma II exhibits the feature of lemma I.

Proof of the lemma requires calculation of the
(simplified} Frohlich-interaction matrix element connect-
ing an arbitrary canted basis pair (k,8; k, b ), —

M,~
= —Ve'&cos8cos8' . (20)

If /%0, the phase of the 8 spinor in (13) can be redefined
with a factor, exp{ iP), and—then Eq. {20) reverts to Eq.
(12}. (Such phase adjustments can always be made so
that a5 —Py is real and positive for every canted pair. )

The fact that M, , Eq. (12), is the product of cos8 and
cos8' is particularly noteworthy. For example, in the
theory of superconductivity for a metal having a spiral
spin-density wave (SDW), this factorization permits an
exact solution of the BCS gap equation. The canting an-
gle 8 is near zero for most of the Fermi surface, but rises
to 90 for k states at the SDW energy gap. The triplet
fraction of a canted pair (k, &; —k, b), after being
coherently combined with ( —k, —b;k, —&), is sin 8. The
BCS gap parameter 6 becomes zero wherever (on the
Fermi surface} 8=90', i.e., at the SDW energy gap.
Therefore a SDW metal must exhibit zero-gap supercon-
ductivity.
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C. Virtual scattering by spin-orbit potentials

Consider a conduction-electron wave function subject
to a spin-orbit scattering interaction, Eq. (4), from a high-

ly localized, isotropic potential centered at r=O. A
straightforward, but tedious exercise in perturbation
theory leads to the following wave function for the first
member of a basis pair:

1 1 0
N'—e'"'

0 +gn, (kr) (kXr), 0 +[(kXr)„+i(kXP) ] (21)

where g is a real scattering amplitude, n &(p) is the spherical (I = 1) Neumann function' (which is also real), and N is a
normalizing factor. The hats designate unit vectors. We emphasize that the Neumann function must appear instead of
a (complex) spherical Hankel function. (Basis functions in solids must satisfy the requirement, which is often ignored,
that the boundary integral of the current be zero. ) The basis partner of Eq. (21}is, from perturbation theory

0 0 1
N'e —'"'

1
+gn, (kr) (k Xr),

1
—[(RXr)„i(kX—r)~] (22)

Now, it is important to notice that Eq. (22) can be ob-
tained directly from Eq. (21) by using the time-reversal
operator, Eq. (5):

1 JuomkS
41,&

=N' e'"'—
0 + no(kr )

4M

%" gg=T%'g) . (23) 1 0
X cosy 0 +singe'~ (25)

This relation could have been anticipated since T com-
mutes with the Hamiltonian, including the spin-orbit
term, Eq. (4). Clearly, the relation (23) would still obtain
for a general spin-orbit scattering potential, not neces-
sarily highly localized nor isotropic.

Since, at any particular position r, the spin of an elec-
tron is 100% polarized in some direction, one can calcu-
late the polarization axis for (21} and (22) versus r. The
important result is that, at each point, the polarization
directions of (21) and (22) are exactly opposite. This re-
sult follows from (23), since for an arbitrary spinor

(24)

and two spinors are orthogonal if and only if they are an-
tiparallel.

The final result should now be apparent. Spin-orbit
scattering tilts the axis of spin quantization for a basis
pair, and the tilted axis varies (in direction) from point to
point. Generally at any r, the axes of different basis pairs
will differ. However, lemma I encompasses these varia-
tions, so the phonon-mediated interaction which connects
basis pairs remains —V. T, is not affected by spin-orbit
scattering. The earlier proof of this result by Appel and
Overhauser was based on an analysis equivalent to lem-
ma I and Eq. (23).

D. Virtual scattering by a magnetic solute

Consider next the wave functions of a basis pair which
have been perturbed by the exchange potential, Eq. (2),
caused by a magnetic impurity at R=O. Let the direc-
tion of the (fixed) local-spin S be specified by a polar angle

y and an azimuthal angle P. For the first member of the
pair,

where no(p) is the spherical (I =0) Neumann function, '

and S=[S(S+1)]' . The wave function of the basis
partner is

0—=N e-'"'
1

0
X cosy —singe

1

JvomkS
no(kr)

4vrA'

(26)

It is obvious that, in this case, (26) is not T times (25).
At each position r, the polarization directions of (25) and
(26) are no longer antiparallel. The spins of the basis pair
are canted, and the canting angle 8 is to first order in J,

JUomkS8= no(kr),2M'
(27)

provided 8 ((1. The easiest way to derive this result is to
take advantage of lemma I by choosing the z axis perpen-
dicular to the solute spin S. Then y=90', and Eq. (27)
follows by using (25) and (26) to obtain the Pauli spinors
(at a given r) to use in Eq. (18). The canting angle varies
from point to point. Accordingly from lemma II, Eq.
(12), the phonon-mediated interaction will have matrix
elements given by the spatial average:

M, = —V(cos8(r)cos8'(r) ),„. (2&}

T, will therefore be reduced. The precise meaning of
( ),„will be given in Sec. IV. This result, derived here
for a single magnetic solute, will be extended to the case
of a Snite atomic fraction c of solute spins in Sec. III.

The summary of this section is as follows: Spin-orbit
scattering causes the spin-quantization axes of the basis
pairs to tilt. The direction and magnitude of the tilt de-

pend on r and k. Despite these variations, lemma I
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shows that T, is unaffected. Exchange scattering by mag-
netic solutes causes the spin polarizations of each basis
pair to become canted. Lemma II shows that the
coherent coupling between canted basis pairs is reduced,
as given by Eq. (28). Consequently T, suffers a decrease.
Even though a BCS condensation utilizes singlet pairing,
the exchange scattering forces the condensate to have a
triplet contamination. This triplet fraction dilutes the
pair correlation engendered by pure singlet pairing and
weakens the matrix elements of the phonon-mediated at-
traction.

kii(ET, ) = mfil—4r, , (29)

was found. See SM's Fig. 3 and Eq. (38). Subsequently
Anderson's theory appeared and was soon confirmed by
many experiments. Thus it became clear that the
theoretical method of SM was faulty.

Abrikosov and Gor'kov (AG) treated magnetic and
potential scattering simultaneously. Interestingly, their
well-known result for magnetic impurities (which also in-
cluded potential terms):

III. EIGENSTATES %ITH EXCHANGE SCATTERING

As already emphasized at the end of Sec. I, we intend
to include the effects of exchange scattering only to order
c J . Two different approaches appear possible: The
first method starts with a BCS condensate for the pure
(superconducting) host and then employs perturbation
theory to find the way exchange scattering modifies the
ground and excited states. The second method begins
with the normal-state basis functions and incorporates
into each basis function the virtual admixtures caused by
the magnetic interactions. Subsequently, the condensate
is allowed to form.

It might seem at first sight that the two approaches
would be equivalent. But they are not. The fundamental
reason why virtual scattering and BCS condensation do
not commute is that the condensation is nonperturbative;
it is a nonanalytic response to the electron-phonon cou-
pling. The BCS condensation involves diagonalization
within a manifold having an approximately degenerate
basis set. The BCS truncation of the manifold to within
Rt0D of the Fermi energy (which recognizes the retarded
nature of the Frohlich interaction) applies to the new
(perturbed) basis states and not to the (original) pure-host
states. This consideration is the foundation of
Anderson's method. The intuitive understanding of this
mandate follows from the large disparity (- three orders
of magnitude) between the scattering potential within a
solute's atomic cell and the binding energy of a Cooper
pair. The solute potentials dominate, so the condensation
process must utilize the (perturbed) basis states that are
newly in force, irrespective of the size of the solute frac-
tion c

One should note that assignment of the BCS condensa-
tion to a more passive role need not always be appropri-
ate, e.g., if the perturbation is weak and slowly varying
when compared to the binding energy and size of a Coop-
er pair. Low-frequency electromagnetic response of a su-
perconductor exemplifies such an exception.

It is important to prove that the two theoretica1 ap-
proaches described above lead to contradictory con-
clusions. Fortunately the published literature provides
the needed analysis. The first comprehensive study of
both magnetic and nonmagnetic scattering on T, was the
work of Suhl and Matthias (SM)." SM's theory utilized
the first method described above; i.e., the BCS condensed
state {for the pure host) was subjected to perturbation by
the impurities. For nonmagnetic impurities, an exponen-
tial decrease of T, with 1/~, the impurity scattering rate,

IP —+ Q
—I/2 eik r&+g ei(k+. 0) r( ~ p+ ~i

q

where, from the interaction (2),

(30)

is identical to that obtained (for exchange scattering only)
by SM, Eq. (29) of Ref. 11. (Only an inconsequential
difference, 3.5 instead of 4 in the denominator, can be
found. ) The apparent acceptance of AG's theory and re-
jection of SM's can be attributed to the absence of a
potential-scattering contribution to Eq. (29). However
we have shown' that a very large exponential decrease of
T„c uased by potential scattering (equivalent to the de-
crease found by SM), is also present in AG's theory: See
Eq. (25) of Ref. l. AG "removed" the offending behavior
(without notifying the reader) by an unallowed alteration
of integration limits. The SM and AG theories for b, T,
are essentially equivalent; so both formalisms are contra-
dicted by the experimental verification of Anderson's pre-
dictions.

Some workers have indeed noticed that a contribution
to 6'r, from potential scattering, proportional to 1/r, is
missing from AG's final expression. However, the enor-
mity of the omission which, when corrected, would
reduce T, by 98% for 1% Ag or Au in Pb has apparently
not been emphasized. There is no "hidden term" that
can cancel such a decrease, so the theoretical method it-
self must be rejected. Other workers have tried to re-
move the offending term by transferring the BCS cutoff
from the electron energy spectrum to a limitation on a
sum over Matsubara temperatures, (2n +1)n T, . There is
no theoretical basis for such an artifice and, in any case, a
correct hT, for magnetic impurities does not emerge.

It would be dangerous indeed to suppose that the SM
and AG result for exchange scattering could be valid
when their methods fail so dramatically with mere poten-
tial scattering. Consequently, we now pursue a theory for
magnetic scattering which incorporates exchange scatter-
ing in the normal-state basis, so as to obtain a valid mani-
fold to treat a BCS condensation. Exchange coefficients J
are typically -0.1 eV, two orders of magnitude larger
than the binding energy of a Cooper pair. Consequently
this perturbed basis-state method must be utilized.

The basis states for the pure metal will be plane waves
with spin up or down: a or P. They will be normalized
in a volume 0, which we keep explicit because, surpris-
ingly, 0 wi11 become a relevant parameter. The per-
turbed basis state which carries the label ka is
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and

Wk =

Wk =

(1/2) JSuoQ

~k+q

(1/2)JSuoQ

~k+q

Ep. —iq.R-g siny. e
J

—iq-R.
+cosy e

j

(31)
qii, =JVi,(r)e'"'se(r),

where

JVi,(r) =—Ni, Q '
ni, (r)

and ni, (r) is the normalizing factor for se(r):

ni, (r) =(1+
l
Wl')

(35)

(36)

(37)

yi and P are the polar and azimuthal angles of the spin
S at R, and the e's are the electron energies of the host.
The perturbed basis state for the degenerate partner of
(30) is

with

W(r): g e' Wi, q
q

(38)

=N Q-'" e-'"'P
The canting angle 8(r) of the unit spinor se(r), relative to
z can be shown, using spinors such as as Eq. (14) and the
cos—,'8 identity, to be

l(k+q) r( We W&»P)

q
cos8(r) =

1+ W
(39)

(33)

Equations (30)—(33) are formal only, until we cope with
the singularities that appear in (31), (32), and especially in
the normalizing factors Ni, . The states (30) and (33),
which are partners in forming a BCS condensate, are de-
generate because we have assumed in (viii), Sec. I that the
spins I Si I are randomly directed throughout 4m solid an-

gle. It may be noted that (30) and (33) are the generaliza-
tions of (25) and (26) which account for all the spins IS.]
and which represent the virtual admixtures in the
momentum representation.

IV. WEAKENING OF THE PHONON-MEDIATED
MATRIX ELEMENTS

BY VIRTUAL EXCHANGE SCATTERING

The matrix elements which cause Cooper pairing will
necessarily be between perturbed basis pairs (%i, , % i,&)
and (%i,.~, % i, &), defined by Eqs. (30)—(33). Each basis
pair is, of course, a 2 X2 Slater determinant. (It is impor-
tant to keep in mind that the ka, —kp subscripts are
merely labels; and that the one-electron wave functions so
indicated have other spin and momentum components, as
expressed by W and W'. ) The computation of modified
matrix elements connecting Slater-determinant pairs is
sufficiently complex that we shall divide the analysis into
several parts. The treatment here will be perturbative
and formal. Apparent divergences will be resolved in
Sec. V.

A. Virtual mixing from the xy component of H

Consider Eq. (30), but without the term involving Wi, ,
caused by the z component of H, Eq. (2). The wave
function is (of course) a two-component spinor

g —1/2 ik r
ka k g e'q'W (34)

It is convenient to rewrite this function in terms of a nor-
malized spinor se(r), which is tilted by 8(r) from the z
axis. Accordingly,

The degenerate partner of (34) is obtained in a similar
fashion from Eq. (33):

—lq TWOe kq

—kP= 1
(40)

With similar definitions, (36)—(39), this perturbed state
can be written

„p=Ã„(r)e '"'s e(r), (41)

for which the unit spinor is canted now from —z by the
same angle, 8(r), as shown in Fig. 1(b).

A Cooper pair is synthesized from Slater determinants
of partners such as (35) and (41):

qii, (r, ) 4„ (rz)

i,ti(ri) qi i,&(rz)
(42)

When one employs assumption (iii) of Sec. I, the
phonon-mediated interaction is equivalent to
—V5(r, —rz). Accordingly, the relevant behavior of the
determinant (42) is 2)i,(r, r). It is a straightforward exer-
cise to show from Eqs. (35), (41), and (42) that

1
xli, (r, r) =Jv„(r) cos8(r) (a,pz

—p, a2)
2

(43)

In other words, cos8(r) is the relative singlet amplitude of
the basis pair when both electrons are near r. The r
dependence of JV&(r) reflects only the variation in elec-
tron density from point to point introduced by the
heterogeneous impurity distribution. The imputed triplet
amplitude, sin8(r), cannot be similarly derived because
the exclusion principle prevents parallel-spin electrons
from being at the same r. (The triplet amplitude is in-
herently a nonlocal two-electron operator. ) Nevertheless,
the sum of the squares of the two amplitudes must be uni-

ty. (The triplet amplitude has of course three com-
ponents; but we ignore such details here. )

The matrix element Vi,.i, of the (simplified) Frohlich in-
teraction between two perturbed basis determinants is,
after the 6rst integration utilizing the 5 function
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Vk.k= —V k. r, r k r, r r, (44)

which reduces immediately, on using Eq. (43), to

Vk k= —V cos8k r cost9kr k. r kr d r . (45)

Vk k depends explicitly on the impurity locations in view
of Eqs. (31) and (36)—(39}. It is of course convenient to
take an impurity average at this point. Whereupon

Vk,k™=—VQ '& cosek. (r)' cosek(r)™&,„. (46)

The angular brackets indicate a spatial average. Factori-
zation of the impurity averages in (46} is justified by our
neglect of terms which are of higher order than J .
Equation (46) indicates the promised interpretation of Eq.
(28), for which Q had been taken to be unity.

B. Virtual mixing from the z component of H

Treatment of virtual mixing arising from the z com-
ponent of the magnetic interaction proceeds in a fashion
similar to that given above. The first wave function of a
basis pair is, after inspecting Eq. (30),

g —1/2eik r& 1+ ~ eiq. rWe
ka k kq

q

(47}

where Wkq is defined by Eq. (32). The degenerate partner
is, from the terms involving p in Eq. (33),

=N~ Q 1/2e —ik rp '1 ——g e iq r W„
q

(48}

The Slater determinant of this basis pair is easily evalu-
ated when both electrons are at r:

Sk(r, r)=Nk Q

where

1—(aiPq —Pia2) Fk(r},
2

(49)

Fk(r)= I++ e'q'Wkq 1 —g e 'q'Wk'
q q

If we define W'

(50)

then

W'= ~ 'q'W',
kq

q

(51)

Fk(r) =1—
~

W'~ +cross terms . (52)

We will argue in Appendix A that the cross terms can be
neglected; so if we tentatively discard them, and note that

N' =[1+& i
W'i'& ] (53)

the singlet amplitude is reduced (from its value for a pure
superconductor) by

1 —/W f'

1+ & /
W'/'&. „

(54)

Observe that this amplitude reduction has the same form,
Eq. (39), as that caused by spin canting in the x~ plane.

The minus sign in the numerator of Eqs. (39) and (54)
is the noteworthy feature of exchange scattering. For
nonmagnetic impurities the sign is positive. In this latter

case, the numerator and denominator cancel; whereupon
Anderson's theorem for dirty superconductors follows
immediately.

When the impurity averages of
~
W~ and

~

W'~ are tak-
en, it is clear from Eqs. (31) and (32) that the mean reduc-
tion in singlet amplitude from the z components of H
will be half that caused by the xy canting components.
(The average of sin g. is —', , whereas the average of cos g~.

is —,'.) That is to say, the three Cartesian coinponents of
H contribute equally to the weakening of the phonon-
mediated interaction. This result had to emerge, given
the isotropy of the fixed-spin model.

C. Weakened phonon-mediated matrix element

In view of the foregoing observations, one can express
the total pair-scattering matrix element, using Eq. (46)
and the preceding subsection

V [(1/2)JSuoQ ']
Vkk™—= ——1 —2Z; g

q (ek —ek+q)'

[(1/2)JSuoQ ']—2Z; g i . (55)
q (ek ek +q)

We have assumed that ~W~ is small enough so that a
first-order expansion of the denominators in Eqs. (39) and
(54) is allowed, thus accounting for the factors of 2. Z, is
the number of magnetic impurities in the volume Q. The
magnetic-impurity-spin polar-angle factors have summed
to unity, as discussed above. (The J contributions from
subsections A and B are additive. )

It is necessary to emphasize that Eq. (55}is a formal re-
sult only. The integrations (sums) over q are divergent.
This difBculty is common to perturbation treatments of
virtual scattering. The remedy is to replace the formal
terms in Eq. (55) by their accurate counterparts derived
from a partial-wave analysis of the virtual scattering.
This treatment is presented in Sec. V. It turns out that
after this analysis is complete, a divergence involving the
impurity sum remains. This diSculty is a deep one, and
is overcome only by recognizing that the theory is
relevant to a bound state, and that the bound-state radius
provides the needed cutoff.

The physical interpretation of Eq. (55} should never-
theless be clear. Paramagnetic virtual scattering causes
the singlet fraction of each determinantal basis pair to be
reduced. The triplet fraction is correspondingly in-
creased. When the phonon-mediated interaction is ap-
proximated by —V5(r, —rz}, only the singlet fraction of
each basis pair contributes to Vk.k. Reduction of T, is
therefore caused by the exchange-scattering-induced trip-
let contamination of each determinantal basis pair used
to synthesize the BCS condensed state.

A BCS condensate (at T=O) is a stationary state, so it
and its Cooper-pair components are time independent. It
is not correct to say that the pairs are broken (or are be-
ing broken} by the s S; interactions of Eq. (2). The pairs
merely have a diminished binding energy caused by the
s-S;-enforced triplet contamination. The coherent ampli-
tude of the condensate is reduced, but each basis pair
remains as a component of the BCS wave function.
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V. T, REDUCTION
FROM EXCHANGE SCATTERING ONLY

In the previous section we showed that the coherent
matrix element, Vkk, between 2X2 Slater determinants
of perturbed basis pairs can be written,

Vi, g
= —VQ '( cos8), (r) ) ( cos8g(r }), (56)

where the brackets indicate both a spatial and impurity
average. The indicated factorization is justified from Eq.
(55) because terms of order J are intentionally neglected.
The canting angles, 81,(r}, in Eq. (56) include the canting
action caused by all components of the spin Hamiltonian
H (including the z component}. It is possible to show

( cos8i,(r ) ) =—1 —2i Wi, i (57)

where i Wl, i
is the relative probability contained in the

virtual spherical waves surrounding the magnetic solutes
(compared to the plane-wave part).

In order to compute i W„i we return to Eq. (25), where
the virtual exchange scattering has been expressed in
terms of /=0 partial waves. However, we must include
the spherical waves surrounding each magnetic solute at

I R) I:

that the reduction in singlet amplitude from the z com-
ponents, given by Eq. (54), corresponds to a canting (of
otherwise antiparallel spins) along the z direction. Ac-
cordingly, from Eqs. (39) and (54)

eik r&
ka

Jv,mS;|,.„cosk ir —R, ~

ge,
~

(a cosy, +Pe 'sing, )
4M

(58)

We have used, ' no(p) = —cos(p) /p. In order to evaluate
the integral over each spherical wave, we cut off the radi-
al integral at R, defined by

4m

3
(59)

[We have used the postulated isotropy of the impurity-
spin directions. Cross terms linear in J, which occur in
the normalization of (58), drop out because the impurity
positions are random. ] The integral is trivial, i.e., 2nR,
whereupon (with nvo = 1),

J rn Sc~R
Wl,

s~nA'4
(61)

Since the number of impurities is Z; =nc 0, it follows
that

2 '2
JvomS & coskr

i W„~ =nc f 4n.rzdr . (60)4M'

tive probability assigned to the (standing) spherical waves
surrounding the scattering centers would dominate the
plane-wave components if 0 were taken large enough.
However, only those scattering centers within a Bohr ra-
dius of the proton are relevant to the ground state; so one
should limit 0 to the space occupied by the ground-state
wave function.

The foregoing conclusion is extremely interesting: The
effective Hamiltonian arena depends on the outcome of
the bound-state calculation, i.e., the Hamiltonian must be
selected to be self-consistent with its own solution. Such
a logical structure is not unprecedented and, for example,
finds an analog in renormalization-group theory.

In the present problem the appropriate value of R will
be (approximately) the BCS coherence length go. A more
accurate relation follows from the pair-correlation ampli-
tude which, from Appendix D of BCS, falls exponential-
ly as exp( ringo) —Accordi. ngly, after squaring this am-
plitude, we set

The appearance here of R, —Q', is of extraordinary im-
portance, because it is just this feature which leads to the
unique predictions of the present theory. It is worth not-
ing that the lt dependence of i Wi, ~

has disappeared, and
so ( cos8 ), Eq. (57), is also independent of k.

R =
—,'m.go .

go is related to T, . From Eq. (5.50) of BCS,

Avp
$0=0.18

B c

(62)

(63)

A. Determination of the R cutofF

It may seem (at first) disconcerting that Eq. (61) de-
pends on R, which is related to 0 through Eq. (59). Were
we dealing with an unbound-state problem, such an R
dependence would indicate an incorrect formulation of
the physical question. However, we are concerned with a
bound state of Cooper pairs in a BCS condensate.

Suppose one were treating a hydrogen atom in the
presence of strong scatterers randomly distributed
throughout space. One would be entitled to use a quasi-
plane-wave basis, as we have done here. Again, the rela-

With Eqs. (3), (57), and (61)—(63) together with the densi-
ty of states per spin (per unit volume),

X=I v /2m%' (64)

where vF is the Fermi velocity, and with

l =UF'T (65)

7T p(cos8) =1—
21,

(66)

the mean free path for exchange scattering only, one
readily finds
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This mean canting-angle cosine, associated with triplet
contamination (caused by exchange scattering), is a very
useful theoretical result, even though its validity is limit-
ed to the dilute limit. A generalization of Eq. (66} is
given in Sec. V C.

B. Initial slope of the T, decrease

The BCS T, equation still applies after a modification
of the effective coupling constant according to Eq. (56):

A,,s = iL( cose )', (67)

where the BCS A, is No V. Accordingly, the BCS T, equa-
tion is now,

—1/A, ~kz T, = l. 13k'AD e (68)

E

l.04+ 1.54K,E
(70}

If A, E =0.5, A, =0.28. Needless to say, Eqs. (66) and (69)
apply only in the dilute limit, i.e., for go/1, « l.

That the (theoretical) initial slope of hT, cannot be a
universal constant was noticed by Jarrel, ' who calculat-
ed T, numerically from the Eliashberg-Migdal equations
(incorporating the effects of magnetic impurities) for nine
values of A,E. His initial slope, dT, /dc, varies with A,E in
close accord with the analytic prediction of Eq. (69),
upon using the A, E —+A, conversion, Eq. (70).

C. Fall of T, versus 1/~, from T,o to zero

We need to generalize Eq. (66) so that T, can be pre-
dicted for an extended range of solute concentration.
Consider a basis state 4&& at the point r, as was done in
Sec. II D. The canting angle at r will have contributions
from all of the spherical waves (surrounding each solute
spin within the range R). The vector sum of these contri-
butions constitutes a random walk on the surface of a

The change in T, relative to T,o (for the pure metal) can
easily be calculated to first order in the impurity concen-
tration c, which is equivalent to first order in 1/r,
From Eqs. (63) and (65)—(68)

0.57A'

B c
S

(The numerical coefficient is 0.18m.) This equation for
the initial slope of hT, is (in magnitude) similar to the
traditional one, Eq. (29},but analytically it is profoundly
different. The factor 1/A, shows that the initial slope
(versus 1/v, ) depends on the superconductor and, conse-
quently, is not a universal constant. Weak superconduc-
tors "lose their T,"more rapidly than strong ones.

It should be noticed that A, is the BCS coupling con-
stant, and differs from a similar parameter A, E employed
in strong-coupling theory. A relation between A, and A,z
can be derived by equating T, from the BCS equation to
T, given, say, by McMillan's equation' with p'=0 [i.e.,
Coulomb interactions are ignored —assumption (vi) of
Sec. I]. The relation so derived is

hemisphere beginning at the pole, 8=0. Since the max-
imum canting angle is 8=90', the equator is a (reffecting)
boundary. This random walk (or diffusion} problem is
solved in Appendix B. The solution leads to

'2 —1

(cose) =—+—1+5 — e
1 1 u 2„ (71)
2 2 2

where

lim (cose) =
—,
' .

@~00
(73)

The reduction in singlet fraction of a canted pair, from
Sec. IIB or Eq. (43) is cos28. Consequently, the limit
(73) means that the singlet fraction can fall only to 25%.
This lower limit is just the expected singlet fraction for a
pair of electrons having random spin orientations. Ac-
cordingly A,,a; Eq. (67), can fall only to —,'A, ; i.e., T, can fall

only to T,oexp( —3/A). (For A, =0.25, T, /T, 0~10
which is essentially zero. )

When the conduction electrons have a mean free path I
which is smaller than the coherence length go (for a pure
superconductor), the effective coherence length is re-
duced. A random-walk analysis during the coherence
time go/U+ leads to'

s= Qlko ~ (74)

One needs an interpolation formula that smoothly con-
nects both limits, 1&$0 and I )go. Such an expression
can be found easily:

l2
Ces'= Co

1p+

1/4

(75)

T, can now be calculated from Eqs. (67) and (68), with
(cose) given by Eqs. (71) and (72), and g,z determined
from Eq. (75). The required go is still Eq. (63), which de-
pends explicitly on the T, being calculated. An iterative
procedure converges rapidly. One may first use T, —T,o
in Eq. (63), calculate T, as just described, and repeat us-

ing the computed T, in Eq. (63), etc.
If spin-disorder scattering only is taken into account,

then I =l„Eq. (65). T, versus 1/r, is shown in Fig. 2 for
four A, values between 0.15 and 0.30. The calculated
curves apply to a metal having e& =300 K and
uz= 1.0X 10 cm/sec. These calculations have neglected
the influence of (spin-independent) potentia1 scattering
arising from the paramagnetic solutes. This influence is
dramatic, and is one of the new predictions of the theory,
to be elaborated in Sec. VII.

One should not conclude from the curves in Fig. 2 that
we have violated our resolve to employ only J effects in
the theory. T, is simply a highly nonlinear, transcenden-
tal function of the spin-disorder scattering cross section.

u =n g—,fr/21, .

We have replaced go by g,s for reasons which will soon
be apparent. Equation (71) agrees with Eq. (66} when
u «1, as it must. The large-u limit is particularly in-
teresting for it satisfies another rigorous requirement:
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FIG. 2. Variation of T, with magnetic-solute concentration
(measured in terms of the spin-disorder scattering rate, 1/~, ) for
four BCS weak-coupling superconductors. (T,o= 1.138De ' ~.)

VI. COMPENSATION
OF THE PARAMAGNETIC-IMPURITY
EFFECT BY ORDINARY IMPURITIES

which we treat only to order J . (Multiple scattering
from solutes is also ignored. } The nonanalytic nature of
the superconducting transition forces a linear influence,
1/r„ to exhibit a highly nonlinear consequence T, .

(with lp:Usurp) is needed to evaluate g,s. Since 1 and (,ff
decrease as the solute fraction cp increases, the number of
magnetic solutes that influence a Cooper pair in the BCS
condensate becomes smaller. Accordingly, potential
scattering counteracts the T, decline caused by exchange
scattering.

The algorithm for calculating T, (~„rp), already de-
scribed following Eq. (75), remains unchanged. One
merely uses I from Eq. (78). Figure 3 shows the recovery
of T, towards its initial value, T,p, which results from
adding nonmagnetic impurities. The solid curve is for a
magnetic-solute fraction that reduces T, (from T,p

=3.6
K}by 150 mK. The dashed curve is for a magnetic-solute
fraction which (when acting alone} reduces T, by 1.3 K.
The horizontal axis is the potential-scattering rate, which
is proportional to the nonmagnetic-solute concentration.

Experimental study of magnetic compensation must
recognize that superconductors do not accurately obey
assumptions (ii) and (v) of Sec. I. The gap parameter 6 is
generally not isotropic. A consequence of an anisotropic
b, is that T,p will be larger than what one would (other-
wise) expect if the mean value of b, occurred everywhere
on the Fermi surface. Accordingly, when impurities are
initially added to a pure superconductor, a small decrease
in T, results because scattering tends to average the 5's
for the initial and final k states. T, levels off when 1/rp
exceeds b, /R. ' Subsequently, T, may change gradually
with further additions of nonmagnetic solute because as-
sumption (v) is only an approximation. In view of these

We consider now a superconductor which has ordinary
impurities as well as magnetic impurities. The scattering
potential from an impurity at R can be represented by
the interaction

3.6 3.6

Hp=Pvp5(r —R, ) . (76)

P is typically —1 eV. If the solute fraction is cp, the
scattering rate is 3.5

Tp

2mP~Npep

nR
(77)

1 1 1—=—+-
l l, lp

(78)

and is —10' —10' sec ' for cp =0.01 [depending on the
solute residual resistivity (pp= m /ne 7p) caused by poten-
tial scattering]. pp is frequently in the 1 —10 pQ cm/%
range. The ratio of (77) to 1/r„ the corresponding rate
for exchange scattering, will often be between 20 and 200.

As discussed in Sec. I, potential scattering by itself does
not signi6cantly alter T, . The widely held misbelief that
this insensitivity remains valid, even when exchange
scattering is also present, stems from AG's work (which
sought to include both potential and exchange scatter-
ing). Their finding, Eq. (29), does not depend on ~p.

However, it is apparent from Eq. (75) that potential
scattering profoundly affects the paramagnetic-impurity
effect. The total mean free path l, given by

I

I

I
I
I
I

I3.4 —
]

I

I

I

I

I

I

OD ——300K
X, = 0.22
T =36K
vF =10 crn/sec

- 2.7

2.4

3.3
0

i I i

2 3 4

1/~o (10'~ SeC ')

FIG. 3. Compensation of T, with doping by a nonmagnetic
solute (measured in terms of the potential-scattering rate, 1/~o)
for two alloys having magnetic-solute concentrations which
reduce T, from T,o by 150 mK and 1.3 K.
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two latter efFects, T, ( ~,7 p) must be measured so that the
magnetic-impurity efFect,

ET,(~„rp)= T—,(~„rp) T—,( ~,rp), (79}

represents the T, change caused only by exchange
scattering (appropriate to each concentration of nonmag-
netic solute}.

Merriam, Liu, and Seraphim' discovered that adding
dilute concentrations of Pb or Sn to In significantly re-
duced the paramagnetic-impurity effect caused by a small
(-5 ppm) concentration of Mn. T, changes caused by
Pb or Sn (alone) were first determined accurately. ' The
Mn concentration chosen was intentionally small in order
to stay well below the solubility limit, which is -60
ppm. ' The hT, data of Merriam, Liu, and Seraphim,
defined according to Eq. (79), are shown in Fig. 4 for ten
samples of In-Mn-Pb. The theoretical curve shown in-

volves just one adjustable parameter, ~„ in order that
b T, = —42. 5 mK, the observed value without Pb. Tp(cp}
for Pb in In was determined from the measured residual
resistivity. Observe that the compensation for 2 at. % Pb
is about 80%.

Data for In-Mn-Sn samples were similar, and were
measured to verify that the compensation effect did not
depend on the third element. ' Merriam, Liu, and Sera-
phim also determined the initial slope of the T, decrease,
Sec. VB, by measuring LT, of 18 dilute In-Mn alloys
with c in the 1-10ppm range. The observed slope was

large, i.e., characteristic of magnetic solutes having a lo-
cal moment, when compared to the initial slope, say, for
Al-Mn, which is 30 times smaller. (Presumably, Mn does
not carry a moment in Al. )

Boato, Bugo, and Rizzuto' have also studied the In-
Mn-Pb system. They measured four samples having 50-

ppm Mn. The largest hT, was —21 mK (for cpb=0},
and the maximum compensation was -25%.

It is clear that compensation of the paramagnetic-
impurity effect, predicted theoretically in this paper,
should be subjected to further experimental study, espe-
cially in systems devoid of metallurgical difficulties. The

Th-Gd system, with nonmagnetic solutes such as Ti or
Zr, is a promising one. (La-Gd would also appear to be
a favorable system if it were possible to control the oc-
currence of dhcp and fcc phases. )

Compensation of the paramagnetic impurity effect has
also been observed as a consequence of radiation dam-
age. ' Pure In and In + 400 ppm Mn foils were irradiat-
ed with Ar ions. 90% of the 2.2 K decrease in T, (caused
by the Mn) was suppressed by an Ar fluence of 2.2 X 10'6
cm

VII. SELF-COMPENSATION
OF THE PARAMAGNETIC-IMPURITY EFFECT

In the previous section we treated the recovery of T,
caused by the addition of nonmagnetic solutes. The com-
pensation results merely from the extra limitation of the
mean free path, which reduces the number of magnetic
solutes that influence a Cooper pair in a BCS condensate
(as elaborated in Sec. V C).

A similar reduction in I can arise from the potential
scattering associated with the magnetic solutes them-
selves. One needs only to replace cp by c in Eq. (77).
Accordingly, both terms in Eq. (78) are proportional to
c . Self-compensation is a dramatic efFect because the
potential-scattering cross section is generally 20-200
times larger than that for exchange scattering.

Figure 5 compares T, (c ) for magnetic solutes having
potential to exchange-scattering ratios of 0, 20, 50, and
100. The critical value of c,where T, plummets to zero
can be larger than that when only exchange scattering
occurs by more than an order of magnitude. It is clear
from Fig. 5 why serious attempts to predict the size of
the magnetic-impurity effect could not succeed; the
relevance of potential scattering had not yet been recog-
nized. The potential-scattering cross section depends, of
course, on both the solute and the host, so similar

0.8
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CI

-40
vF 1.74x10 cm/sec
1/~s = 7.9x10 sec

O 0.6

OI- 0.4

02-
20/xs

10 20

50/7
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1/t = 100h'

40 50
I I

1

Atomic Percent Pb

FIG. 4. Compensation of T, in In-Mn-Pb vs Pb concentra-
tion for 5-ppm Mn. Data are due to Merriam, Liu, and Sera-
phim, Ref. 16. 1/~, was adjusted in the theoretical curve so
that hT, = —42. 5 mK without any Pb.

1l~s (10"sec ')
FIG. 5. Self-compensation of T, in a superconductor for

which the potential to exchange-scattering ratio is 20, 50, and
100. The curve labeled 0 is the expected T, variation without
self-compensation. (The magnetic-solute concentration is pro-
portional to 1/~, .)
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behavior in a variety of hosts (for the same magnetic
solute) cannot be anticipated.

An important feature of the self-compensated T,(c )

curves of Fig. 5 is that they exhibit significant positive
curvature over a considerable range prior to their fall to-
wards zero. In contrast, the curves of Fig. 2, where only
exchange scattering occurs, have negative curvature
throughout. Many examples of T, (c ) data with positive
curvature have been noted. Some workers have sug-
gested that solutes which exhibit positive curvature do
not have local moments, but rather introduce only spin
fluctuations. In view of the likely occurrence of self-
cornpensation, illustrated in Fig. 5 for a model with fixed
local spins, the curvature of T, (c ) should not be used as
an indicator of transient spin fluctuations.

VIII. CONCLUSIONS AND DISCUSSION

A. Recapitulation

The fundamental imperative recognized in this work
stems from the fact that exchange potentials of paramag-
netic impurities are two orders of magnitude larger than
the gap parameter 6 of a Cooper pair. Consequently the
quantum mechanics of the scattering must be appropri-
ately solved prior to the BCS condensation (viz. , Sec. III).
The normal-state wave functions must be perturbed only
to terms linear in the exchange constant J, so that one
can continue to specify states meaningfully with ka, —kP
labels. That is, the plane-wave parts of Eqs. (30) and (33)
must retain sufficient amplitude to implement a pairing
algorithm.

Were one to use instead exact eigenstates (for a sample
having a large volume), then all one-electron states would
have zero mean spin polarization. Any pair selected
would, on average, be 75% triplet and 25% singlet, i.e.,
the same average values for two electrons in the normal
state.

The scattered spherical waves surrounding each mag-
netic impurity, cf. Eq. (58), create spin canting of the
basis pairs and lead to a reduced Vz„, Eq. (56). The 1/r
dependence of the spherical waves requires introduction
of a radial cutoff (Sec. V A). Fortunately a natural cutoff
is at hand in a bound-state problem. For a BCS super-
conductor the appropriate cutoff is -ng, tr/2 g,s; Eq. .
(75), depends on both $0 and the mean free path l. As T,
decreases with increasing magnetic-solute concentration,
(0 increases and allows an ever expanding number of
magnetic solutes to weaken each Cooper pair. This ex-
pansion accelerates the fall of T, near the critical concen-
tration, as shown in Fig. 2. The T, decrease is neverthe-
less continuous. In this connection one must remember
that although $0 is a function of T„ it is essentially in-
dependent of T for a given T, . Tinkham evaluated Eq.
(5.45) of BCS,' and showed that the shape and range of
Cooper-pair correlation functions for T=O and T, are
similar. Accordingly, the BCS relation between $0 and
T„Eq. (63), has been adopted in this study.

The decrease in g,s; which occurs whenever the mean
free path l becomes shorter than $0, leads to two effects.
Since the number of magnetic solutes that can influence

each Cooper pair decreases when gdt decreases, caused ei-
ther by nonmagnetic impurities, other disorder (e.g., radi-
ation damage), or by potential scattering of the magnetic
solutes themselves, T, acquires a significant compensa-
tion, counteracting the imputed decrease that would re-
sult from exchange scattering only. Observed compensa-
tion by nonmagnetic solutes, illustrated in Fig. 3, has
been reported' for In-Mn-Pb (Fig. 4) and In-Mn-Sn sys-
tems. Compensation caused by radiation damage

' has
also been found.

Self-compensation, Fig. 5, can strikingly reduce the
paramagnetic-impurity effect and increase substantially
the value of the critical concentration at which T, falls
(essentially) to zero. Also, self-compensation can cause
positive curvature of T, versus 1/r, in the intermediate
solute concentration range (preceding the rapid fall of T,
to zero).

Finally, a unique feature of the theory is that the initial
slope of T, versus 1/r„Eq. (69), is inversely proportional
to the BCS electron-phonon interaction strength, k.

B. Dynamic magnetic-impurity efFect

As already emphasized in the Introduction, a more
realistic model for treating the paramagnetic-impurity
effect would allow the local spins [S;J to be quantum
mechanical (instead of classical and fixed). Each S; has
2S + 1 magnetic sublevels which must be included in the
Hilbert space of the superconductor. Adoption of this
expanded freedom leads obviously to an expansion in
theoretical "bookkeeping" activities. We have carried
out that task and report here just the final result and the
physical origin of the change.

A tractable theory is possible only if one assumes that
the 2S + 1 magnetic sublevels for each solute spin are de-
generate. This simplification is equivalent to neglecting
S; SJ interactions (arising, say, from indirect exchange),
and is analogous to the random-orientation postulate,
(viii), of the fixed-spin model.

Each term of a normal-state basis function cf. Eq. (58),
should include a Z =(2S + 1) -component spin function
for the X solute spins in the volume Q. The matrix ele-
ment V&& of the phonon-mediated interaction is to be
calculated, as usual, between antisymmetrized basis pairs
(ka, —kP) and (k'a, —k'P). Each element of a basis pair
is a 4Z-component vector (which recognizes the freedom
of the two conduction-electron spins and the Z com-
ponents of the solute-spin system). One must note, once
again, that ka, —kP are labels used to catalog wave func-
tions of considerable complexity.

The coherent matrix element, V&.&, is nonzero only to
the extent that the (ka, —kP) and (k'a, —k'P) basis pairs
have overlap in their 4Z-component spin functions. On
account of the spin adrnixtures in the basis pairs caused
by the magnetic Hamiltonian, Eq. (2), V&.& will have an
exchange term as well as a direct term. For the fixed-spin
model, the exchange terms double the loss to V& & result-
ing from the o. and o. direct terms. o., leads only to a
reduction in the direct term, but it is twice as large as the
direct-term reduction for o.„and o. . The o. and o.
terms (for the dynamic model) are associated with transi-
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tions between sublevels of the IS, I solutes; and it turns
out that the exchange terms are then zero to order J .
All other details remain the same. The net result is that
the magnetic-impurity effect for the dynamic-spin model
can be found from the Sxed-spin model merely by letting

J S(S+1}~—'J S(S+1) . (80)

It is sometimes put forward that the magnetic-impurity
effect is associated with an absence of time-reversal sym-
metry. The Hamiltonian for the fixed-spin model does
indeed lack time-reversal symmetry. However, the Ham-
iltonian of the dynamic-spin model has time-reversal
symmetry. The magnetic-impurity effect should rather
be attributed to the spin-canting of basis pairs, as ela-
borated in Sec. IID, which occurs whether or not the
solute Hamiltonian, Eq. (2), has time-reversal symmetry.

Inclusion of Coulomb interactions in this theoretical
approach should be an interesting exercise. Also of in-

terest would be extension of the method for Kondo im-

purities and for solutes that can be described by an An-
derson Hamiltonian. It seems likely that other topics in
inhomogeneous superconductivity may need to be reex-
amined.
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APPENDIX A

terms arising from both determinants, evaluated at
r& =r2=r, cancel identically.

APPENDIX 8

Consider the wave function (58). Without the scat-
tered spherical waves from the solute spins t S; I, the spin
polarization at any point r would be in the 2 direction.
However, when the P (spin-down) components of (58) are
superposed, the polarization direction is rotated. The
effect of the incremental rotations caused by the Z; solute
spins can be likened to a random walk on the surface of a
unit sphere. Such a sequence is analogous to a diffusion
problem om a spherical surface for which all of the
diffusing particles start from the "North" pole at t =0.

Suppose M(8, t)de is the probability of finding the
unit polarization vector in the solid angle dao at time t. (8
is the polar angle; the azimuthal angle does not appear on
account of axial symmetry. } The diffusion equation is, ac-
cordingly:

BM D 8 . BM
(Bl)

cr =21+1,
so that the solution (for the surface of a sphere) is

(B4)

M(8, t}=g (21+1)e "'+" 'P&(cos8) .
1=0

(B5)

If one were interested in the mean value, (cos8),
versus time

(cos8) =I M(8, t )cos8( —,'sin8 18) . (B6)

Only the term involving P, (cos8) survives the integra-
tion, and one finds

(cos8) =e (B7)

The mean decays from unity (at t =0) according to a sin-

gle exponential.
The actual problem at hand involves the canting angle

of two spins, initially antiparallel. Consequently, the
maximum canting angle is —,'~. If the Srst spin passes the
equator, the second spin passes in the opposite direction.
Thus the problem is equivalent to diffusion on the surface
of a hemisphere (with the equator being a reflecting
boundary). The solution, which is confined to the inter-
val [0,—,'~], can be written immediately from symmetry,
since the second spin starts from the "South" pole.

where D is the diffusion constant. This equation has the
general solution

M(8, t }= g c,e "'+" 'P, (cos8), (B2)
1=0

where IPI(x)I are the Legendre polynomials; and Ic&I
are coefficients to be determined by the initial condition
at t=0, which is

M(8, 0)=25(cos8—1) . (B3)

The factor 2 occurs because the "volume" element is

—,'sine d 8. By standard procedures one finds
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M(8, t ) = g —(21+ 1 )e
1

l=0

X [Pt(cos8)+P&( —cos8) j . (B8) 0.9

M(8, t)= g (4n+1)e "'"+" 'Pz„(cos8) .
n=0

(B9)

Our interest is the average, (cos8), which is now,

(cos8) = I M(8, t)cos8sin8d8 .
0

All n's contribute to ( cos8), unlike the case for a com-
plete sphere, Eq. (B7). The required integrals are
known:

(B10)

The factor —,
' occurs because the normalized volume ele-

ment is now sined6. The odd-I Legendre polynomials
cancel, the even-I add, so A

0
O
V 07
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~

2n ~ I ~
n

I

~

~

( —1)"(2n )!Pz„(x)P,(x)dx =
0 2 "+'(1 2n)—n!(n +1)!

Accordingly,

1 ( —1)"+ '(4n + 1)(2n)!
„=~

2 "+'(2n —1)n!(n + 1)!
—2n (2n + 1)DtXe

(Bl 1)

(B12)

FIG. 6. Comparison of the exact (cos8) vs time with an
analytical fit (dashed) for diffusion on the surface of a hemi-
sphere. Equation (71) is based on the analytical fit. (D is the
surface diffusion coefficient. )

(B12). We found (by trial and error) an excellent analyti-
cal fit, which is the dashed curve in Fig. 6. The function
found is

Observe that as t ~ ao, (cos8) ~—,', which is the correct
average for a uniform distribution on the surface of a
hemisphere.

The variation of ( cos8 ) with Dt is shown by the solid
curve in Fig. 6, and was computed numerically from Eq.

(cos8) =—'+ —'[1+5D t ) 'e (B13)

This function leads to Eq. (71) through the substitution,
2Dt =u, which is required so that Eq. (71) agrees with
Eq. (66).
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