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Imaging of magnetic domain walls in iron with a magnetic force microscope:
A numerical study
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A two-dimensional, numerical, micromagnetic model was applied to understand the images of
180' walls in iron thin films obtained with a magnetic force microscope (MFM). Assuming the tip
stray field would not affect the wall magnetization, the model predicts a contrast well below the
sensitivity of the MFM. However, this assumption is unrealistic. The inclusion of the tip stray
Qeld in the simulation shows that the domain wall is polarized by the tip stray field. The resulting
contrasts from the polarized walls differ drastically from the contrasts expected from undisturbed
walls but agree well with experimental observations. Such polarization effects make the authors
doubtful about the applicability of the MFM to studies of other micromagnetic phenomena in soft
magnetic materials.

I. INTRODUCTION

The impressive successes of various scanning probe
microscopes such as the scanning tunneling microscope
(STM), the atomic force microscope (AFM), and devices
derived from them fed hopes of achieving a similar res-
olution in imaging magnetic structures by means of a
scanning probe technique as well. A working magnetic
force microscope (MFM) was described by Martin and
Wickramasinghe. ~ Subsequent work published by several
groups was mainly devoted to the imaging of writ-
ten bit structures in various kinds of magnetic recording
materials and to the understanding of the contrast mech-
anism in magnetic force microscopy. 5 ~ Attempts to in-

vestigate further details of the magnetization structure
led to domain wall images in permalloy thin films, iron
whiskers, and magnetite. After this no more signifi-
cant results obtained by means of MFM are known to
the authors.

Several authorss s attribute this (lack of) development
to circumstances complicating both the acquisition and
interpretation of MFM images.

(1) The MFM contrast results from the force (or force
gradient) on a tiny ferromagnetic tip in the magnetic
stray field emanating &om a ferromagnetic sample. To
reconstruct the magnetic stray field &om the MFM re-
sponse requires an accurate knowledge of the tip magne-
tization; in general one does not have this knowledge.

(2) In principle, knowledge of the magnetic stray field
is not sufficient for obtaining the magnetization M of the
sample. Under optimal conditions only a map of the mag-
netic charge density —V' - M can be obtained. A recon-
struction of the magnetization M from this is impossible.
To interpret the MFM images, magnetization models for
both the sample and the tip have to be assumed, and
the calculated MFM response from the models has to be
compared with the observed contrast.

(3) The resolution of the MFM is determined by sev-
eral parameters: the minimal detectable force or force

gradient for a given microscope, the ability to produce
"optimal" tips, and the ability to operate the MFM at
a minimal scanning height. The minimal scanning height
mainly depends on the surface roughness, leading to ad-
ditional contrasts in the image.

(4) The stray field produced by the tip itself can
severely disturb the magnetic structure in the sample.

On iron thin films, as an example, we will demonstrate
here —in contrast to the claims of other authors
that these peculiarities of the MFM make it impossible
to obtain information about the structure of magnetic
domain walls in soft magnetic materials using a magnetic
force microscope.

II. EXPERIMENTAL DATA

Domain wall observations by means of magnetic force
microscopy have been reported by several authors.
These investigations cover domain walls in Permalloy
thin films, iron whiskers, ' and magnetite. From
their images and &om our own experiments with thin
epitaxial iron films of several thicknesses —a representive
image is shown in Fig. 1—several general observations
can be made.

(1) The contrast of a 180' domain wall far f'rom a fork
into two 90 walls and far &om Bloch lines always appears
to be white in the image, i.e., the contrast is caused by
an attractive interaction between the wall and the tip. In
all our experiments with films of different thicknesses we
never found dark contrasts. With respect to the differ-
ent symmetry of the walls (Neel walls, Bloch walls) one
would expect difFerent kinds of contrasts. For instance,
depending on the chirality of the wall one would expect
both segments showing white (attractive interaction) and
dark contrast (repulsive interaction).

(2) The contrast caused by a magnetic domain wall in
a MFM is approximately 1 pm wide, quite independent
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the magnetic stray field —and consequently the MFM
contrast —can be calculated.

The employed numerical model follows the ideas
developed by Brown and LaBonte, LaBonte, and
Aharoni. Additionally, several modifications proposed
later by other authors "' to improve the computational
performance have been adopted as well.

The minimum of the total energy is found by time in-
tegration of the Landau-Lifshitz-Gilbert equation (LLG)
without precession term in dimensionless form

dm
dt'

= —m x (m x h, tr),

FIG. 1. MFM image of a 180' (Bloch) wall forking into
two 90' walls in a 50 nm thick Fe (100) film. The film was
covered by 30 nm ZnS. The scanning height was about 50 nm
above the outer ZnS surface. According to our experiments,
all noncharged walls give the same white contrasts.

of the peculiarities of the experimental setup (i.e., tip
shape, scanning height, MFM operation mode, etc. ) and
the investigated material and wall type.

(3) As demonstrated by Mamin et aL, s the tip stray
field in their magnetic force microscope is able to distort
and move domain walls in a Permalloy thin film.

To evaluate the theoretical force curves correctly, one
should keep in mind the instrumental limits of the force
microscope in the noncontact operation mode. First, the
minimal detectable force is given by the sensitivity of the
detector measuring the tip displacement. For commonly
used cantilevers (spring constant approximately 1 N/m)
and commonly used displacement sensors (resolution ap-
proximately 1 A.) the estimated minimal detectable force
is around 10 N. One should note that for softer can-
tilevers the thermally induced noise is the limiting factor.

In the dynamic operation mode the sensitivity is deter-
mined by the minimal detectable shift of the cantilever's
resonance frequency. Operating a monocrystalline can-
tilever in vacuum and using a sophisticated &equency
detection scheme, for a cantilever's resonance frequency
of 100 knz a resolution of 0.1 Hz can be achieved. Fol-
lowing Ref. 13, with this setup an ultimate sensitivity of
F' ,„=2 x 10 s N/. m can be reached. In both opera-
tion modes a bandwidth of 1000 Hz was assumed. This
guarantees image acquisition in a reasonable time, i.e. , in
some minutes.

III. NUMERICAL MODEL

In order to calculate the magnetic stray fields for var-
ious domain wall configurations in single layers, a two-
dimensional, numerical micromagnetic model was used.
From the equilibrium configuration found by this model

with the reduced magnetization m = M/M„ the re-
duced efFective field h, tr = H,tr/M„and the reduced
time t' = t Mz/o. , where M, is the saturation magneti-
zation and o. the original damping parameter from the
LLG. We assumed that the magnetization M, = ~M~ is
constant throughout the ferromagnet. Omitting the pre-
cession term is justified because we are not interested
in the dynamics of the approach to the equilibrium, but
only in the equilibrium itself.

The model system is a slab of width a (z direction)
and height 6 (z direction) extending infinitely in both
directions along the y axes. This slab is subdivided in
N x N, quadratic prisms. The magnetization m;~ in-
side the prisms (i, j) is kept constant. Von Neumann
type boundary conditions (Bm/Bn = 0) are chosen, i.e. ,
the surface anisotropy has been neglected in the present
model.

The efFective magnetic field is derived from the total
energy density

H = &cot
efF— (2)

The effective field includes exchange, anisotropy, exter-
nal, and demagnetizing fields. The total energy density
used in this study is composed of the following terms.

(1) The exchange energy density

e,„,h = A(V'M),

where A is the exchange stiffness, (2) the magnetocrys-
talline anisotropy energy density

e „,, = K, (M M„+M„M,+ M, M ), (4)

where we considered a cubic anisotropy as for iron, (3)
and the Zeeman energy density

eext. field — po IvI(r) Hext (r) ~

One should note that the external field is not necessar-
ily homogeneous. (4) Finally, the energy density of the
demagnetizing field is needed,

1
cdemag ——p,p M . Hg.

2

The numerical calculation of the demagnetizing field H~
is the computationally most extensive part of the simula-
tion. Special measures must be applied to speed up this
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part of the computation.
Magnetostriction has been omitted in the present

model. Despite the presence of cubic anisotropy in the
model, this approximation does not lead to a decay of the
180 wall into two 90 walls. In a system with a bound-
ary as described here, such structure would produce a
large magnetostatic stray field, which is energetically un-
favorable.

Now the eH'ective fields for the finite-mesh system can
be derived &om the energy terms (3)—(6) using the def-
inition (2) and the approximations of the derivatives on
a mesh. The exchange contribution to the effective field
for the nonboundary cells becomes

the whole demagnetizing field needs on the order of
(N x N, ) fioating point multiplications. However, the
sums in (11) and (12) have the form of a convolution.
As well known and already demonstrated in numeri-
cal micromagnetics, ' the computation of convolution
sums for large data fields can be substantially speeded
up using the convolution theorem and fast Fourier trans-
formation (FFT). This is mainly based on the fact that
FFT on a field with N points can be done in N log2 N
steps. For large N this is much less than N .

Due to the quadratic cross section of the meshes, the
calculation of both x and z components of the demag-
netizing field can be performed at once using complex
numbers,

h'"'"(i, j) = [m(i + 1,j) + m(i —1,j)ppM262

+m(i, j+ 1) + m(i, j —1) —4m(i, j)),
(7)

m=m +im„,
h =h +ih„+—m,d ~ d 1

2
(14)

h "=— m (i,j) [m„(i,j) + m, (i, j) ]. (8)
p,pM2

The other components can be obtained from (8) by means
of cyclic exchange of the indices.

If hg(i, j;k, l) denotes the stray-field contribution gen-
erated by m(k, l) inside the mesh (i, j), if (i, j) P (k, l),
and if we assume that all cells have a quadratic cross sec-
tion and identical size, hg(i, j;k, l) can be calculated as
follows:

h,"(i,j;k, l) = A(k —i, l —j)m (k, l)

+C(k —i, l —j) m, (k, l), (9)

with 6 denoting the mesh size. For boundary cells, the
boundary conditions should be taken into account.

The discretization of the crystal field anisotropy is
straightforward:

where 2m was added to compensate the self-field of each
prism. The self-field will be restored after the convolu-
tion. Applying the convolution theorem, it follows that

hg = [a(k) + c(k)] m'(-k), (15)

where m(k), hg(k), a(k) and c(k) are the Fourier trans-
forms of m, hg, A(i, j), and C(i,j), respectively; the as-
terisk denotes complex conjugation. From (15), the de-
magnetizing field can be calculated for the real space by
means of inverse FFT and adding the self-field for each
prism.

Further, the boundary conditions have to be con-
sidered. %e use von Neumann boundary conditions
(Bm/Bn = 0). The boundary conditions are obeyed as
follows: the grid is continued outside the actual boundary
by mirroring as seen in Fig. 2. Therefore the exchange
field (7) for the boundary cells must be replaced by

h", (i, j;k, l) = C(k —i, l —j) m (k, l)
—A(k —i, l —j) m, (k, l) . (10)

hb",'„„s,(i,j ) = [m(i + 1,j) + m(i —1,j)
pp M~62

+m(i, j + 1) —Sm(i, j)]. (16)

The formulas for A(i, j) and C(i, j) are given in the Ap-
pendix. The self-field, i.e., the field inside the mesh gen-
erated by the magnetization of the mesh itself, will be
included separately. As a consequence, we can assume
A(0, 0) = 0 and C(0, 0) = 0. Summing (9) and (10) and
including the self-field we get

Here the + sign is valid for the boundary layer at the
bottom side of the slab and the —sign is valid for its top
srde.

Now the right-hand side of Eq. (1) is complete. The
numerical integration of (1) is performed using an adap-

h (i, j) = ) [A(k —i, l —j) me(k, l)

+C(k —i, I —j)m, (k, l)] ——m (i, j), (11)
mirrored cells

boundary

~ ~ ~ ~

h" (i,j) = ) [C(k —i, l —j) m (k, l) real cells

1—A(k —i, l —j)m, (k, l)] ——m, (i, j). (12)

A straightforward calculation of these formulas is com-
putationally extremely extensive. The computation of

FIG. 2. The boundary condition Bm/Bn can be fulfilled by
a continuation with mirrored cells outside the actual bound-
ary.
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FIG. 3. The starting configuration for the finer grid (thin
lines, hollow circles) is generated from the cruder one (thick
lines, filled circles) by a bicubic interpolation.

I
I

0.5

max ~m x (m x h, fr) ~

« (17)

tive step size, fourth-order Runge-Kutta method. The
initial state is chosen carefully because the final magneti-
zation state usually has the same symmetry as the initial
one. This could result in an unphysical metastable state.

After each integration step, it is verified that the total
energy of the system really has decreased. If this is the
case, the integration step is accepted, otherwise the step
is repeated with reduced step size. This procedure is
continued until the condition

inagn. charge (rel. units)

I"IG. 4. Asymmetric Bloch wall in a 500 nm x 2000 nm
(100) iron slab as calculated by the model. The final grid had
256x64 cells. The picture shows only the central part (0.5
pm x 1 pm) of the slab. The cells are rendered according to
the magnetic charge distribution while the arrows show the
projection of the magnetization m into the x-z plane. In the
6gure only the central part of the system containing the wall
is shown.

is fulfilled. Typically e is chosen as 10 4.
A further procedure employed in this simulation is the

stepwise refinement of the grid: for a given grid the above
described procedure is executed until the condition (17)
is reached. Then a new grid is generated with four times
as many meshes as before (2N x 2N, ). The initial state
of the new grid is obtained from the old one by bicubic in-
terpolation as shown in Fig. 3. Then, on the refined grid,
the described relaxation procedure is continued until con-
dition (17) is reached again. The whole procedure —grid
refinement and subsequent relaxation —is repeated until
the final grid resolution is reached.

The described procedure has been implemented on a
workstation. Even for relatively large systems (256 x64
cells), the code ran fast enough to get a result within
hours.

IV. RESULTS

Figure 4 shows the structure of an asymmetric Bloch
wall in a 500 nm thick iron slab with the wall running
along the slab axis. The modeled system was a 2 pm wide
and 500 nm thick iron slab. The following model param-
eters have been used: exchange stiffness A = 2.1 x10
J/m, saturation magnetization M, = 1.7 x 10 A/m,
and cubic anisotropy constant K = 4.7 x 10 Jm
The boundary conditions at the right and the left side
are chosen for a free boundary (elm/ctn = 0). This was
done to evaluate whether the system is large enough to
represent an infinitely wide thin film fairly well. The sys-
tem is assumed to be large enough if there are no surface
charges at the side faces.

The simulation usually started with 32x 8 cells and was
6nished with 128x32 meshes. Both N and N, are pow-

ers of 2 with respect to the application of FFT to the
computation of the magnetic stray field.

The arrows in the figure show the projection of the
magnetization I into the x-z plane, while the gray scale
shows the magnetic charge density p = —V' m. A
medium gray indicates the absence of charges while dark
and light areas indicate positive and negative charge den-
sities respectively.

The uncompensated magnetic charges are responsible
for the magnetic stray field. One can see that the mag-
netic charges appear only in a small area around the Aux
closure vortices near both surfaces of the thin film. That
is, in thick films or bulk crystals, the inner parts of a
Bloch wall do not contribute to the magnetic stray field
at all.

The fIux closure vortex is not symmetric. The ana-
lytical model proposed by Hartmann to understand the
domain wall images in a MFM is based on the assump-
tion that the wall is everywhere symmetric. This behav-
ior could not be confirmed by our model, by the model
calculations of Scheinfein et at. , nor by earlier work of
Hubert.

Because the scanning area is usually large compared
to the characteristic size of the Aux closure vortex in an
iron system, the charge distribution in the vortices can be
decomposed into multipoles and the resulting multipole
field from the upper and lower vortex will be used to
calculate the MFM contrast. Following this path, the
charge distribution inside the vortex is decomposed up to
the second order and omitting higher orders as follows:

p(r + r') = p(r) + r' . V'p(r) + —) p(r) r,' r,',
. . ~i~j

'E2
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where r; and r,' are the ith component (i g (x, y, s)) of r
and r', respectively, and r' « r. If f(r) is Green's func-
tion for the potential problem, i.e., f(r) = ln ~r~ for the
two-dimensional problem, the potential of the magnetic
field generated by the charge distribution can be written
as

M,
4(r) = ' f(r —r') p(r') dr',

2
C)

1
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rnonopol
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(20)

The magnetic charge and dipolar and quadrupolar mo-
menta will be determined numerically &om the simulated
structures. As a consequence, we obtain the stray field
from (20) as an analytical expression containing only a
few numerical parameters, which is favorable in compar-
ison to a pure numerical result. This potential is used to
compute the MFM response in the following.
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A. MFM response of an undisturbed wall

With the above outlined method we calculate the
MFM contrast for the following model systems: (1) a
125 nm and a 500 nm thick iron film with an asymmetric
Bloch wall, (2) a 5 nm thick iron film with a Neel wall,
and (3) a semi-infinite (i.e., bulk) iron system such as a
whisker, also with a Bloch wall. First, we calculate the
expected MFM contrast under the assumption that the
stray Geld of the tip does not in8uence the magnetization
structure of the wall.

Because the typical size of the magnetic tip is small
in comparison with the scanning area, the tip will be
represented by either a magnetic monopole or a mag-
netic dipole. The first will be a model for an etched Ni
wire magnetized along its axis and the second —to some
extent —for a nonmagnetic cantilever covered by a mag-
netic film. The monopole will carry the same magnetic
charge as the end of a Ni prism with a quadratic cross
section and 30 nm edge length magnetized along its axis
while the dipole will have the same dipolar moment as a
cube of 30 nm edge length magnetized in the z direction.

Following this program, calculated MFM wall profiles
for some typical cases are displayed in Figs. 5, 6, and 7.
t can be seen &om the figures that generally the force

on a monopole probe as described above, scanning over a
Bloch wall in an iron thin film, does not exceed 10 ~~ N
This is one order of magnitude below the ultimate sen-
sitivity of the MFM in the static operation mode. The
maximum force on the monopole tip above the simulated
Neel wall is 2.3x10 N, which is below the sensitivity

the d 1

limit as well. Further, it can be stated that th f
e jpo ar probe is less above the Bloch wall or approx-

imately equal above the Neel wall compared to the force
on a monopolar probe under the same conditions.

FIG. 5. Calculated wall contrast profiles of the asymmetric
Bloch wall in 500 nm iron as shown in Fig. 4 . The graphs
show force (a) snd force gradient (b) for monopolsr and dipo-
lar probes.

The behavior of the force gradient is opposite, i.e.,
the dipolar probe generally yields a somewhat higher (or
at least comparable) signal than the monopolar probe.
Generally the force gradient is in the order of magni-
tude 10 s N/m, which is well above the sensitivity limit
of the force gradient, calculated under optimistic condi-
tions. However, we will see in the next subsection that
the assumption that the tip stray Geld would not disturb
the wall structure does not hold.

C)

lJ
Q.

0

25
[

20

15

10

5

0

-10

-15

-20

-25

125nm

500 nm

bulk

-0.8 -0.6 -0.4 -0.2 0 0.2 0 4 0.6 0.8 1

tip position x (l.im)

FIG. 6. Calculated force profile obtained with a monopolar
probe as described over a Neel wall in 5 nm iron film and
asymmetric Bloch walls in 125 nm and 500 nm thick films
and in a semi-infinite (i.e., bulk) system. The asymmetri
Bloch walls have the Hux closure vortices both at one side of
the wall center.
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FIG. 7. Calculated force gradient profile obtained with a
dipolar probe for the same systems as in Fig. 6.

(c)

Furthermore, depending on the actual symmetry of the
imaged asymmetric Bloch wall, one would expect difFer-
ent types of wall contrasts as can be seen &om Fig. 8.
These diferent types of wall contrasts have not been
found in the experiments.

The actual width of the wall contrast can reach 1 pm,
which corresponds to the experimental observations.

0

magn. charge (rel. units)
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I
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B. Polarization of walls by tip stray Beld

5
(a)

d wall

d wall

The same procedure as described before can be re-
peated, considering the tip stray field as an external

FIG. 9. Series of profiles for polarized walls. The polariza-
tion is caused by the tip stray field; the tip position above the
sample is varied. The tip is simulated by a 50 nm wide Ni
stripe of infinite extent in the s direction and scanning 50 nm
above the sample surface. The magnetic charges compensat-
ing the charges in the image reside at both side faces and are
not shown therefore, because only the central part (1 pm of
the 2 pm wide slab) of the slab is shown.
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FIG. &. Calculated contrasts (force mode, monopolar
probe) for Bloch walls with difFerent symmetries in &25 nm
thick Fe films. "c-shaped" means that the Sux closure vor-
tices at the top and at the bottom of the slab are on one side
of the wall center, "s-shaped" means that they are at diferent
sides.
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FIG. 10. Comparison of calculated wall contrast profiles
between nonpolarized and polarized walls. The polarized wall
is the same as in Fig. 9(b) with a tip position above the center
of the slab in the x direction.
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field. A real micromagnetic model of the tip-wall in-
teraction has to be a three-dimensional one. However,
some essential information can be obtained from a two-
dimensional model as well. The main shortcoming is
that the two-dimensional "tip" is more like a blade. The
bladelike shape of the tip is a direct consequence to the
two-dimensionality of the model, i.e., the tip must have
the same translational symmetry as the wall in the y di-
rection.

In the present simulation, the tip stray field is gener-
ated by a semi-infinite (i.e., infinitely extending in the y
direction), 50 nm thick Ni stripe, homogeneously magne-
tized in the z direction. The end of the stripe is located 50
nm above the film surface. Compared to a point source,
this setup gives a more realistic magnetic field near the
source. One should note that the maximum external field
is mainly determined by the saturation magnetization of
the tip material. Consequently, changing the tip width
would alter the disturbed area rather than the strength
of the disturbance.

In Fig. 9 we see a series of magnetization configura-
tions in a 125 nm thick iron slab, where the position of
the tip differs. The series was generated in the follow-

ing way: First, the configuration with the leftmost tip
was generated &om scratch. Then the left equi. librium
configuration was taken as the starting point for its right
neighbor. In the figure between subsequent states one in-
termediate state has been omitted. We believe that this
procedure simulates to some extent the scanning of the
tip over the domain wall.

Several observations can be made &om the figure: The
tip stray field disturbs the domain wall configuration
drastically, especially if we pay attention to the magnetic
charge distribution. We observe a very long range distur-
bance of the wall structure leading to magnetic charges

(a)
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FIG. 12. A polarized counterclockwise rotating wall (ccw)
and a polarized clockwise rotating wall (cw) yield almost the
same contrast for the MFM.

mostly of one sign under the tip while the charges of the
opposite sign are moved to the right and left edges of the
sample. Further, the wall is moved by the moving tip.

To estimate the impact of the wall polarization on the
MFM response, from one of the disturbed configurations
the signal was calculated using the same method as de-

scribed above. The result is shown in Fig. 10. The signal
of the disturbed wall is almost four orders of magnitude
larger than the signal generated by a nondisturbed wall.

It is therefore possible to observe these stray-field arti-
facts of walls even in the static operation mode. The
wall scan is approximately 1 pm wide, as we observed
in the experiment. The wall polarization explains the
persistent appearance of white wall contrasts, indicating
an attractive interaction. Figure ll shows the polariza-
tion of both a clockwise (a) and a counterclockwise (b)
turning wall. In both cases the wall structure is severely
disturbed and large uncompensated amounts of magnetic
charge can be seen in the wall region. The wall position
with respect to the tip is difFerent. As shown in Fig. 12
both configurations lead to almost the same contrasts.

This behavior cannot be explained by the opposite pro-
cess, the polarization of the tip by the wall's stray field.
The stray field of the polarized wall is smaller than the
stray field of the tip. Moreover, the mutual polariza-
tion favors a tip magnetization along the tip's axis. This
statement is to be confirmed by a more comprehensive
model including the micromagnetics of the tip as well.

V. CONCLVSIONS

l

0.5

magn. charge (rel. units)

FIG. 11. A polarized counterclockwise rotating wall (b)
and a polarized clockwise rotating wall (a) are both polarized
by the tip stray Beld. The wall position differs with respect
to the tip position.

A two-dimensional, numerical micromagnetic model
was used to investigate the imaging process in the MFM
for the model system monocrystalline iron. Under the
assumption that the tip stray Geld does not disturb the
wall structure, it could be shown that only in the dy-
namic operation mode of the MFM under optimal condi-
tions can the walls be imaged. However, if we take into
account the interaction between tip and sample, the sim-
ulations showed that the wall is polarized by the tip stray
Geld. After that, the walls are visible, but the contrasts
do not depend on the undisturbed wall structure. This
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e8'ect cannot be avoided. Consequently, the simulations
showed that it is not possible to use the magnetic force
microscope to study the fine structure of undisturbed do-

main walls in iron. Moreover, the authors are pessimistic
about applicability of the MFM for the investigation of
micromagnetic structures in other soft magnetic systems.

4'(i,j )/M, caused by a mesh at (i,j) is determined,

j+2
4 = m [f(i+ 2, j+ y) —f(i —~, j + y)] dy

2-2
1i+—
2

+m, [f(i+ z, j + -) —f(i+ z, j —2)] dz, (Al)
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APPENDIX: INTERACTION COEFFICIENTS

2 (2i —1)
A(i, j) = arctan

2z —1 &+4j2 —1

2 (2i + 1)
(2i + 1)s + 4j2 (A2)

where f(z, y) = —
4 ln(z2+y2). Then A(i,j) and C(i, j)

are derived by differentiating (Al) and comparing the
result with (ll) and (12). Collecting the coefficients with
m and m, yields

The interaction coefficients A(i, j) and C(i, j) are
calculated as follows. First the potential p(i, j)

1 4i4 + 8is j2 —8ij + 4j 4 + 1Ci,j = ——ln
2 4i4+8i~j2+8ij+4j4+1 (A3)
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