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Existence of the spin-glass state in amorphous Fe
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The volume dependence of magnetic properties in amorphous Fe has been calculated on the basis of
the finite-temperature theory of amorphous metallic magnetism which self-consistently determines the
distribution of local magnetic moments. The calculated magnetic phase diagram on the T-V plane and

magnetization-vs-volume curve show the existence of the spin-glass state in a wide range of volume
0 3 0 3

(10.50 A & V&12.5 A ) after disappearance of ferromagnetism. The results verify our previous con-
clusion of the spin-glass state in amorphous Fe, which is expected from the experimental data of Fe-rich
amorphous alloys containing early transition metals and rare-earth metals, but disagree with those ob-

tained from the supercell approaches in the ground-state electronic structure calculations. It is shown

that the nonlinear magnetic couplings between the nearest-neighbor Fe 1ocal moments and the local en-

vironment efFects on the amplitude of Fe local moments via structural disorder lead to the spin-glass

state in the weak magnetic region, while the volume expansion develops the ferromagnetic couplings and

therefore the ferromagnetism.

I. INTRODUCTION

Magnetism of amorphous Fe has been much investigat-
ed since the spin glasses (SG's) were found in Fe-rich
amorphous alloys beyond 90 at. % Fe. ' Systematic in-

vestigations of Fe-rich amorphous alloys containing early
transition metals (TM) and rare-earth metals have shown
that the SG transition temperatures T beyond 90 at.%
Fe are approximately the same value of 110 K, irrespec-
tive of the second elements. The result strongly suggest-
ed that the SG behaviors are dominated by structural dis-
order instead of configurational disorder, therefore intrin-
sic properties of amorphous Fe. Kakehashi ' proposed a
finite-temperature theory of amorphous metallic magne-
tism on the basis of the functional integral method for
thermal spin fluctuations and the distribution function
method' for local magnetic moments (LM's) with
structural disorder, and explained the SG behaviors
around amorphous Fe in terms of the nonlinear magnetic
couplings between Fe LM's and the local environment
eff'ects (LEE's) on the amplitude of Fe LM's, which are
characteristic of itinerant-electron SG. Subsequently,
Yu, Kakehashi, and Tanaka" extended the theory to
amorphous alloys and derived the magnetic phase dia-
gram of amorphous Fe-Zr alloys showing the
ferroinagnet-SG transition with increasing Fe concentra-
tion.

Recent ground-state electron-structure calculations
and new experimental investigations, however, have
raised controversial questions to the existence of SG.
Krey and co-workers' ' constructed theoretically the
amorphous compound with 54 Fe atoms in a box under
the periodic boundary condition using the rnolecular-
dynamics method, and calculated the ground state of
amorphous Fe on the basis of generalized Hartree-Fock
approximation to a realistic tight-binding Hamiltonian,
which is called supercell approach. They found that the
SG state is slightly higher than the ferromagnetic state

(F) in energy, but may be stabilized only when the trans-
verse spin components are taken into account. Hafner
and co-workers' *' performed the same type of calcula-
tions using the structure model with 64 Fe atoms per unit
cell and the first-principles tight-binding linear-muffin-
tin-orbital (LMTO) method. They did not obtain the SG
state at any density; the ferromagnetism with Fe LM's
antiparallel to magnetization appears around expected
density of amorphous Fe (p =7.5 g/cm ), but persists un-
til very large density (p=9.5 g/cm ), beyond which the
F-paramagnet (P) transition occurs. Experimentally,
Handschuh et al. ' have recently investigated the mag-
netic properties of amorphous Fe in Y/Fe/Y layered
structure. They reported no indication of SG properties
but ferromagnetism in amorphous Fe film with thickness
less than 2.2 nm, though the ground-state magnetization
shows a strong thickness dependence, which was attribut-
ed to volume effect. '

In order to resolve the discrepancy among various
theories and experiments mentioned above, one has to ex-
amine the volume dependence of magnetism and the de-
gree of structural disorder in amorphous Fe, as well as
various approximations involved in the theories. In this
paper, we investigate the volume dependence of magne-
tism in amorphous Fe using our theory of amorphous
metallic magnetism and discuss the existence of the SG
state in amorphous Fe from our point of view.

In the following section, we will briefly review the
finite-temperature theory of amorphous metallic magne-
tism. We will present, in Sec. III, our numerical results
for the magnetization and SG order parameter vs volume
curves, the distribution functions of LM at various
volumes, and the magnetic phase diagram on T-V plane.
These results show the existence of the SG state in a wide
range of volume. We will explain the SG-F transition
with volume change and discuss the discrepancy between
our results and those obtained from supercell approaches
at the ground-state. ' ' A summary of our results will be
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given in Sec. IV together with further discussions on the
SG state in amorphous Fe.
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II. THEORETICAL FRAMEWORK iP(g) =Eo(g)+ g @(')", (g) —g @(')",(g) ', (2)

In the theory of amorphous metallic magnetism, we
start from the degenerate-band Hubbard model with
Hund's-rule coupling, and adopt the functional integral
method, which describes the thermal spin fluctuations.
The method transforms the interacting Hamiltonian into
a one-electron Hamiltonian with time-dependent random
exchange fields acting on each site. Within the static and
molecular-field approximations, ' the thermal average of
LM's on the central site 0 is given by a classical average
of fictitious exchange field variable g on the same site: '

where P is the inverse temperature and z is the number of
atoms on the nearest-neighbor (NN) shell. The energy
functional %(g) consists of the single-site energy Eo(g),
the atomic 4z '(g), and the exchange 4oi '(g) pair energies
between sites 0 and j. The energy —4g'(g) in Eq. (2) is
regarded as the magnetic energy gain of the central LM's
(g) when the NN LM ((m )) on site j with amplitude x,
(xj = f ding e ' /f dge ' ) points up. These

energies are given by

Eo(g)= f dco f(co)

Imp�—
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o
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Here f (co) and D in Eqs. (3) and (5) are the Fermi distri-
bution function and the number of orbital degeneracy. N
and J in Eq. (3) are the d electron number and the
effective exchange-energy parameter, respectively. w (()
denotes the charge potential on site j, which is deter-
mined by the charge neutrality condition.

The random potential for O.-spin electrons on site j
consists of the atomic level e —p measured from chemi-
cal potential p, the charge potential w~(g), the exchange
potential J(a/2, and the term due to uniform magnetic
field h in unit of g,ps/2. Therefore, the inverse locator
in Eqs. (3) and (6) is given by

L~
' =co+i5 e+p ——w (g)+ ,

' Jgcr+hcr, —

5 being an infinitesimal positive number. X in Eqs. (3)
and (6) denotes the effective medium for the random po-
tentials [L, j outside the NN shell, and the single-site t
matrix given by Eq. (6) is related to the scattering poten-
tial L ' —L '. The effective medium for the diagonal
disorder is determined by the coherent potential approxi-
mation (CPA) equation

[(t, (g))),=0.
Here [ ], (( ) ) denotes the structural (thermal) aver-

age. The off-diagonal disorder between the central and
the NN sites via transfer integrals t, - is taken into ac-
count directly, and that outside the NN shell is described
by an effective self-energy 4 . Therefore the coherent
Green's functions F, in Eqs. (3), (5"), and (6) are given by

t pFoo= X '+g

Jo
Foj~ —Fjo~—, Foo~ . (10)

The effective self-energy 4' should be chosen so that the
structural average of the central coherent Green's func-
tion is equal to the exact one:

[Foo.),=F.=f
assuming that the average density of states (DOS) [p(e)],
for noninteracting electrons is known.

Equation (1) shows that the central LM is determined
by the random variables of surrounding LM [ ( m ) j and
the squares of transfer integrals [y.=t, j. Introducing
the distributions g (m, ) for the surrounding LM [ ( rn ) j
and probability p, (y ) for the squares of transfer integrals

[yj j, we obtain the distribution of the central LM via Eq.
(1), since it should be identical with surrounding ones:

Z

g(M)= f 5(M —(mo)) g [p, (yJ)dy g( rJt-)drm ].Jj=l
(12)

The self-consistent equations for the average LM [ ( m ) ],
and the SG order parameter [(m ) ], are obtained from
Eq. (12) after decoupling approximation at the right-hand
side, which is correct up to the second moment.
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(14)

q= —1+[(m )],/[(m ) ],'~z (16)

Here the subscripts n and +( —
) in Eq. (15) denote the number of contracted atoms on the NN shell and the contracted

(stretched) pair, respectively.
In the present approximation, the atomic local environment is described by a contraction or a stretch of the NN pair

by [(5R) ],'~, R being the NN interatomic distance. The random spin configuration on the NN shell is given by the up
and down fictitious spins with magnitude [(I) ],'~ and probability q pointing up. Therefore, the local environment is

specified by the number n of contracted atoms, the number k of up spins on the n contracted atoms, and the number 1 of
up spins on the z —n stretched atoms. The probability for such configuration is given by I (n, z, ,' }I (—k,n, q)l (I,z n,—q)

with use of the binomial distribution function I'(k, n, q)=[n!/k!(n —k)!]q"(1—q)" ". It turns out that the total num-

ber of con6guration of about 2'X 2'-10 are self-consistently taken into account.
In the same way, Eqs. (8) and (11)for the effective mediums X and 4 are written as

( ) z
(17)

Here
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2
]

1/2
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(20)

Note that the fluctuation [(5y) ],'~ /[(y)], is connected
to that of the NN interatomic distance via
[(5y) ),' /[(y)], =2~[(5R) ],'~ /[(R)]„since t 0
~ R " (a =3.8 for amorphous Fe, Refs. 18 and 19).

In summary, the ferromagnetism ( [ ( m ) ],%0,
[(m) ],'~ %0), the SG state ([(rn)], =0, [(m) ],'~
%0), and the paramagnetism ([(m)],=[(m) ],' =0)
are determined self-consistently by solving Eqs. (13), (17),
and (18) together with the charge neutrality condition for
the charge potential w (g)

method for electronic structure calculation. The input
DOS was scaled by a band width 8'~ r " when volume
is changed. Here r denotes the Wigner-Seitz atomic ra-
dius. The average coordination number z was chosen to
be 12 as in the previous calculations. ' Two values are
chosen for the d electron numbers N of amorphous Fe;

N= f dc@f(to) Imp [L '(g) —2 '+F~&~']

(21)

60-

Q

IX

40-
0

Input Dos

III. NUMERICAL RESULTS

To clarify the difference between our theory '" and
recent ground-state calculations' ' based on the local-
spin-density (LSD) functional theory, we chose the input
parameters obtained from the LSD calculations more
faithfully in the present investigations. We adopted the
input DOS [p(e)], for amorphous Fe (see Fig. 1), which
was calculated by Fujiwara with use of the relaxed
dense random packing of hard spheres model consisting
of 1500 atoms and the tight-binding LMTO recursion

3
20-

CL

0 z

—0.4 —0.2 0.0
td (Ry)

0.2 0.4

FIG. 1. Input DOS for amorphous Fe (Ref. 20) calculated
with use of tight-binding LMTO recursion method. The arrows
indicate the Fermi levels for N =6.84 (left) and 7.0 (right).
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one is 6.84 calculated by Fujiwara and the other is 7.0
used in our previous calculations. ' ' " The volume
dependence of effective exchange-energy parameter J was
taken from the calculation by Andersen et al. ' as fol-
lows:

1.0

0.5
V =11.5
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(22)
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where J0=0.068 Ry, and ro =2.697 a.u 2o The Auctua-
tion of interatomic distance [(5R ) ],'/ /[(R )],=0.06 for
amorphous Fe is estimated from the width of the first
peak in experimental and computer-generated pair-
distribution functions for amorphous Fe.

In Fig. 2, we present the volume dependence of calcu-
lated magnetization [(m ) ], (solid curves), SG order pa-
rameter [(m ) ],'/ (dot-dashed curves), and amplitude of
LM [(m ) ]I/ (dotted curves) at 75 K. Obtained magne-
tizations for N =6.84 and 7.0 show a large value
( & 2. 5)Ms) in the ferromagnetic region (V ~ 13.0 A ).
With compression, the magnetization suddenly drops at
the critical volume V' (12.55 A for N =7.0, and
13.55 A for N=6 84), an. d the first-order transition
from F to SG takes place, while the SG order parameter
gradually decreases and below the volume V=10.50 A
the nonmagnetic state appears.

To explain the SG-F transition, we illustrate the
exchange-pair energies in various local environments and
the distribution of amplitude of Fe LM in Figs. 3 and 4.

0 3In weak magnetic region, for example around 11.5 A
(N=7 0), the ex.change-pair energies 4'+)„(—g, n) strong-
ly depend on the number of contracted atoms n and show
the nonlinear behaviors (i.e., the S-shaped curves) as
shown in Fig. 3(a). This indicates that the central LM
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FIG. 3. Exchange pair energies —4'+'„(g, n) in various local
environments n at 11.5 A (a) and 12.5 A (b) for N=7.0 at 75
K. The numbers n of contracted atoms are shown by numerical
in the figure.

with a large amplitude couples ferromagnetically with a
neighboring LM, while the LM with a small amplitude
antiferromagnetically couples with the neighboring LM.
Since we have large amplitude fluctuations of LM (from
0.2)tts to 2.2)Ms) as shown in Fig. 4, the nonlinear cou-
plings yield a competition between short-range ferromag-
netic and antiferromagnetic interactions among the NN
Fe LM's, therefore cause the SG state in this region.
With expanding volume, the nonlinear behaviors of—4'+)„(g,n) become weaker and tend to disappear near
the SG-F phase boundary as shown in Fig. 3(b). In this

+ +
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FIG. 2. Magnetization (solid curves), SG order parameter
(dot-dashed curves), and amplitude of LM (dotted curves) vs
volume curves for N =6.84 and 7.0 at 75 K. Calculated magne-
tizations for the high spin (HS), low spin (LS), and antiferro-
magnetic (AF) states of fcc Fe by Moruzzi, Marcus, and Kubler
(Ref. 25) are presented by dashed curves, and those for amor-
phous Fe at the ground state by Krauss and Krey (Ref. 13) and
Turek and Hafner (Ref. 15) are presented by crosses and full
dots, respectively.
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FIG. 4. Distributions of various LM: (m) (solid curve),
l(g') —2/PJ)'~' (dotted curve), and (m')'~' (dashed curve) at
11.5 A for N =7.0 at 75 K.
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0 2

V = 10.4

Ch
L
d

region, the short-range ferromagnetic interactions be-
come more favorable to form ferromagnetic clusters.
Further expansion leads to the first-order transition to
the ferromagnetic state.

Numerical results for fcc Fe calculated by Moruzzi,
Marcus, and Kiibler (dashed curves) and those for
amorphous Fe by Krauss and Krey' (crosses} and Turek
and Hafner' (full dots} based on the supercell approach
are also presented in Fig. 2. It is remarkable that the
calculated SG order parameters show similar behavior to
the magnetization curves in the high-spin (HS) state and
the antiferromagnetic (AF) state in fcc Fe. This means
that the amorphous and fcc Fe have approximately the
same average magnitude of local magnetizations probably
because both belong to the close-packed system.

A discrepancy is found between our results and those
obtained from the supercell approach' ' at the ground-
state (crosses and full dots) with decreasing volume. The
former evidently shows the SG state below V', while in
the latter the magnetization gradually deceases but
remains finite until very small volume 9.75 A below that
the system shows the paramagnetism. The supercell ap-
proach does not give the SG state at any volume though
the average magnitude of local magnetizations is very
similar to our results.

The same type of discrepancy is also found in the dis-
tributions of LM at various volumes. As an example, we
present in Fig. 5, various distribution functions of LM for
N =7.0 at 75 K together with the corresponding distri-
butions by Turek and Hafner. ' We found a good agree-
ment between the two results in ferromagnetic region
(V) 12.55 A ) showing a very narrow peak at large posi-

tive moment and a few negative moments with decreasing
volume. However, in the SG region, our results show a
very broad and symmetric distribution of SG behavior,
while Turek's results show the asymmetric behavior lead-
ing to a net magnetization as plotted by the full dots in
Fig. 2.

As we have discussed in our recent paper, " the
discrepancy may be related to the small number of atoms
accounted in the unit cell (64 atoms) and the periodic
boundary condition for magnetic structure adopted in the
super cell approaches. In general, 64 atomic
configurations are enough to describe the electronic
structure of nonmagnetic amorphous Fe, but not enough
to describe a reasonable SG-F phase transition, since it is
based on the competing interactions, which are sensitive
to the atomic configuration. The periodic boundary con-
dition for magnetic structure with the same unit cell as
the crystalline one may be suitable to describe the strong
ferromagnetism with no antiferromagnetic interactions,
but may overestimate magnetization when there exists a
strong competition between ferromagnetic and antiferro-
magnetic interactions because such competition generally
leads to the magnetic structure with a unit cell larger
than the crystalline one. In fact, the supercell ap-
proaches' ' ' ' did not explain the SG-F transition ei-
ther in amorphous Fe-Zr (Ref. 6) or in substitutional Fe-
Ni (Ref. 28) alloys. It is noteworthy that our theory self-
consistently takes into account a large number of NN
configuration (-10 ), and explains the magnetic phase di-
agram in both amorphous Fe-Zr (Ref. 11) and substition-
al Fe-Ni (Ref. 29) alloys.

From the magnetization and inverse spin susceptibility
vs temperature curves, we obtained magnetic phase dia-
gram on T- V plane shown in Fig. 6. The transition from
F to SG is of first order for the present choice of parame-
ters. In this case, the self-consistent Eq. (13) determines
the lower limit of the critical volume of ferromagnetic in-
stability, which is plotted by dashed curves in Fig. 6. It is
evident from the figure that the SG state appears in a
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FIG. 5. Distributions of LM at various volumes for N=7.0
at 75 K. The results at the ground state with use of the super-
cell approach (Ref. 15) are also presented in the insets for the
volumes: 13.19, 12.50, 11.75 and 10.42 A from the bottom to
the top.
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I
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I
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FIG. 6. Magnetic phase diagram on T-V plane for N=6. 84
and 7.0 showing the F-SG-P transition with compression. The
dashed curves show the lower volume limit of the phase bound-
ary for the Srst-order transition.
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wide range of volume, though the phase boundary con-
siderably depends on a choice of parameters J and X.
Obtained SG transition temperatures Ts are between 230
and 360 K around 12.38 A [correspondingly roughly to
that of sputter-deposited amorphous Fe (Ref. 15)], com-
parable with that expected from the experimental data of
Fe-rich amorphous alloys (-110 K), taking into con-
sideration an overestimate of T by a factor of 2 in our
calculation due to the molecular-field type of approxima-
tion.

Q4

l.8-

l. 2

arguer. Fe

(&/Fe/V )

bcc Fe

IV. SUMMARY AND DISCUSSION

In this presentation, we have investigated the volume
dependence of magnetism in amorphous Fe on the basis
of our finite-temperature theory of amorphous metallic
magnetism. Obtained magnetic phase diagram on T-V
plane and magnetization vs volume curve show the F-
SG-P transition with decreasing volume. In particular,
they exhibit the SG state around reasonable volume of
amorphous Fe, consistent with those expected from the
experimental phase diagram of Fe-rich amorphous alloys
containing early TM or rare-earth metals. The SG state
around amorphous Fe is caused by the nonlinear magnet-
ic coupling between Fe LM's and the LEE's on the ampli-
tude of LM's via structural disorder that are characteris-
tic of itinerant magnetism.

We have attributed the discrepancy between our re-
sults and those based on the supercell approach at the
ground state' ' to too smail a number of atoms in a unit
cell and the periodic boundary condition adopted in the
supercell approaches.

We emphasize that the present results do not contra-
dict with the recent data of amorphous Y/Fe/Y layered
structure' showing the ferromagnetism. As we show in
Fig. 7, the experimental data of magnetization are very
sensitive to the thickness of Fe layer. If we extrapolate
them linearly, the magnetization vanishes beyond 4.9 nm,
suggesting the SG state in bulk amorphous Fe, Among
various possibilities, Handschuh et al. ' interpreted the
strong dependence of magnetization on thickness in
terms of volume effect; the average Fe-Fe distance near
interface may be stretched by large Y atoms as the thick-
ness of Fe layer is reduced.

Although we have concentrated on the volume depen-
dence of magnetism in amorphous Fe in the present pa-
per, it is also important that the magnetism strongly de-
pends on the degree of structural disorder. The
difference between the SG behavior in Fe-rich amorphous
alloys containing early TM and the ferromagnetism in
Fe-B amorphous alloys beyond 9 at.% Fe may be at-

0'
0

T hick ness (ntn)

FIG. 7. Experimental data for average magnetic moment per
Fe atom as a function of the Fe film thickness in Y/Fe/Y lay-
ered structure at 4.5 K (Ref. 16). The straight line shows an ex-
trapolation of the data. The dot-dashed line shows the critical
thickness above that a rapid transformation to a nanocrystalline
structure throughout the total Fe film occurs. The dashed line
indicates the value in bcc Fe. The open circles at 1.5 and 2.2 nm
were determined by an especially careful correction of sub-
strates contributions.

tributed to this problem. It is highly desired to investi-
gate the influence of the degree of structural disorder
constructing a theory that interpolates between crystals
and amorphous metals and alloys.

Further improvements of the present theory are also
indispensable to verify the results presented here. For ex-
ample, transverse components of LM, which were
neglected in the present theory are considered to describe
the transverse spin freezing according to the localized
models. ' Moreover, we only took into account the
self-consistency of local magnetic moments (m, ) and
neglected that of amplitudes (rn 2) in the present calcula-
tions. Since the amplitude fluctuations play an important
role in the formation of the SG state in amorphous Fe,
we have to examine the effects of amplitude fluctuations
on the NN shell more seriously. We hope that these
theoretical improvements and investigations will bring us
more solid conclusion on the SG state in amorphous Fe.
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