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Invariants of the I/r supersymmetric t-J models
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In this work, we have studied the invariants of motion of two SU(N) supersymmetric t-J models of
1/r hopping and exchange in one dimension. The first model is defined on a lattice of equal spaced
sites, and the second on a nonequal spacing lattice. Using the "exchange operator formalism, " we are
able to construct all the invariants for the models, by mapping the systems onto mixtures of fermions
and bosons. This identification shows that the supersymmetric t-J model on the chain with equal-spaced
sites also belongs to Shastry-Sutherland's "super-lax-pair" family.

Since the independent works by Haldane and Shastry,
there have been renewed interests in exactly solvable
models of long-range interaction. ' Of these systems,
the one-dimensional (1D) supersymmetric t-J model of
1/r exchange and hopping has been studied intensive-
ly. ' The system is identified as a free Luttinger
liquid, and the asymptotic correlation functions have
been calculated through the finite-size-scaling technique.
The excitation spectrum of the system may be obtained
with the help of the asymptotic Bethe ansatz. In partic-
ular, for the SU(2) case, the asymptotic Bethe ansatz
spectrum was explicitly shown to be exact, and the
correct thermodynamics was given when the spinon rota-
tion was properly taken into account. In general, exact
solvability implies the existence of an infinite number of
constants of motion. For the long-range t-J models, the
complete construction of invariants of motion has
remained unknown. In this work, applying the "ex-
change operator formalism" to a mixture of fermions and
bosons, we are able to systematically provide all the in-
variants for the SU(N) systems.

Let us first consider the 1/r supersymmetric t-J model
on a one-dimensional lattice of equal spaced sites. The
Hamiltonian for the one-dimensional t-J model is given

by
N

H=PG — g g i;(ctc, )
1&i/j &L o=l

+ g JJ[PJ—(1 n)(1 —n )] PG, —(1)
1&i/j &L

where we take the hopping matrix and the spin exchange
interaction to be t

~
/2= JJ = 1/d (i j), and d (n)—

=(L /w)sin(no. /L) is the chord distance, with L the size
of the lattice. The operator c; is the fermionic operator

I

to create an electron with spin component e at site i, c;
is the corresponding fermionic annihilation operator.
Their anticommutation relations are given by

[c(g ~cjo ]+ 515~ ~ ~ [c;~ ~cj~ ]+ 0~ [c;~ ~cjoy ]+ 0
l J J / J J

We assume that the spin component o. takes values from
l to N. The Gutzwiller projection operator I'G projects
out all the double or multiple occupancies,
PG=g; &PG(i), and PG(i)=50„+5& „, with

n; =gf, c, c, . The operator

(J X X lo'~la' Jo' j(T
o'=1

exchanges the spins of the electrons at sites i and j, if
both sites are occupied. n; and n are the electron num-

ber operators at sites i and j.
Now, on the lattice, we may introduce two new fields,

the f and b fields. For the new fields, we have

[f;,f ]~=0, [f, ,f ]+=5;5 . ., [b, , b ]=0, [b, , b ]
=5;~. The b fields always commute with the f fields.

The size of the Hilbert space at each site is 00 in this case.
However, let us project out the zero occupancy and all

the double or multiple occupancies, and work in the sub-

space where there is exactly one particle at each site.
This new subspace can be shown to be equivalent to the
subspace defined by the c Geld with no double or multiple
occupancies. In particular, we may represent the fer-
mionic electron operators c; and c; in the following

way:
PG(i)c, PG(i) =5, .;;ft b;5,

'nb f 'nb nf
(2)

PG(i)c, PG(i) =5, ;;b, f, 5, .
nb nf nb nf

where nb+nI=b, b, +g, f, f, . In terms of the f
and b Gelds, a state vector can be written as

, y~ )f.'...f„'... f„'„.„b,', b,',
o i, o2, . . . , o~ Ix I, IyI

where N, is the number of f fermions on the lattice, Q is
the number of b bosons, and we require that
x;Ax.&yk&yl, and that the f fermion positions [x]
and the b boson positions [y] span the whole chain.
Obviously, X, is also the number of electrons,
and Q the number of holes on the lattice. The

I

amplitude P is antisymmetric when exchanging (x, o', )

and (x,o., ), and symmetric in the boson coordinates

[y] =(y, ,yz, . . . ,y&). Using the mapping Eq. (2) in a
straightforward way, the Hamiltonian of the supersym-
metric t-J model can be written in terms of the fermionic
f field and the bosonic b field.
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With the above mapping, we can write the eigenenergy
equation of the supersymmetric t-J model in the first
quantized form. Define the "exchange operator" M; as

M;JF (

=+(qi q2& . . ~ r qjt . 1 ~i' ~L
d (q; —qj)MJ P(}q};[or})

changes the positions q;, q. of the particles i and j. In
terms of such exchange operators, the eigenenergy equa-
tion of the t Jm-odel takes the form as follows

where the function F is an arbitrary function of some po-
sition variables (q„q2, . . . , qt ), i.e., the operator M,J ex- where

=EN(lq) l~)» (4}

and

r q}=(qi q2 ''' qL) (xi x2 ''' xN 3132 '', ~g)
e

«}q};i~))=«qi~i, q2~2, qtt, ~tt, lqN+iqÃ+2 qc)=0(xi~i, x2~2, , xN ~& lsia2, . . . , ZZ}

is the amplitude of the state vector of Eq. (3).
[ cr }

=(0 „o2, . . . , o z ) are the spin variables of the fe

fermions. The operation M;. is defined in the convention-
al way:

M;,0(}q}»t~))=0((q') l~)»
with

and

t) —lq}=qi q2 q q qL}.
Here, the sum in the Eq. (4) is over all pairs of particles.
Thus, we see that using the f and b fields, we can write
the original t Jmodel a-s an eigenvalue problem for a mix-
ture of the f ferinions and the spinless b bosons in terms
of the "exchange operators. "

Recently, Fowler and Minahan have considered a gas
of identical bosons on a one-dimensional chain. Using
the so-called "exchange operator formalism, "' they have
been able to construct explicitly all the invariants of
motion for the SU(N} spin chain of Haldane and Shastry.
Let us briefly review their results. Say M; is the ex-
change operator that interchanges q; and q, the positions
of the particle i and particle j, when operating M;j on a
wave function F(q„q2, . . . , qL ). In terms of this opera-
tor, they have been able to construct an infinite set of
quantities I„ that commute among themselves:

[I„,I ]=0,
where I„=g~ i

n.
,
"
, with n, =g. ~&;~ (z. /z;. )M;,

2mq, . /Lz;=e ', z,"=z,. —z., and n, m =0, 1,2, . . . , Do. It was
found that all these quantities commute with the Hamil-
tonian H =g, &;&~ L ~z;

—z.
~

~M,J. as long as the parti-
cles occupy the whole chain. For a system of identical
bosons on the chain, the wave function is totally sym-
metric when we simuItaneously interchange spins and po-
sitions of two particles. The effect of the exchange opera-
tor M;. is just equivalent to the effect of the spin ex-
change operator alone. Using this method, they have
successfully constructed all the invariants for the SU(N)
Haldane-Shastry model.

We would like to stress that, in the language of the ex-
x, =

1 ~j (pi) L
2/(x; —xi )

change operators M,J, the commutation results proved by
Fowler and Minahan hold as operator identities. The
central issue is that the form of the wave functions of
many-particle systems, as well as the statistics of the par-
ticles or the types of particles, do not matter in order for
the commutators to hold, as long as the particles occupy
the whole chain. We may then apply the "exchange
operator formalism" to the wave functions of mixtures of
fermions and bosons. Therefore, from the eigenequation,
Eq. (4}, we conclude that in the first quantization all the
invariants of the t-J model are the same I„'s as construct-
ed by Fowler and Minahan, which can be written in
terms of the exchange operators M; 's.

With the permutation properties of the amplitude P for
the mixture of bosons and fermions, it is straightforward
to write all the invariants of motion of the t Jmodel -in
the second quantization form using the I„'s. For in-
stance, the exchange operation between the f fermion po-
sitions is equivalent to the spin exchange operation
(minus sign involved), the exchange operation between b
boson positions is equivalent to the hole-hole interaction
term, and exchange operation between f fermion and b
boson positions is equivalent to the electron hopping.
Such a procedure to reduce an I„ to a second quantized
form is quite simple, and we do not write all the details.
Thus, we provide a systematic way to construct all the in-
variants of motion for the I/r supersymmetric t-J mod-
el, either in first quantized or in second quantized forms.

Recently, Shastry and Sutherland have studied the in-
teresting relation between supersymmetry and integrabili-
ty, through the so-called "super-lax-pair" approach. '

For this equal-spacing chain, using the mapping Eq. (2),
we have been able to write the t-J model Hamiltonian,
Eq. (l), in terms of the exchange operators as Eq. (4).
This identification shows that the "super-lax-pair" results
obtained by Shastry and Sutherland may apply to this t-J
model. 4'

Besides the above integrable t-J model on equally
spaced sites, let us consider another supersymmetric t-J
model of 1/r hopping and exchange on a chain with
sites not equally spaced. The positions of the sites
x „x2, . . . , xL are determined by the equation
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This equation has appeared in a paper discussing a 1ong-
range spin chain of Haldane-Shastry type. ' Doping this
spin chain, we are led to the following supersymmetric t-J
model:

N

H=PG — g g t, (c, c )

1 ~i/j ~L o =1

+ g J; [P; —(1 n; —)(1 n—)] PG, (7)
] ~i/j ~L

where the hopping matrix and the antiferromagnetic ex-
change interaction are given by t;~ /2 =J,J = 1/(x; —

x~ ),
and each site is occupied at most by one electron.

In the half-filled case N, =L, this system reduces
to the spin chain that has been studied before, which
is completely solvable and a similar exchange opera-
tor formalism has been developed. ' ' " Let us just
write down the results obtained by Polychronakos:
[I„,I ]=0, [I„,H]=0, where I„=+~ i h,",

=QJ(&;)i(q; —qj) MJ, H=g, &J (q; —qj) MJ, and
n, m=0, 1,2, . . . , ~. Here, all the particles are put on
the chain where the sites are positioned as determined by
Eq. (6). We may relate the operation of exchanging parti-
cle positions to the operation of exchanging particle
spins, by assuming that we have identical bosons again,
for which the wave functions are totally symmetric when
we exchange the spins and positions of two particles
simultaneously. ' With this assumption, from I„'s, we
thus can derive all the invariants of motion written in
terms of the spin exchange operators alone.

Again, all commutation results written in terms of the
exchange operators M;. obtained by Polychronakos hold
as operator identities, as long as the particles occupy the
whole chain of the sites positioned in the special way.
The forms of the wave functions do not matter at all.
Thus, the commutation results can be applied to wave
functions of particles of arbitrary statistics or wave func-
tions of mixtures of particles of different statistics on the

chain. Mapping our supersymmetric t-J model in terms
of the b and f fields, we can also write the eigenenergy
equation in first quantized form. In terms of the ex-
change operators between the positions of the bosons and
fermions, the Hamiltonian takes the form

H= — g (q; —q) M;, .
1 ~i/j ~L

Applying the formalism to this t-J model, in a similar
way we obtain all the invariants, either in first quantized
or in the second quantized form, which commute among
themselves and with the Hamiltonian. Thus, this super-
symmetric t-J model is also completely integrable.

In conclusion, we have studied the invariants of motion
of two SU($) supersymmetric t Jmod-els of long-range
hopping and exchange. The first system is on the chain
of equal-spaced sites, and the other on a chain of
nonequal-spaced sites. Mapping the corresponding t-J
model Hamiltonians to those written in terms of mixed
fermionic and bosonic fields, then applying the "exchange
operator formalism, "we were able to construct systemat-
ically a11 the invariants of the original Hamiltonians.

Finally, we wish to point out that, the second t-J model
has also a metal-insulator phase transition at half filling.
Away from half filling, we expect to have decoupled spin
and charge excitations near the ground state. The system
would be a Luttinger liquid. The study of the physical
properties of the t-J model, such as its full excitation
spectrum, is reported in our forthcoming paper. We ob-
tain Jastrow product ground-state and excited-state wave
functions, as in the case for the model on the chain with
equally spaced sites. It would also be very interesting to
find out possible Shastry-Sutherland type "super-lax-
pair" for this supersymmetric t-J model on a nonequal-
spacing chain. We will return to the issue of constructing
invariants of the nonsupersymmetric t-J models with
1/r hopping and exchange in future.
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