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Time-dependent spin-autocorrelation functions at T = ~ and (in particular) their spectral densities for
the bulk spin and the boundary spin of the semi-in6nite spin-2 XXZ model (with exchange parameters

J„=J~—:J, J, ) are investigated on the basis of (i) rigorous bounds in the time domain and (ii) a
continued-fraction analysis in the frequency domain. We have found strong numerical evidence for spin
diffusion in quantum spin models. For J, /J increasing from zero, the results of the short-time expansion
indicate a change of the bulk-spin xx-autocorrelation function from Gaussian decay to exponential de-

cay. The continued-fraction analysis of the same dynamic quantity signals a change from exponential
decay to power-law decay as J, /J approaches unity and back to a more rapid decay upon further in-

crease of that parameter. By contrast, the change in symmetry at J, /J =1 has virtually no impact on
the bulk-spin zz-autocorrelation function (as expected). Similar contrasting properties are observable in

the boundary-spin autocorrelation functions.

I. INTRODUCTION

After more than two decades of theoretical studies de-
voted to high-temperature dynamics of quantum spin
chains, which have produced a number of intriguing ex-
act results, one central question has remained
unanswered: Does the phenomenological concept of spin
diffusion provide at all an adequate description for the
transport of the fluctuations of a conserved magnetiza-
tion component? While the spin-diffusion phenomenon
was frequently invoked for the interpretation of experi-
mental results from inelastic neutron scattering, electron
spin resonance and NMR on quasi-one-dimensional (1D)
magnetic compounds, ' its support by microscopic
theories or numerical analysis of quantum spin dynamics
has remained rather weak and tentative or artificially
imposed.

Even for classical spin chains, whose long-time dynam-
ics is more readily accessible to numerical analysis by
means of simulation studies, the answer to that question
has proven to involve unanticipated subtleties. The
anomalous character of spin diffusion in the classical
Heisenberg chain, identified some five years ago, has
remained a matter of controversy ever since as to its
correct interpretation. ' There is now strong evidence
that the diffusivity is singular, giving rise to loga-
rithmic corrections in the long-time tail of the spin-
autocorrelation function, ' but the exact nature of these
corrections and their origin have remained obscure.

It is much more challenging to analyze the long-time
dynamics of quantum spin chains. There are only very
few quantum spin models with nontrivial dynamics for
which dynamic correlation functions at T = 00 have been
determined exactly. Among them are the equivalent-
neighbor XXZ model' ' and the 1D s =

—,
' XY mod-

el. ' Spin diffusion has no part in either model for

We focus on (normalized) spin-autocorrelation functions

&st(t)st &

Ct'"(t) = p=x, z
&stsp)

' (1.2)

reasons that are well understood.
For other quantum spin models with nontrivial dynam-

ics, such as the 1D XXZ model, exact information on dy-
namic correlation functions is limited to a number of fre-
quency moments obtained from T = 00 expectation
values of spin products. ' The information con-
tained in these frequency moments can be employed in
two different ways to infer characteristic properties of dy-
namic correlation functions:

(i) We may use the frequency moments as Taylor
coefficients in the short-time expansion of a correlation
function. For certain situations, the rigorous upper and
lower bounds thus determined for that function may yield
accurate results over time intervals that are sufficiently
long to unlock valuable information on the underlying
physical process —information that is otherwise inacces-
sible.

(ii) For certain other situations, further information on
the long-time behavior can be extracted from the fre-
quency moments if they are converted into an equal num-
ber of continued-fraction coefficients for the relaxation
function (the Laplace transform of the correlation func-
tion).

This paper builds principally on the accomplishments
of two previous studies of T = ao quantum spin dynam-
ics ' with focus on methods (i) and (ii), respectively.
Here the analytic and numerical techniques developed in
those studies are combined for the specific purpose of elu-
cidating the T = 00 dynamics of the 1D s =

—,
' XXZ mod-

el. The Hamiltonian for a semi-infinite chain reads
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at T = ao and the associated spectral densities

4»("(to) = f— dt e' 'C/'"(t), p=x, z . (1.3)

Results will be presented for 1=00 (bulk spin) and
1 =0 (boundary spin). For two special cases, the dynam-
ics can be analyzed exactly: the XX model (J, =O) is
equivalent to a system of noninteracting lattice fermions,
and the X model (J =0) is as trivial as the quantum har-
monic oscillator. For other parameter values, however,
the T = oo dynamics of the XXZ model is quite compli-
cated, and transitions between different types of dynami-
ca1 behavior can be studied. For that purpose, the two
above-mentioned methods (i) and (ii) of analyzing fre-
quency moments turn out to be invaluable instruments
for analysis and interpretation. Our main point of em-
phasis is the identification of diffusive long-time tails in
spin-autocorrelation functions under the right symmetry
conditions or the corresponding infrared divergences in
the associated spectral densities.

The phenomenon of spin diffusion is based on a
thermalization process that is subject to a conservation
law. The phenomenological theory in its simplest form
states that the fluctuations S"(q, t) of any conserved spin
component satisfy the diffusion equation for sum. ciently
long times and wavelengths. It predicts exponential de-
cay for correlation functions that are not constrained by
that conservation law and diffusive long-time tails for
those that are. The fact is that exponential decay in time
or diffusive long-time tails do not occur in any of the

II. CALCULATION AL TECHNIQUES

At T=co, the spin-autocorrelation function (1.2) is
real and symmetric. It can be expanded into a power
series of the form

(2.1)

where the expansion coefficients are the frequency mo-
ments of the spectral density (1.3)

M~+(l) =f co "4",4(to)2'
d2k

=( —1)" C/'"(t) k =0, 1,2, . . . , (2.2)
f=o

and can be expressed as expectation values

known exact results for interacting quantum spin sys-
tems. The decay in those systems turns out to be either
Gaussian or nondiffusive power law. In this study we
provide evidence in support of spin diffusion in the 1D
s =

—,
' XXZ model in the form of a crossover from Gauss-

ian to exponential decay (Sec. III) and in the form of
long-time tails that come and go with the conservation
law required for difFusive behavior (Secs. IV —VI). The
presentation of the results is preceded (Sec. II) by a brief
description of the two main methods of analysis em-
ployed here.

M&)f(1)= —( —1)'([ . [S/, 8], . . . , 8][ [S/', 8], . . . , H]) l(S/'S/') (2.3)

c/'"(z): f dt e —"C/'"(t) = (2.4)

which is the Laplace transform of the spin-
autocorrelation function (1.2), and proceed with the

of operators produced by the product of two k-fold com-
mutators. ' These expectation values can be evaluated
exactly by readily programmable integer arithmetic as ex-
plained in Ref. 25. We have determined the M~2((l} up to
k = 14 for the bulk spin (I = ao ) of the XXZ model and up
to k =17 for the boundary spin (1 =0}. This represents a
significant advance from previously known moments for
that model. ' The exact moments are listed in Appen-
dix A.

In Sec. III we shall use these expansion coefficients to
determine upper and lower bounds of the spin-
autocorrelation function by methods that have been
developed and described previously. ' In Secs.
IV —VI the information contained in the frequency mo-
ments will be analyzed by quite different methods. We
convert the M~@(l) into the continued-fraction
coefficients b,~t,"(I ) of the relaxation function

4~) "(to)=2 lim%[c/"(E 'ito)—]c~o
(2.5)

by methods involving the use of matching termination
functions that have previously been tested and applied in
quantum spin dynamics. ' ' (b} We shall employ the
method developed in Ref. 30 for the identification of in-
frared singularities in spectral densities by direct analysis
of the known sequence of AFAR"(I }

analysis from there. A set of transformation formulas be-
tween the first K frequency moments Mug(l) and the first
K coefficients b,"„"(1)is given in Appendix B.

It must be mentioned that the continued-fraction
coefficients h~t,"(I) can be determined more directly by
means of the recursion method. The computational effort
is almost identical to that required for the determination
of an equal number of frequency moments M~zg(l). A
brief account of Lee's formulation of the recursion
method as applied to quantum spin dynamics at high

temperature was given in Refs. 15, 21, and 23 for several
applications.

In this paper, the known continued-fraction coefficients
biz"(I) will be analyzed along two different lines: (a) We
shall reconstruct the spectral density (1.3) from the relax-
ation function (2.4) via the relation
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III. FROM GAUSSIAN DECAY
TO EXPONENTIAL RELAXATION

Consider first the bulk-spin autocorrelation function
(S"„(t)S"„)of the XXZ model (1.1}. The nontrivial but
exactly solvable case J, =0 (XXmodel) is an ideal starting
point for the analysis of the XXZ cases by both calcula-
tional techniques we intend to employ. The well-known
exact expressions for that autocorrelation function and
its spectral density in the XX limit read

(S" (t)S"„)=(S' (t)S'„)=-,'e ' ', (3.1)

@xx( )
~

e
—
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FIG. 1. Short-time expansion of the spin-autocorrelation
function C"„"(t}=($"„(t}$„)/($„$'„)at T= ao of the 1D
s =

2 XXZ model for J=1 and J,=0.02, 0.05, 0.1 (solid lines)

near the exactly solvable case J,=0 (dashed line). The data are
plotted in a way suitable for visualizing the crossover from
gaussian decay (negative unit slope) to exponential decay (zero
slope). Each result of the short-time expansion is represented
by two curves corresponding to an upper and a lower bound of
the function. The bounds have been determined from 14 exact
frequency moments M2k( ao ).

The Gaussian decay of (3.1} is clearly anomalous, attri-
butable to the free-fermion nature of the XX model. The
default expectation within the spin-diffusion scenario
would be exponential decay at long times instead. The
nongeneric processes that govern the transport of spin
fluctuations in the XX model are further indicated by the
fact that all pair-correlation functions (SP(t)SP), lAl'
are identically zero. In the XXZ model, the anomalous
features are expected to disappear. A weak fermion in-

teraction (with coupling constant J, ) impacts the long-
time behavior more strongly than it affects the short-time
behavior. In the function (S"„(t)S"„)we thus expect to
see a crossover from a Gaussian behavior at short times
to exponential decay at longer times. The very simple
structure of the exact result (3.1) makes it possible to ob-
serve clear indicators for such a crossover in a short-time
expansion at J, &(J.

In Fig. 1 we have plotted
ln((S"„(t)S"„)) l(Jt (S"„S"„)) versus

different parameter values of the XXZ model near the XX
limit. The straight dashed line with negative slope
represents the pure Gaussian (3.1). The results for J,AO
show strong indications that the decay is slower than
Gaussian, consistent with exponential decay (convergence
toward a negative constant in the plot of Fig. 1). Power-
law decay would imply convergence toward zero.
Whether or not the observed exponential decay
represents the true asymptotic behavior is, of course,
beyond the reach of this type of analysis.

IV. FROM EXPONENTIAL RELAXATION
TO DIFFUSIVE LONG- TIME TAILS

Unlike in classical spin dynamics, where diffusive
long-time tails are readily detectable in simulation data
and directly amenable to a quantitative analysis, the most
direct indicators of their presence in quantum spin dy-
namics (at least in 1D and 2D systems} are infrared diver-
gences in spectral densities. The continued-fraction
analysis is an ideal instrument for the quantitative study
of such singularities.

b,""(ao)=—'J k (J =0) (4.1)

via (2.4) and (2.5}. ' The strength of the continued-
fraction analysis of this function derives from the fact
that gradual deviations from the exactly solvable limit

J, =O produce only gradual deviations from (4.1). The
resulting nearly linear hk sequences, in turn, produce
gradual changes in the spectral density 4"„"(co).

As J, increases from zero, we can identify two types of
systematic deviations of the 6k's from the linear sequence
(4.1): (i) A gradual increase in growth rate A, implies a
gradual change in the decay law at large co of the spectral
density according to the following relation: '

&""(&)-k ~ 4&"(t0)-exp( —~a)
~

~) (4.2)

(ii) Gradually increasing alternating deviations of the
b, k's from the line k signal the emergence of a power-
law singularity at co=0 in the spectral density and allow
for an estimate of the singularity exponent. ' Both
effects are illustrated in Fig. 2. The main plot shows ink&
versus ink for two cases of the XXZ model. The open cir-
cles represent the linear sequence (4.1) for J, =0, which
has slope A, =1. The regression line for J,=J has slope
A. =1.22. The predominantly alternating deviations of
the full circles from that line are clearly visible. The inset
shows the variation of the growth rate A, with J, between
the XX and XXX models. Changes in growth rate over
that range have only negligible impact on the physically
interesting structures in the spectral densities investigat-
ed here. The growing alternating deviations in the Ak se-
quence are the signature of an emerging infrared diver-
gence implied by the spin-diffusive long-time tail that is

A. hk sequences and model spectral densities

The exact result (3.2) for the spectral density 4„(t0)of
the XX model can be reproduced by means of the recur-
sion method with relative ease. It is determined by the
linear sequence
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ters ~~, cz, A, . However, for growth rates sufficiently close
to A, = 1, we can approximate the (A.X1) problem with a
(k= 1) problem if we replace the bk sequence by the re-

scaled sequence
37— g1/A.

k k (4.4)

2 %7

1 5

ln(k)

and then proceed as outlined previously. The main dis-
tortions in the reconstructed spectral density caused by
this approximation are of two kinds: (i) a change in the
large-co decay law and (ii) a change in the frequency scale.
Whereas the former e6'ect has only a negligible impact on
the shape of the spectral-weight distribution, the latter
may warrant attention and lead to significant improve-
ment upon proper adjustment.

FIG. 2. Log-log plot of the sequences 6k ( ~ ) for the bulk-
spin-autocorrelation function (S"„(t)S"„)at T= ~ of the 1D
s =

—, XX model {J= 1, J, =0) and XXXmodel {J=J,= 1). The

slope of the linear regression lines determines the growth rate A,

of each hk sequence. The inset shows I, as a function of J, {for
J =1).

2K /A, coo
(4.3)

This remains impractical as long as we lack closed-form
expressions for the mode1 continued-fraction coefficients
b, k pertaining to (4.3) as functions of the three parame-

expected to dominate the function (S'„(t)S"„)for J, =J.
A quantitative analysis of that singularity will be present-
ed in Sec. IV C. It yields strong evidence for a transition
from an unconstrained relaxation process at J, &J to a
difFusion process at J,=J in the fluctuations of S"„(t).

For the reconstruction of spectral densities from 5k se-

quences with growth rates A, = 1, we have proposed
and successfully employed the following procedure:
(i) Pick a Gaussian model spectral density,
4(co) =(2&m /con)exp( —co /coo). (ii) Expand the associat-
ed model relaxation function (2.4) into a continued frac-
tion down to level n; this generates the model coefficients
Ak=e~k/2 and defines the nth-level termination func-

tion I „(z). (iii) Determine the parameter coo by matching

the slope of 6k versus k with the average slope of
b, k"( ~ ) vs k for the finite sequence of coefficients

b f"( ~ ), . . . , 5"„'(~ ) pertaining to the dynamical quanti-

ty of interest and inferred from exact moments or pro-
duced by the recursion method. (iv) Replace the model
coefficients 5„.. . , b,„by the known system coefficients
b,f"( oo ), . . . , 5"„"(m ) in the relaxation function and
evaluate the spectral density via (2.5). That is the recipe
for reconstructing spectral densities by means of a Gauss-
ian terminator.

For 6k sequences whose growth rates deviate
signi6cantly from A, =1 and whose spectral densities are
likely to have infrared divergences as their dominant
structure we should carry out such an analysis on the
basis of the more general model spectral density

B. Reconstruction of spectral densities

We have reconstructed the bulk-spin spectral density
4'„"(co) of the XXZ model for 0~J, /J & 1 by using the
continued-fraction coefficients b, &'( oo ), . . . , b, ",~( ao )

inferred from the moments tabulated in Appendix A and
a Gaussian terminator with its parameter determined
from the slope of the 6k sequence.

Figure 3 shows the reconstructed function 4"„"(n), at
co&0 for values of the anisotropy parameter between

J, /J=0 and J, /J=0. 5, and at co) 0 for parameter
values between J, /J =0.6 and J, /J = 1.0. The five

curves on the left illustrate how the pure Gaussian (3.2)
(dashed line) evolves into a curve with some structure as
J, /J increases from zero. The additional structure con-
sists of (i) a central peak of increasing height and decreas-
ing width and (ii) a shoulder of enhanced spectral weight

40-—

3.Q—

1.Q-

0.0—
—1.0 0.0

FIG. 3. Spectral density 4„(co) at T= ~ of the 1D s =
—,
'

XXZ model with J=1 as reconstructed from the continued-

fraction coefficients b
&

( 00 ), . . . , b",4( cc ) and a Gaussian termi-

nator. The calculation was carried out by the use of the 6k se-

quence in the role of the original 5k sequence. The four solid

curves for co & 0 pertain to the values J,=0.2, . . . , 0.5 of the an-

isotropy parameter and the five curves plotted for co&0 to
values 0.6, . . . , 1.0. The dashed curve represents the exact re-

sult (3.2) for the case J, =0. The result for J,=0. 1 (not shown)

deviates from that for J, =O by amounts comparable to the
thickness of the dashed line.
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at co = 1.5J. The further development of the spectral den-
sity as J, /J approaches the XXX case is shown by the
curves on the right. The shoulder becomes more pro-
nounced, and the strong peak at co=0, signals the pres-
ence of an infrared divergence for J,=J in accordance
with spin-diffusion phenomenology.

The curve for the XXXcase is in qualitative agreement
with previous results obtained from finite-chain calcula-
tions, ' and by a calculation which uses the first two fre-
quency moments of the dynamic structure factor in con-
junction with a two-parameter diffusivity. We should
like to emphasize that the infrared singularity in 4"„"(co),
which is strongly suggested by the curves for J, /J = 1 in
Fig. 3, is in no way artificially built into our approach. It
is a structure resulting solely from the 14 known
continued-fraction coeScients.

The reconstructed spectral density 4"„"(co) shown in

Fig. 3 is expected to be most accurate for small values of
J, /J, where the growth rate is closest to A, =1 (see Fig. 2,
inset). As the growth rate increases toward A, = 1.22, the
curves are likely to become subject to the above-
mentioned systematic errors. We have estimated the sys-
tematic error in frequency scale not to exceed 2%%uo for the
curves at 0 & J, /J & 0.5 and 12%%uo for those at
0.5&J, /J &1.

C. Analysis of infrared singularities

For a quantitative analysis of the infrared singularity in
the spectral density 4"„"(co),we focus on the alternating
deviations about the average (nearly linear) growth of the
hk sequences. Consider the special case A, =l of the
model spectral density (4.3). The associated hk sequence
is known in closed form:

(4.5)

For this model spectral density, the singularity exponent
u is determined by the displacement of the b,2k, from
the line 52k =cook. In real situations, that displacement is
subject to fluctuations" caused by other structures in the
spectral density. The exponent a of the infrared singular-
ity can nevertheless be estimated from the average dis-
tance in vertical displacement of the 62k and the 62k
from the linear regression line for the entire sequence.
Two previous applications of that procedure yielded
reasonable results.

The results of such an analysis applied to the 6k se-
quences inferred from 14 exact moments are compiled in
Fig. 4. The full circles joined by solid lines represent the
mean exponent values a as a function of J, /J ranging
from the XX model (J, =0) to the XXX model (J,=J)
and somewhat beyond. The error bars indicate the sta-
tistical uncertainty for each data point, which is due to
the fact that the analysis is based on a finite number of
known continued-fraction coeScients. On top of the sta-
tistical error, the data are likely to be subject to a sys-
tematic error whose potential impact increases with the
deviation of the growth rate from A, =1. We have yet to
design a simple and satisfactory way to correct for sys-
tematic errors in the exponent analysis. As J, ap-

0. 1
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—0.3-
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0.0 0.5 1.0

FIG. 4. Infrared-singularity exponent a versus anisotropy
parameter J, of the spectral density 4"„"(~)at T= 00 of the 1D
s =

—,
' XXZ model with J=1. The data points were obtained

from the continued-fraction coeScients 53"( 00 ), . . . , h&4( 00 ) by
analyzing the associated 61, sequence.

V. SUSTAINED POWER-LAW DECAY

The conservation law Sr=+,.S,'=const for the spin
fluctuations in the z direction holds over the entire pa-
rameter range of the XXZ model. Consequently, the
long-time behavior of the correlation function
(S'„(r)S'„)or the low-frequency behavior of the spec-
tral density @ (co) is expected to be much less affected by

proaches zero, both types of uncertainties (statistical and
systematic} become smaller and disappear. The data
point a(0}=0is exact and describes the spectral density
(3.2), which has no infrared singularity.

In spite of the limited overall accuracy of these results,
the dependence on J, /J of the mean exponent values
displayed in Fig. 4 is quite remarkable. The data strongly
indicate that the function a(J, /J) stays zero over some
range of the anisotropy parameter. A vanishing exponent
at small but nonzero J, /J is consistent with and thus
reinforces the conclusion reached from the short-time
analysis that the function (S"„(t)S"„)decays faster than
a power law.

While the data point at J, /J=0. 5 is still consistent
with a =0, the mean a values have already a strongly de-
creasing trend at this point. A minimum value is reached
exactly at the symmetry point (J,=J} of the XXX
model —the only point for which the conservation law
Sr=+;S;"=const holds, and therefore the only point
for which one expects a diffusive long-time tail in
(S"„(t}S"„).Upon further increase of J, /J, the data
points rise again toward a =0 as expected.

The minimum exponent value, a= —0.37+0.12, ob-
tained for the XXX case is only marginally consistent
with the standard value, a= —

—,', predicted by spin-
diffusion phenomenology. That discrepancy is more like-
ly attributable to the systematic error in our data than it
is evidence for anomalous spin diffusion such as was
discovered in the classical 1D XXXmodel.
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FIG. 5. Continued-fraction coefficients hk'(ao) vs k for the
bulk-spin-autocorrelation function (S'„(t)S'„)at T = oo of the
1D s =

z XXZ model with J=1 and J, =O (XX case), J,=0.1,
0.6, and J,=1.0 (XXX case). The kink of the sequence for
J,=0. 1 illustrates the crossover between growth rates A, =O and
A, ~ l.

the symmetry change of Hg~z at J,=J than the func-
tions (S" (t)S" ) and 4 (co) were. The verification of
sustained power-law decay at J,WJ as a contrast to the
results presented in Sec. IV will further support the case
for quantum spin diffusion.

Here the kind of analysis carried out previously for the
reconstruction of spectral densities (Sec. IV B) and for the
estimation of singularity exponents (Sec. IVC} becomes
inapplicable for 0&J, /J & 0.6. The breakdown is caused

by a crossover in the growth rates of the relevant se-
quences of continued-fraction coefficients. Figure 5

shows the b, „se quences plotted versus k of 4'„'(co) for
four difFerent parameter values. Between J, /J =0.6 and

J, /J=1. 0, the sequence of known coefficients has a well
defined growth rate somewhat in excess of X=1. For the
XX model (J,=0), on the other hand, growth rate A, =O
is we11 known to be realized. ' The sequence for
J, /J =0. 1 has attributes of both regimes. It starts out
with A, =O up to k =7 and then begins to grow with k ~ 1,
thus causing a kink in b«versus k. That is so
throughout the range 0(J, /J (0.6. It is impossible to
analyze such sequences on the basis of a unique value of
A., and, therefore, impossible to carry out the analysis de-
scribed before without major modifications. '

The bulk-spin spectral density 4'„'(co) for four parame-
ter values over the range 0.7 &J, /J & 1.0 as reconstruct-
ed from the 14 known 5k's and a Gaussian terminator
with its parameter from the 6& sequence is displayed in

Fig. 6 (solid curves}. Notice how the shape of the func-
tions cp'„'(co) (Fig. 6) and 4'„"(co) (Fig. 3), which start out
identically, undergo different changes as the anisotropy
parameter decreases from J, /J= 1. While the function
4'„"(co) gradually transforms into a pure Gaussian
(dashed line in Fig. 3), the function 4'„'(co) is supposed to
approach the exact result'

4.0

BO

3
2.0

8

1.0

0.0
0.0 1.0 2.0

FIG. 6. Spectral density 4'„'(co) at T = ao for the bulk-spin of
the 1D s =

—,
' XXZ model with J =1 as reconstructed from the

continued-fraction coefficients 6&'( ~ ), . . . , 614( ~ ) and a
Gaussian terminator. The calculation was carried out by the
use of the associated 6k sequence. The four solid curves
represent the cases J,=0.7, 0.8, 0.9, and 1.0 (XXXmodel). The
dashed curve is the exact result (5.1) for J, =0 (XX model). In
the inset we have plotted the infrared-singularity exponent a vs

J, . The data points were obtained from 63'( ~ ), . . . , El4( ~ ) by
analyzing the hk sequence.

VI. BOUNDARY-SPIN SPECTRAL DENSITIES

The conclusions drawn in Secs. IV and V for the bulk-

spin spectral densities 4"„"(co)and 4'„'(co) are further sub-

4'„'(co)= K(+1—co /4J )8(1—co /4J ) (J, =O) .= 2

mJ
(5.1)

The graph of that complete elliptic integral has been add-
ed as dashed line to Fig. 6. The diminishing height of the
central peak with decreasing J, /J marks the weakening
of the divergence from -co ' (diifusive) to -ln(1/co)
(free fermions). Spectral weight removed from the cen-
tral peak and from the high-frequency tail is transferred
to the shoulder, which gradually transforms into a
discontinuity at ~/J =2.

The inset to Fig. 6 shows our results for the infrared
singularity exponent a over the parameter range
0.6 ~ J, /J ~ 1.5. Within the statistical uncertainties indi-

cated by error bars, the data points are consistent with a
J,-independent exponent. This confirms that the fluctua-
tions of SI' are largely unaffected by the change in the
symmetry at J, /J =1 in strong contrast to our observa-
tions made in Fig. 4 for the fluctuations of SI". The weak
monotonic J, dependence of the mean exponent values at

J, /J~0. 8 and their deviation from the standard value
e= —0.5 are probably attributable to the previously
mentioned systematic errors, which we have not fully un-

der control. However the sloping tendency of the mean
values toward the 1owest values of J„and the extra large
error bars on those data points are an artifact caused by
the crossover between growth rates as discussed in the
context of Fig. S.
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4~ (co)=(4/J)+1 —co /J (J,=0), (6.1)

which is the Fourier transform of (So(t)SO) =[Jo(Jt)
+Jz(Jt)]/4. While the b,f analysis breaks down for
small values of J, /J, the way the function 40"(co) devel-

ops between J, /J = 1.0 and 0.6 can be extrapolated fairly
smoothly toward the dashed line.

We have calculated the infrared-singularity exponent a
of the boundary-spin spectral density 40"(co) over the ex-
tended parameter range 0.6 ~ J, /J ~ 1.2 by means of the
analysis explained previously. The inset to Fig. 7 shows
seven equally spaced data points on that interval. The a
values at the endpoints of the interval are very close to

stantiated when we look at the results of the same
analysis carried out for the boundary-spin spectral densi-
ties C&g"(co), p=x, z. For that calculation we have 17
b,k's at our disposal (compared to 14 in the bulk case),
but the problem with the A, crossover now plagues both x
and z fluctuations for parameters 0 ~ J, /J ~ 0.6.

The spectral densities 4O (co ) for the cases
J, /J=1.0,0.6 as reconstructed from the b, k sequence
and a Gaussian terminator are shown in Fig. 7 (solid
lines). The curve for the XXX case (J,=J) shows a pro-
nounced peak at co=0. That conspicuous enhancement
of spectral weight has all but disappeared for J, /J=0. 6,
i.e., in the presence of anisotropy, where ST is not con-
served. Hence the central peak in the XXX result can
again be interpreted as a spin-diffusive divergence.

As the anisotropy parameter is decreased below the
value J, /J =0.6, the shape of the function 40"(co) must
approach that of the dashed line, which represents the ex-
act result for J, /J =0,

zero. In between, the data points drop toward a
minimum, again located at the symmetry point J,=J,
where the conservation law ST=const holds. The ex-
ponent value at the minimum, a= —0.45+0.26, is con-
sistent with spin-diffusion phenomenology.

Note the strongly contrasting J, dependence of the
singularity exponent pertaining to the spectral density
4O(co) as shown in the inset to Fig. 8. Here the data
points indicate the presence of an infrared divergence
over the entire parameter range shown. However, a
much stronger J, dependence of the mean values of a is
indicated than was the case of the corresponding bulk-
spin results (Fig. 6). Whether that J, dependence is en-
tirely attributable to the systematic errors in our analysis
and to the A, crossover remains to be seen.

In view of the fact that infrared divergences are likely
to be real in the function @o(co) for all values of J, &0,
we have treated them as such for its reconstruction from
the known 6k's. Instead of using a Gaussian terminator
(cf. Sec. IV A), which is completely unbiased with respect
to the spectral-weight distribution at low frequencies, we
have used a two-parameter terminator with built-in in-
frared divergence. Its model relaxation function has been
determined numerically via

( )= 1 + "d e(m)
27Tl —oo CO lZ

(6.2)

from the model spectral density (4,3) with A, =l. The
value of the parameter coo is determined by the slope of
6k versus k as before and the parameter a by our esti-
mate of the singularity exponent.

Two of the curves in the main plot of Fig. 8 represent

6.0

5.0-

4 0--

6.0

!

5.0-~

l

4.0-

3

O

3
3.0-

v Oe

1.0- 1.0-

0.0
0.0 1.0 2.0

0.0
0.0 0.5 1.0 1.5 2.0

FIG. 7. Spectral density 4p"(co) at T= Qo for the boundary
spin of the semi-infinite 1D s =

—,
' XXZ model with J=1 as

reconstructed from the continued-fraction coefBcients
6&"(0), . . . , 5»(0) and a Gaussian terminator. The calculation
was carried out with the associated hk sequence. The two solid
curves represent the cases J,=1.0 (XXX model) and J,=0.6.
The dashed curve is the exact result (6.1) for J,=0 (XX model).
In the inset we have plotted the infrared-singularity exponent a
vs J,. The data points were obtained from 65"(0), . . . „5»(0)
by analyzing the hk sequence.

FIG. 8. Spectral density 40'(co) at T= ao for the boundary-
spin of the semi-infinite 1D s =

—,
' XXZ model with J=1 as

reconstructed from the continued-fraction coef5cients
6& (0), . . . , 617(0) and a special terminator with built-in in-
frared divergence. The calculation was carried out with the as-
sociated hk sequence for the two cases J,=1.0 (XXX model)
and J,=0.6. Also shown is the exact result (6.3) for J, =O (XX
model). In the inset we have plotted the infrared-singularity ex-
ponent a vs J,. The data points were obtained from
6 (0), . . . , 5»(0) by analyzing the AI, sequence.
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the function 40(co) for J,/J=1. 0 and J, /J=0. 6 as
reconstructed form the 17 known continued-fraction
coeScients and this special terminator. As the parameter
drops from the higher to the lower value, the central
peak in the spectral density weakens considerably, and
the weak shoulder at co=J present for J, /J = 1.0 all but
disappears. Upon further decrease of J, /J to zero (XX
model), the curve is supposed to approach the dashed
line, which is the known exact result

4()*(co)= (1+co/2J) (1+co /4J )E3~J 2J+N

(6.3)

This limiting case is perfectly in line with how the recon-
structed spectral density develops between J, /J=1. 0
and J, /J =0.6.
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APPENDIX A

The frequency moments (2.2) of the spectral density
(1.3) as expressed in terms of the expectation values (2.3)
yield upon evaluation, for the XXZ model (1.1), expres-
sions of the form

with integer coefficients m~2)(1, 2n). We have computed
these coefficients up to k =14 for the bulk spin (I = ao )

and up to k =17 for the boundary spin (1=0). The
former are listed in Table I for p=z and Table II for
p=x, the latter in Table III for p=z and Table IV for
p —x.

APPENDIX 8

M(m —1)
M(m)

2

M(m —2)
2k —2

m 2m (BI)

for k =m, m +1, . . . , E and m =1,2, . . . , K and with set
values M pk =M2k 5,=Ap= 1 M2k =0.

Reverse direction: For a given set of 6 =M2 ',

m =1, . . . , K, and A, =hp=l, the moments
M2„'=M2„, result from the relations,

m 2

(B2)

The Grst K expansion coeScients M2k, k = 1, . . . , E of
an autocorrelation function (1.2) (or frequency moments
of its Fourier transform) determine the first K continued-
fraction coeScients hk, k =1, . . . , K of its Laplace
transform (2.4) and vice versa. The hk, for example, are
expressible in terms of Hankel determinants with ele-
ments consisting of moments M2k. ' ' There exist
several different algorithms for the numerical conversion
of one set of numbers into the other. Some of them are
more susceptible to numerical instabilities than others.
The following algorithm, which is a product of the re-
cursion method, has proven to be fairly robust against
numerical instabilities in our applications:

Fonuard direction: For a given set of moments M2k,
k =0, 1, . . . , E with Mp=1, the erst I( coeScients 5
are determined by

k

MPf(I) —2 2k g ni—i4p(1 2n)J2nJ(2k —2n)

n=0
(A 1) for m =k, k —1, . . . , 1 and k =1,2, . . . , K and with set

values M2k "=0.
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