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In this work we present a method of fitting augmented-plane-wave energy bands and total-energy re-
sults for the fcc and bcc structures to a nonorthogonal tight-binding Hamiltonian from which the sum of
the eigenvalues is derived, and to a simple pair potential that is designed to account for all the other
terms of the total-energy expression. We have applied this method to calculate the elastic constants of
the metals Rh, Pd, Ta, Ir, and Au, avoiding the expensive first-principles calculations of the distorted
structures. We obtained very good agreement with both first-principles local-density-functional-theory

calculations and experiment.

I. INTRODUCTION

A detailed understanding of the energies in nonperiod-
ic structures (such as point or extended defects) in metals
and alloys is very important in many problems in solid-
state physics and materials science. The study of these
defects, since they correspond to low-symmetry struc-
tures, requires techniques that can handle a large number
of atoms per unit cell. For that reason it is often imprac-
tical to use ab initio calculations. Many models have
been proposed in order to overcome this problem. In
these models the total energy E,, consists of a band-
structure term describing the eigenvalue sum E , and a
pair-potential term E A

EtotzEbs+Epp : (1)

Such expressions can be used to fit the results of first-
principles total-energy calculations at given high-
symmetry structures, and then use them to obtain the to-
tal energy of another configuration of atoms. The
justification of this approach is given by Foulkes and
Haydock® using density-functional theory.

The most commonly used model for metals is the
embedded-atom method' (EAM) which has been success-
ful in dealing with bulk and surface phonons, vacancies,
impurities, etc.! This method is computationally fast but
it requires certain experimental quantities as input. Also,
the EAM does not give a reasonable estimate of the band
structure for different configurations. Recently, a many-
body alloy Hamiltonian (MBAH) method has been pro-
posed and applied to investigate the effect of absorbates
on surface vibrations by calculating the phonon spectra
of clean and hydrogen-covered (001) and (110) surfaces of
Pd.? Further testing of these methods to other systems is
important in order to evaluate their usefulness.

Various tight-binding (TB) models have been used for
semiconductors, in particular for Si and c.b7 They have
been successful in the study of bulk and surface phonons,
liquid phases, defects, surface reconstructions, etc., and
more recently the structure and energetics of the newly
discovered fullerenes.® As stated by several authors>’ the

0163-1829/94/49(3)/1574(6)/$06.00 49

TB method has firm ab initio foundations and although it
is computationally more demanding compared with pair-
wise potentials, it is orders of magnitude faster than the
classic local-density techniques such as linear augmented
plane wave and linear muffin-tin orbital. Application of
the TB method to metals with an accuracy comparable to
the first-principles methods is an open question.

In this paper we have tested the MBAH against our
own implementation of the TB method in several metals.
We fitted the total-energy expression Eq. (1) to augment-
ed plane-wave (APW) total-energy results for the fcc and
bee structures; and then used Eq. (1) as an interpolation
formula to calculate the total energy of the hcp structure
and the elastic constants for the following metals: Rh,
Pd, Ta, Ir, and Au.

II. THE MANY-BODY ALLOY
HAMILTONIAN METHOD

Zhong, Li, and Tomanek constructed what they called
a many-body alloy Hamiltonian as follows. In the
second-moment approximation, E,¢ in Eq. (1) is propor-
tional to the effective bandwidth which in turn is propor-
tional to the square root of the second moment M, of the
local density of states, so’

E,,<M}?= [Zt,-zj]l/z, ()
J*i

where 7;; is the hopping integral between neighboring
sites i and j. Assuming an exponential distance depen-
dence for the hopping integrals as well as for the pair-
potential term in Eq. (1), they obtained?

172
— 2 Tij
E=— k}_‘, §oexp | —2d |— — l ] ]
JFi o
rij
+e Y exp|—p | — s (3)
= To

where r;; is the distance between atom i and j and the
sums are over the neighbors. There are five parameters

(Eos d, €p, D, 7o) in this method which could be determined
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by fitting results from ab initio calculations for high-
symmetry structures.

Zhong, Li, and Tomanek,? applied this method to the
Pd-H system. They determined the corresponding pa-
rameters by fitting local-density approximation (LDA) re-
sults for Pd and H in the fcc structures and PdH in the
NaCl structure; they used this method to calculate the
phonon spectra of clean and hydrogen-covered surfaces
of Pd. Their surface results are in good agreement with
experimental and LDA results although there are some
significant differences, with the most notable one being
that their calculated surface energy for Pd(110) is 0.73
eV/atom, while the corresponding LDA energy is 1.80
eV/atom.

We used the MBAH method to calculate elastic con-
stants and vacancy formation energies of bulk Rh, Pd, Ir,
and Au. We determined the parameters of the MBAH
for each element by fitting our APW total-energy results
for the fcc and bec structures® to the total-energy expres-
sion Eq. (3).

We found that the results depend on the number of
neighbors in Eq. (3); so it was necessary to use up to the
third-nearest neighbor for Pd, Rh, and Au, and up to the
second-nearest neighbor for Ir. The five parameters for
each element are given in Table I. The difference be-
tween the MBAH method and APW results after the
fitting procedure was less than 1 mRy so the bulk
modulus and the equilibrium volume for both fcc and bee
structures, as well as the fcc-bee structural total-energy
difference, are nearly the same.

In order to calculate the elastic constants C,;; —C,,
and C,,, an orthorhombic and a monoclinic strain'® was
applied to the MBAH; we calculate the elastic con-
stants'® from the difference in total energies of the dis-
torted and undistorted lattices. The results are given in
Table II and compared with the corresponding experi-
mental results; the differences are less than 30% for both
Pd and Ir but there are greater differences for Rh and
Au. The most significant difference is for C;; —C,, of Rh
(Table II). Also, we calculated the vacancy formation en-
ergies E, of these metals (Table II). In this calculation
we do not take into account relaxation, but we expect this
to be a small error,!' which cannot explain the large
discrepancy from experiment in Au.

In addition, we also tried without success to apply this
method to metals that lie in the middle or in the begin-
ning of the d rows; either the fitting errors were large or
the predicted values were in poor agreement with experi-
mental or LDA results. This is probably related to the
second-moment approximation made in deriving Eq. (2),
which is expected to work well only for elements with
nearly filled d shells.'?

TABLE 1. Parameters for many-body alloy method as calcu-
lated by fitting the APW total-energy results to Eq. (2).

Element &, (Ry) ¢, (mRy) d P ro (a.u.)
Rh 0.28097  6.6951 2.30201 9.22008 6.07548
Pd 0.10716  3.4279  2.62717 12.75186 5.54138
Ir 0.18905 1.4818 1.67054 18.04103 5.67666
Au 0.12195 3.4375 3.15884 10.17780 6.61159
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TABLE II. Elastic constants and vacancy formation energies
(E,) as calculated from the many-body alloy method. (Experi-
mental results in parentheses.)

Element Cy C,—Cp E

(Mbar) (Mbar) (Ry)
Rh 1.70 0.94 0.378
(1.84) (2.19)
Pd 1.07 0.75 0.139
0.71) (0.58) (0.103)
Ir 291 2.46 0.350
(2.62) (3.41)
Au 0.76 0.45 0.141
(0.42) (0.29) (0.066)

ITII. TIGHT-BINDING METHOD

In our implementation of the TB method we do not
make the second-moment approximation; instead we
rewrite Eq. (1) as follows:

_ 1 A,
Etot—§€k+52 > n

j#i | n Tij

it @)

The first term is the sum of the eigenvalues of the occu-
pied states of a one-electron Hamiltonian and the second
is a repulsive pair potential that is a function of the bond
length 7;;. In the second term, the outer sum is over the
bond length r;; and the inner sum represents a polynomi-
al in r,-j_l. The constant c accounts for the scale difference
between TB and APW results and of course cancels out
when we take total-energy differences. The sum of the ei-
genvalues is determined by a TB Hamiltonian that is fit,
in the manner of Slater and Koster'® to the individual ei-
genvalues of first-principles APW calculations.® This TB
Hamiltonian involves s, p, and d orbitals, includes first-
nearest-neighbor interactions, and is nonorthogonal. So
for a transition element, the Hamiltonian is a 9 X9 matrix
that contains 20 hopping integrals and 4 on-site energies
(see Table III to clarify the notation). The hopping in-
tegrals are determined by fitting the APW energy bands
of the fcc structure for six different lattice parameters,
which correspond to an interval approximately +10%
from the equilibrium lattice constant. On the other hand,
the on-site parameters are fitted only at the equilibrium
lattice constant and kept fixed for the others. For a typi-
cal transition metal and for each lattice constant we fit six
valence bands at 33 k-points in the L of the Brillouin
zone. The fit has an rms error of approximately 5 mRy
for all six bands. In the next step we fit each TB parame-
ter individually to a second-order polynomial with
respect to the bond length r;;; the fitting is nearly perfect.
We expect that for lattice constants much different from
the equilibrium this simple fitting function may not be
sufficient, but in the present case where it is close to equi-
librium volume, it is quite good. Hence, we can compute
the sum of eigenvalues in Eq. (4) at any distance r;;. Then
we determine the coefficients 4, and A of the polynomial
that represents the pair potential in Eq. (4). This is done
by fitting to our first-principles values of the total energy
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for the fcc and bee structures.” Therefore, Eq. (1) be-
comes an accurate interpolation formula of the total en-
ergy as a function of the r;. This formula gives the
volume dependence of the fcc and bcc structures to
within about 1 mRy of accuracy over a range +15% the
equilibrium volume.

The above procedure ensures that the band structure is
accurately reproduced by the present TB model, at least
for the fcc structure and for volumes close to the equilib-
rium. In contrast, the resulting bce band structure is not
as accurate and the predicted eigenvalues differ from the
APW eigenvalues by 50 mRy on the average. Since in-
tegrated quantities tend to converge more rapidly, the
sum of the eigenvalues is obtained with much better accu-
racy.

In Fig. 1, we plot the sso and sd o hopping integrals of
Pd and Au relative to the lattice constant as calculated
from the present model and compared with the Harrison
scaling (HS) law!* (denoted by H in Fig. 1). The sso pa-
rameters are reasonably well described by the d? depen-
dence of the HS law, especially for Au, but the sdo as
well as the other parameters are very different from
d ~7/? dependence of the HS law. The scaling of the TB
parameters plays an important role in the model. Using
the HS law in the fitting procedure instead of following
the procedure described above, we found large errors in
the predicted elastic constants and the total energy of the
hcp structure. Also, since we find no universal scaling
law similar to the HS law, we have to make fits for each
element. The fitting parameters for the hopping integrals
are presented in Table III. We note that we have fixed
the on-site parameters to their values at the equilibrium
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FIG. 1. Distance dependence of the sso and sdo tight-
binding parameters for (a) Pd and (b) Au. Comparison with the
Harrison scaling law is shown.
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lattice constant. This introduced an error in the energy
bands at other lattice parameters, but it improved the
fitting to the total energies.

The parameters for the repulsive potential [second
term in Eq. (4)] found from the total-energy fitting are
given in Table IV. We used 7 parameters for Ta, Pd, Ir,
Rh, and 11 parameters for Au.

In Fig. 2 we show, as an example, the total energy as a
function of volume for Rh and Ta in the fcc, bee, and hep
structures as computed by Eq. (4). With our method we
fit the fcc total energies almost exactly for all the ele-
ments; the bec total energies are fitted less accurately (the
Ta is the only exception) as shown by the broken lines in
Fig. 2. We do not fit the total energies of the hcp struc-
ture; we compute it directly from Eq. (4) for the ideal ¢ /a
ratio. This neglects the fact that due to the reduced sym-
metry of the hep lattice there are three d-like on-site pa-
rameters instead of two in the cubic structure. However,
it should be stressed that this is a very good approxima-
tion because as shown in Table III the ¢,, and €, parame-
ters are nearly equal and also the three d-on-sites in the
hcp are also found to be nearly equal (see Ref. 13). We
also set the dp-on-site parameter for the hcp structure
equal to zero. Note that this parameter is usually an order
of magnitude smaller than the other on-site parameters.
The differences between predictions from the TB model
results and the APW results are very small for the fcc
and bcc structures that we fit. For the hcp structure our
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FIG. 2. Total energy of (a) Rh and (b) Ta as a function of
volume. Solid lines show the APW results; broken lines show
the results of the fit.
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TABLE IV. Parameters of the pair-potential term [see Eq. (4)] for Rh, Pd, Ta, Ir, and Au.

Rh Pd Ta Ir Au
A 0.142 391 0.147 557 0.539 694 1.133 884 —0.812931
c —5.909 603 —8.414 009 —6.850986 —10.411475 —17.456 517
As 4.708 105¢2 4.544 147¢2 1.680281e2 45.006 945 3.446 769e5
A, —32.900 886 —47.365 641 —19.633 534 —12.187 383 —3.350 766e4
As —13.131132 —13.423783 —2.070528 —2.056 867 —1.070 698e4
A, —1.105297 —0.683 489 —0.530902 0.881 607 —1.140988¢3
A, 0.483 387 0.473423 0.144904 —0.067 953 54.262 295
Ay 46.345 168
A_, 8.826422
A, 0.055 621
A_; —0.182 364

results are less accurate, as can be seen from the last
column of Table V, which compares APW and TB results
for hep. Our model includes only first-nearest neighbors
and it has a repulsive potential without angular depen-
dence [see Eq. (4)], so the repulsive potential for both fcc
and hcp in ideal c/a ratio is exactly the same and the
difference in the total energy comes only from the band-
structure term. We can overcome this problem by in-
cluding further neighbors. We have not addressed this
problem yet because we concentrate on determining the
elastic constants which, as shown below, are computed
accurately by the present model.

An orthorhombic strain applied to our TB Hamiltoni-
an yields total energies from Eq. (4) that were used to
determine the elastic constant difference C,, —C,, from
the expression

AE(x)=(Cy —C,)Vox? (5)
and the elastic constant C4, from
Vo
AE(x)=C44—2—x2 , (6)

where AE(x) is the energy change corresponding to a dis-
tortion x (Ref. 11) and ¥, is the equilibrium volume. Our
results for C;; are shown in Table V, where they are com-
pared with measured values'> and first-principles calcula-
tions.!® The differences from the experiment are less than
15% for Ta, Ir, and Rh, and less than 30% for Pd and
Au (note that they both have small elastic constants).
The corresponding results using the MBAH method
(Table II) have larger discrepancies from experiment.
Taking into account that even the most accurate first-
principles LAPW calculations'®> have a difference of
about 10% from experiment, and the systematically
correct prediction of the elastic constants from the
present model, we conclude that our TB model could be
used for further, more complicated applications such as
phonon spectra, surface calculations, molecular-dynamics
simulations, etc., with results comparable to first-
principles calculations.

In order to check the importance of the bcc structure
in the fitting procedure we did an independent fitting to
only the fcc total energies of Ir. The calculated elastic
constants from this fitting were C;, —C,,=2.66 Mbar

and C4, =2.12 Mbar, which are not as close to the exper-
imental values as those from the fitting of both fcc and
bce total energies shown in Table V. Also, preliminary
results show that by the inclusion of second-nearest
neighbors in our model, we get smaller errors in the
fitting procedure and improve the predicted results.

IV. CONCLUSIONS

We have investigated total-energy expressions that
consist of a term describing the eigenvalue sum and a
pair-potential term. Such expressions can be used to fit
the results of first-principles total-energy calculations at
given structures, and then obtain the total energy of
another configuration of atoms avoiding the complexity
of further ab initio calculations. We have checked the
MBAH method? and the TB Hamiltonian method.

Using the MBAH method we can predict in relatively
good agreement with experiment the elastic constants
and the vacancy formation energies of some of the ele-

TABLE V. Elastic constants C;;, bulk modulus B, and the
equilibrium energies of bce (E,) and hep (E,) structures rela-
tive to the fcc as calculated from the TB model (first line). The
values in the second (third) line are the experimental (Ref. 15)
[first-principles (Refs. 9 and 16)] values where available.

Element Cus Cy, Ci, B E, E,

(Mbar) (Mbar) (Mbar) (Mbar) (mRy) (mRy)

Rh 2.09 5.554 3.044 3.881 34.1 13.6
1.84 4.165 1.975 2.705

3.116 33.0 6.6

Pd 0.85 2.984 2.214 2.471 12.0 14.6
0.71 2.340 1.760 1.808

0.65 2.383 1.793 1.990 9.6 5.0

Ta 0.83 2.612 1.702 2.005 —255 =30
0.82 2.650 1.590 2.001

2.008 —25.7 53.6

Ir 2.47 6.312 3.132 4.192 52.5 329
2.62 5.823 2.413 3.550

2.60 6.210 2.560 3.763 50.8 11.9

Au 0.37 2.048 1.688 1.808 6.1 2.0
0.42 2.020 1.700 1.732

1.689 8.6 1.6
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ments at the end of the d rows, but this model completely
fails for all elements at the beginning of the series.

In contrast, our implementation of the TB model can
predict the elastic constants of all the metals that we con-
sidered in very good agreement with both experiment and
ab initio total-energy calculations. This method elimi-
nates the need to do the very expensive first-principles
calculations that include the orthorhombic and mono-
clinic distortions of the lattice that are used to calculate
elastic constants. The applications of this model in calcu-

lating phonon spectra, surface properties, and performing
molecular-dynamics simulations seems very promising.
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