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4f levels of rare-earth hexaborides: A simple approach based on a modified
orthogonalized-plane-wave method and a self-consistent-field atomic-structure calculation
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The electronic structures of trivalent and divalent rare-earth hexaborides RB6 are calculated by using

the modified orthogonalized-plane-wave method within the framework of the muffin-tin-potential ap-
proximation based on the self-consistent-field atomic-structure calculations. By regarding the 4f state as

a partially filled corelike state and for the transition between 4f and 5d states, and adopting the transi-

tion state introduced by Slater which includes the effect of the screening of 4f states by 5d electrons, an

attempt is made to understand the x-ray-photoemission spectroscopy (XPS) experiments and bremsstrah-

lung isochromat spectra (BIS). It is shown that the calculated results of the 4f levels relative to the Fer-
mi level generally agree with the experimental ones obtained from the XPS for CeB6, PrB6, NdB6, SmB6,

GdB6, and YbB6 and the BIS for GdB6, TbB6, and DyB6, but there is a considerable difference between

the calculations and experiments for the XPS for TbB6, DyB6, and Ho86 and the BIS for LaB6, CeB6,
and PrB6. The reason for this disagreement is mainly attributed to the effect of 4f multiplets which is

not taken into account in the present study.

I. INTRODUCTION

Rare-earth and actinide compounds known as "heavy
fermion systems, " show many interesting properties, e.g. ,
valence fiuctuation in SmB6 (Ref. 1), abnormal magnetic
resistivity in Ce86 due to the dense Kondo eQ'ect, a large
electronic specific heat and an indication of superconduc-
tivity in Ce and U compounds, etc. These properties
come from the fact that these compounds all consist of
elements having f electrons. Energy-band-structure cal-
culations provide a powerful tool to study the electronic
structure of matter. For rare-earth metals, approximate
calculations of the band structures have been carried
out and the 4f binding energies estimated from x-ray
photoemission spectroscopy (XPS) have been understood
on the basis of the assumption that the photoexcited 4f
states are completely screened by 5d electrons. For LaB6,
several band-structure calculations have been carried
out, ' and have shown that the calculated Fermi sur-
face is consistent with de Haas —van Alphen measure-
ments. However, there are few band-structure calcula-
tions for the rare-earth compounds having a finite num-
ber of 4f electrons because of the difficulty which arises
when 4f electrons are regarded as valence electrons, and
the complicated magnetic structure. Recently, band
structure calculations based on the linearized muffin-tin-

orbital (LMTO) (Ref. 11) and the Korringa-Kohn-
Rostoker (KKR) (Ref. 12) methods have been performed
for Nd86, in which the 4f states have been regarded as

partially fi11ed corelike states, and which have explained
well the experiment of the de Haas —van Alphen e6'ect.

In the present paper, we calcu1ate band structures of
rare-earth hexaborides RB6 (R =La, Ce, Pr, Nd, Sm, Eu,
Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) by using the
modified orthogonalized-plane-wave (MOPW) method
within the framework of the muffin-tin (MT) potential ap-
proximation based on the self-consistent-field (SCF)

atomic-structure calculations. Using the results of the
MOP% band-structure calculations, we determine the
energy position of the 4f state relative to the Fermi level
from the SCF atomic-structure calculations for rare-earth
metal elements. The MOPW band-structure and SCF
atomic-structure calculations, of course, need no empiri-
cal data. The aim of this paper is to estimate systemati-
cally the energy positions of 4f states relative to the Fer-
mi level EF, by joining the SCF atomic-structure calcula-
tions to the MOP% band-structure calculations in which

4f states are regarded as partially filled corelike states,
and to compare these calculated results with both x-ray
photoemission spectroscopy (XPS) (Refs. 13 and 14) and
bremsstrahlung isochromat spectra (BIS).' XPS and BIS
provide information about the 4f level, e4&, measured
from the Fermi level EF. We use the value of the Fermi
level EF obtained from MOP% band-structure calcula-
tion, to calculate the values of c~&~xps)-Ez and c4f{Ms)-(R) (R)

EF, which can be compared with experimental results of
XPS and BIS. Our interest lies in checking to what ex-
tent our simple approach can explain the experimental
results. The energy values of the 4f levels, e4JIxps) and

c4&~Ms), under the experimental situations of XPS and

BIS, are calculated on the basis of the concept of the
transition state introduced by Slater, ' assuming that an
electron-ejected rare-earth metal in the excitation process
in the XPS, or an electron-accepted rare-earth metal in

the recombination process in the BIS, can be treated as a
single impurity atom embedded in crystals. In the
present paper, we do not discuss the broadening of the
spectra of XPS and BIS originating from the multiple
structures of f states, which should be discussed as a
many-electron problem based on so1id-state physics. '

II. CALCULATION

Input data for the calculations are Herman and
Skillman's atomic data and the lattice constants.
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Starting from the self-consistent-field (SCF) atomic-
structure calculations based on the prescription of Her-
man and Skillman, we obtain the atomic orbitals which
are used to calculate the energy-band structures.

A. Band-structure calculation

Rare-earth hexaborides RB6 belong to a simple cubic
CaB6-type structure and crystallize in a CsC1 one in
which Cs and Cl sites are replaced by R and octahedron
B6, respectively. Therefore, the corresponding first Bril-
louin zone (BZ) is also a simple cubic. The band-
structure calculations are carried out by using the
modified orthogonalized-plane-wave (MOPW) method.
This method was developed by Deegan and Twose, ' in
order to avoid a difficulty which arises in the OPW
method a slow convergence for the d-like conduction
state. The reliability of the MOPW method has been
checked by Farberovich and co-workers, who per-
formed band-structure calculations of the transition met-
als Nb and V (Ref. 20), semiconductors ZnS and CdS
(Ref. 21), and rare-earth element Eu and its compounds
EuO (Ref. 22), and compared these results with results
obtained from the augmented-plane-wave (APW)
method. Theoretical details for the MOPW method are
given in Appendix A.

The muffin-tin (MT) radii R&T are determined in such
a way that the MT sphere for the R contacts along ( 100)
directions, i.e., R gT'=a0/2, and that for the B contacts
to the spheres of five nearest-neighbor B atoms, i.e.,
R&T'=(&2—1)(a0/2). The value of the Wigner-Seitz
(WS} sphere R ws is determined by the method we used to
calculate the MT parameters of NaC1-, CsC1-, and CaFz-
type crystals. In this method, it is assumed that the ra-
dius of the WS spheres is proportional to that of their
MT ones. By using this method, we obtain the R ws for R
and B to be ~R ~T' and ~R ~T. Here, ~ is the proportional
constant given by aa/I OPS'+60$T'I ', where
Q~T=4mR~T/3. By using Va ' and V0 ', which are
values obtained from the averaging of the crystal poten-
tial on the R and B sites in the region between the R~T
and R ws, the MT zero V~Tz 1s calculated as

t
V(R) +6 V(B)

I /7
In the study of rare-earth compounds, the ionicity of

the rare-earth elements plays an essential role in under-
standing the properties of the compounds. Therefore, the
ionicity of the rare-earth elements, i.e., the effect of
charge transfer, must be taken into account as exactly as
possible. This is also true for the band-structure calcula-
tions of rare-earth hexaborides R B6. We have calculated
the Madelung energy, which is given by the third term of
the right-hand side of Eq. (B7b), by using Evjen's
method. The Madelung energy is given by (2/a0)a„,
and the values of u„are 3.107495 for p=R+ and—2.998 661 for p=8 in atomic units. Here, it is not-
ed that the value of cr„ is reduced to 2cr„/3 for divalent
rare-earth hexaborides R+ B6 '

Before doing the MOPW band-structure calculations
of many rare-earth hexaborides, we have checked the
convergence of the calculations for reciprocal-lattice vec-
tors G defined by (2m/a )(l, m0, n) with integers 1, m, and

n. As a result, we have found that the calculation using a
reciprocal lattice of 81 vectors is enough to obtain the
converged result. In this case, the absolute value of the
maximum reciprocal-lattice vector is (2n/a0)v'6. In the
MOPW band-structure calculations, as can be seen from
Eq. (A2a), Bloch states constructed from valence orbitals
are added as basis states of the wave function. We use a
4f orbital as an additional basis state, so that the size of
the matrix treated in the calculation is 88 (=81+7).

B. SCF atomic-structure calculation

In the XPS experiment for rare-earth compounds, a 4f
electron is excited to continuum states by the radiation of
an x ray. In a sample the condition of charge neutrality
always must be satisfied, so that a vacancy due to the
ejection of a 4f electron rapidly captures a d-like electron
which obeys the dipole selection rule for the optical tran-
sition. In order to take into account these transition pro-
cesses as exactly as possible, we adopt the concept of the
transition state introduced by Slater. According to
Slater's transition state for a 4f ~5d transition, the elec-
tron configuration is given by Xe+4f" Sd 6s
(1 ~ n ~ 14}. Here it is noted that there is no change of
the ionicity of the photoexcited metal R'. Using these
electron configurations, we calculate the energy level of
the photoexcited 4f state (s4fIxps~) on the basis of the
SCF atomic-structure calculation.

BIS is, roughly speaking, the inverse process of XPS,
i.e., electrons are injected from the external electron How

to a sample. The Slater transition state to be considered
for an electron which drops into the 4f state is the transi-
tion from 5d to 4f. Therefore, the electron configuration
Xe+4f"5d'6s for the initial state of the BIS is changed
to Xe+4f"+ ' 5d 6s, where 0 n~~13. Using these
electron configurations, the energy level of the 4f state

(e4f(a/s)) is obtained. In the BIS experiments for R B6's,
except for YbB6 and LuB6, it should be emphasized that
the ionicity of an electron accepted-metal R*, which is
also treated as a single impurity as in the case of XPS, de-
creases by 1:contrary to the case for XPS.

The atomic orbitals used to carry out MOPW band-
structure calculations are obtained from the SCF
atomic-structure calculations in the following electron
configurations: Xe+4f"5d 6s, where n =0, 1, 2, 3, 5, 7,
8, 9, 10, 11, 12, and 14 for trivalent La, Ce, Pr, Nd, Sm,
Gd, Tb, Dy, Ho, Er, Tm, and Lu, and n =6, 7, and 14 for
divalent Sm, Eu, and Yb, and are 1s 2s 2p' for 8
and 1s 2s 2p for B

III. RESULTS AND DISCUSSION

We have calculated the energy-band structures of
trivalent rare-earth hexaborides R B6 (R =La, Ce,
Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) and of di-
valent ones R+ 86 '~ (R =Sm, Eu, and Yb) and ob-
tained the densities of states. The densities of states were
obtained from the sampling points of 4096 numbers
defined within the first Brillouin zone 0, where in practi-
cal calculations these sampling points are reduced to 165
points defined within the minimum segment given by
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0/48. The densities of states calculated for divalent and
trivalent R B6 are, of course, different from each other as
shown in Figs. 1(a) and 1(b), in which the densities of
states calculated for the divalent and trivalent Sm86 are
shown. We should emphasize that the densities of states
calculated for different RB6's with the same valency are
almost the same, except that pointed density of states due
to the 4f state of rare-earth elements appears at a
different position. Some of the calculated densities of

states are also shown in Figs. 1(c)—1(f): trivalent La and
Ce hexaborides in Figs. 1(c) and 1(d), and divalent Eu and
Yb ones in Figs. 1(e) and 1(f).

A. Comparison with XPS

Now let us compare the calculated densities of states
with the experiments of x-ray photoemission spectrosco-
py (XPS).' ' Here the reader should remember that the
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FKs. 1. Total densities of states (TDOS) calculated by the modified orthogonalized-plane-wave (MOP%) method: (a) divalent
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units of eV from the Fermi level E+ indicated by the vertical line.
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calculated densities of states are almost the same for the
same valencies, except for the position of the energy level
of the 4f state. The calculated results indicate explicitly
that the difference between the XPS spectra for LaB6
with no 4f electron and another R 86 having a finite num-
ber of 4f electrons comes from the existence of 4f states
occupied by a finite number of electrons. The positions
of 4f states relative to the Fermi level EF were obtained
from the XPS spectra, by considering that for Pr86 (Ref.
14}, Nd86 (Ref. 13},Gd86 (Refs. 13 and 14), and Yb86
(Ref. 14), the main peak corresponds to the energy posi-
tion of 4f states, and that for Sm86 (Ref. 13), Tb86 (Refs.
13 and 14}, Dy86 (Ref. 14), and Ho86 (Ref. 13), all the
peaks correspond to the energy positions of 4f states, be-
cause there are considerable energy splittings due to 4f
multiplets for the latter group. These are tabulated in
Table I together with the values of c4&-Ez calculated for
trivalent R 86 (R =La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho,
Er, Tm, and Lu} and divalent R 86 (R =Sm, Eu, and Yb),
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and the positions of the 4f states obtained from the ex-
periments of ultraviolet photoemission spectroscopy
(UPS) for Ce86 and Pr86 (Ref. 25).

The values of c4&-E~ obtained by using the electron
configuration 4f "5d 6s (0~ n ~ 14) for the ground states
adopted in the MOPW band-structure calculations do
not predict those obtained from the experiments; for ex-
ample, in GdB6 the calculated value is —5.89 eV, and the
experimental one is —10.0 eV (see Table I). The values
of the c4&-Ez calculated by using Slater's transition state
corresponding to the 4f-to-Sd transition are tabulated in
Table I, and comparison with experiments is shown in
Fig. 2. The agreement between calculations and experi-
ments is satisfactory for trivalent Ce86, PrB6, NdB6,
SmB6, and GdB6, and divalent YbB6. For trivalent TbB6,
DyB6, and HoB6, there are sizable experimental energy
splittings due to the 4f multiplets; however, if the most
intense peak located on the lowest-energy side is com-
pared with the calculated value, we can also find satisfac-
tory agreement between calculations and experiments for
these compounds. The present calculations generally
predict the results of c4&-Ez for XPS on CeB6, PrB6,
NdB6, SmB6, GdB6, and YbB6. From this and the fact
that the screening of 4f states by Sd electrons plays an
important role in XPS, we t:an say that the Slater
transition state adopted for the transition from 4f to 5d
states partly includes the effect of the screening of 4f
states by Sd electrons. This may be the reason for the
success of the calculation for XPS on those R B6, except
for Tb86, DyB6, and HoB6, which seem to have notice-
able effects due to the 4f multiplets.

B. Comparison with BIS

-l2-
-I—4 I I I I I I I I I I I I I I

La Ce Pr Nd (Pm) Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
3 3 3 3 3 2 3 3 3 3 3 3 2

FIG. 2. Plot of the energy position of the 4f level a4& mea-
sured in units of eV from the Fermi level EF as a function of
rare-earth hexaborides RB6 (R =La, Ce, Pr, Nd, Sm, Eu, Gd,
Tb, Dy, Ho, Er, Tm, Yb, and Lu). The valencies used in the
NOPW band-structure calculations for the R B&'s are also
shown at the bottom of the figure. The calculated values of
64f EF's indicated by symbols ~ and + are compared, respec-
tively, with the experimental values (denoted by o and ) ob-
tained from the experiments with x-ray photoemission spectros-
copy (XPS) and bremsstrahlung isochromat spectra (BIS). The
Fermi level EF was obtained from the MOPW band-structure
calculation, and the value of c4f was calculated by using Eq.
(C2c) consisting of the atomic energy term, the Madelung ener-

gy term, and the shift of the energy due to the crystallization.
In the SCF atomic-structure calculation, Slater's transition state
was adopted in order to describe the experimental situations of
XPS and BIS. For comparison, the values of c4f-Ez for rare-
earth metals calculated by Herbst, Watson, and %Vilkins (Refs. 5
and 6) are also shown. The values indicated by symbols o and
0 correspond to XPS and BIS. Their calculation includes the
effect of the Hund's rule 4f" ' and 4f"+' ground levels which
correspond to XPS and BIS, respectively.

In divalent YbB6 and trivalent LuB6, there is no vacan-
cy in the 4f state which can accept an electron, so BIS
measured for these compounds rejects the nature of the
conduction band. Thus it is natural to consider that the
spectral difference between these compounds (Yb86 and
Lu86) and other RB6's originates from the 4f states.
Here it is noted that in the BIS experiment in Ref. 14, the
intensity of BIS observed for Yb86 is small compared
with those for LaB6, Ce86, PrB6, GdB6, TbB6, and
Dy86. The values in eV of c4&-EF obtained from BIS
are tabulated in Table I. The charge neutrality in a sam-
ple must also be satisfied in BIS experiments like those in
XPS. Therefore, for the charge neutrality to be satisfied,
in the present paper we introduce the assumption that the
change of the ionicity of an electron-accepted metal R is
screened by the first-nearest-neighbor boron B whose
number is 24. Now let us calculate the energy level of the
4f state by using Eq. (C2c}. The first and third terms on
the right-hand side of Eq. (C2c) are first principally eval-
uated by doing SCF atomic-structure calculations and us-
ing the muSn-tin potential. Thus, in the following, we
describe how the Madelung term, which is the second one
on the right-hand side of Eq. (C2c}, suffers from the
change in the BIS experiment.

If we denote the Madelung term, which is defined by
the third term on the right-hand side of Eq. (87b), as
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TABLE I. Comparison of the values e«-EF of 4f levels s«relative to Fermi levels EF calculated for
trivalent RB6 (R =La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) and divalent RB6 (R =Sm,
Eu, and Yb) with the corresponding experimental values. The ionicities of metal elements R are also
shown together with the electron configurations for the R's used in the self-consistent-field (SCF)
atomic-structure calculations. The value of Ac4f ' is the difference between the energy eigenvalues for
the 4f orbit of metal elements R obtained from the SCF calculations using the electron configurations
of Xe+4f"+ 'Sd ' and Xe+4f " '5d '. These electron configurations represent Slater's transition
states for the transition between 4f and 5d states which are used to understand the experimental situa-
tions of bremsstrahlung isochromat spectra (BIS) and x-ray photoemission spectroscopy (XPS). The
value of As4f ' is equal to a so-called "ffCoul-omb interaction constant Uf&,

" and this value minus
the Coulomb energy 2/dp evaluated from the distance dp between R and B is equal to the difference be-
tween the energy values of e«-EF obtained from 4f"+ 'Sdo' and 4f" O'Sdo' configurations. All the
energies are in units of eV.

Crystal Ionicity(config. ):
c,4f

—EF
cal. expt. (B—X)

E4f 2/dp

LaB6

CeB6

PrB6

NdB6

SmB6

EuB6

GdB6

TbB6

Dy86

HoB6

Er86

TmB6

YbB6

LuB6

+3(4foSd ):
+2(4f0'Sd0').
+3(4f 'Sdo):
+3(4f Sd ). '

+2(4f"Sd ').
+3(4f~5do):

+3(4f"Sd '):
+2(4f Sd ):
+3(4f 'Sdo):
+3(4f"Sd '):
+2(4f' 5d '):
+3(4f'Sd ):
+3(4f4 55d ').
+2(4f"5d ').
+2(4f65d ):
+2(4f"Sd ').
+ 1(4f '5d ').
+2(4f75do):

+2(4f 'Sd ')
+1(4f"Sd '):
+3(4f'5d ):
+3(4f Sd '). '

+2(4f' Sd '):
+3(4f 'Sdo):
+3(4f"Sdo')
+2(4f Sd '):'
+3(4f Sd )

+3(4f8.55do. 5 ).
+2(4f '5d 5).

+3(4f' 5d ):
+3(4f9'5do'):
+2 (4f 1o. 55d 0.5

) .

+3(4f"5d ):
+3(4f' 'Sd '):
+2(4f"'5d '):
+3(4f"5d ):
+3(4f"'5d '):
+2(4f' '5d ')
+2(4f ' Sd ):
+2(4f ' Sda ).
+3(4f'45d ):
+3(4f"'5d '):

1.84
10.8
0.561

—2.97
9.58

—2.22
—5.66

7.06
—1.49
—5.02

7.78
—4.47
—8.37

5.31
5.85
2.93

13.18
5.19

2.08
12.4

—5.89
—9.62

4.04
—6.37

—10.1
3.91

—6.95
—10.8

3.37
—7.51

—11.3
3.09

—7.79
—11.9

2.59
—8.66

—12.5
2.18
3.07

—0.273
—9.23

—13.4

5.5'

—2.5b

4.0'

—55' —47
4.0'

—70'

—75' —9 5'

—0.1,' —0.9,'—3.1'

—10.0'
4.0'

—11.0 ' —9.5 '—4.0'
3 08

—10.0,' —5.0'
3.0'

—9.3,' —6.5'

—1.0'

17.3

17.5

17.5

18.4

15.0

15.0

18.4

18.8

18.9

19.1

19.2

19.4

4.70

4.72

4.74

4.73

4.73

4.73

4.68

4.75

4.76

4.77

4.77

4.76

4.75

4.71

4.75

'Reference 14.
Reference 25.

'Reference 13.
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EM(",)d(BIs) and separate the summation for the a(%0) into
the first-nearest-neighbor (NN) boron atoms (1st) and the
remainder, EM,'d(B») is written in atomic units as

EMad(BIS) EMad (2/dO }(R) (R) (lb)

EMad(BIS)
= g 25q /R + g 25q /R

a= 1st NN a%1st NN

+ g 25q /R — g 25q /R
a= 1st NN a= 1st NN

(la)

The sum of the second and third terms on the right-hand
side of Eq. (la} is the regular Madelung term which cor-
responds to the Madelung term under a situation in the
XPS experiment. The value of charge 5q' of borons in
the first nearest neighbor is given by 5q —( —,', }, and the
value of 5q is —,

' or —,
' for trivalent or divalent RB6.

Therefore, Eq. (la) is simply evaluated as

where d0 is the distance between the R' and the first-
nearest-neighbor borons. The values of c4f-Ez obtained

by using EM,'d(Bis) are tabulated in Table I and compared
with the experimental values in Fig. 2. From Fig. 2, we
can see that the values of c4f-Ez are well predicted by the
calculations for GdB6, TbB6, and DyB6, but they are
overestimated for LaB6, CeB6, and PrB6.

C. Energy di8'erence between the most intense peaks
of BIS and XPS

The energy difference he' ' defined by

s4f(BIS) e4f(XPS) is simply given by using Eq. (C2c):

(8 —X) (R)(SCF) (R)(SCF) (R) (R) (R) I (R) i (R)
[S4f(BIS) e4f(XPS) 1+[ Mad(BIS) Mad(XPS) ]+&((4f(BIS)I cry ~atom(BIS) (04f(BIS) ~

(R) (R) (R)(( 4f(XPS)~ ~cry ~atom(XPS) ~44f(XPS) ~ (2a)

Here we have found that the absolute value of the sum of
the third and fourth bracket terms on the right-hand side
of Eq. (2a) is negligibly small (less than 0.05 eV) for all
RB&'s. Therefore, bs( ' is given by using Eq. (lb) as
follows:

It s(B—x) [s(R)(scF) s(R)(scF)] (2/d )4f (BIS) 4f (XPS) 0 (2b)

where the c4f(BIs) and e4f(xp$) are, respectively, the en-(R)(SCF) (R)(SCF)

ergy eigenvalues for the 4f orbit of the metal element R
which were obtained from the SCF atonic-structure cal-
culations using the electron configurations
Xe+4f"+ ' 5d 6s and Xe+4f" 5d ' 6s
(1 ~ n ~ 13). Here we should mention that the difference
between these two electron configurations is only the
difference of the number of electrons in the 4f orbit,
which is equal just to [n+0 5 (n —0.5.)].—Therefore,
the e("" "'—s'"" "' (hereafter we denote this as
b, s4(Bf ') should coincide with a so-called "f-f Coulomb
interaction constant Uff Usually, the value of the Uff
is estimated by using the experimental data. For exam-
ple, the value of Ce is known to be about 15 eV. The
values for hc4f ' obtained from SCF calculations are
tabulated in Table I for R+ (R =Ce, Pr, Nd, Sm, Gd,
Tb, Dy, Ho, Er, and Tm) and R+ (R =Sm and Eu). We
note that the value of 17.3 eV calculated for Ce+ is satis-
factory compared with about 15 eV deduced experimen-
tally.

We have found that the energy difference hc( ' be-
tween the most intense peaks of BIS and XPS is given by
the atomic term b,E4f

' (=Uff), and the difference of
Madelung energies EM,'d(BIS) and EM,d(Xps) which arises
from the change of the ionicity of an electron-accepted
metal in HIS, and that the values of hc, ' ' calculated
for GdB6, TbB6, and DyB6 are in good agreement with
experimental ones, but those for CeB6 and Pr86 are not.

At the end of this section, we will briefly discuss the

I

discrepancy between calculated c.4f-E+'s and experimen-
tal results estimated from BIS for LaB6, CeB6, and Pr86.
We have found that values of c4f-EF obtained from XPS
for CeB6, Pr86, NdB6, SmB6, GdB6, and Yb86, and those
from BIS for GdB6, TbB6, and DyB6 are approximately
predicted by our approach based on MOPW band-
structure calculations and SCF atomic-structure calcula-
tions including the Slater transition state, but that for
XPS for TbB6, Dy86, and HoB6 there are sizable
differences due to the many-electron effect. Generally
speaking, there is also an effect of 4f multiplets in the
case of BIS. Here we present the results of Herbst, Wat-
son, and Wilkins for c4f-Ez in rare-earth metals calculat-
ed by including the effect of many electrons. For rare-
earth metals, Herbst, Watson, and Wilkins performed
calculations taking into account Hund's rule 4f" ' and
4f"+' ground levels which correspond to XPS and BIS,
respectively, on the basis of relativistic Hartree-Fock cal-
culations for atoms using a "completely screened" ap-
proximation, and the band-structure calculation by
which the Fermi level EF has been determined assuming
parabolic s-band and rectangular d-band densities of
states. Their results for rare-earth metals, which are tab-
ulated in Table I in Ref. 5 as 6 and in Table II (Ref. 6)
as 5+, are shown in Fig. 2. We can see from Fig. 2 that
the experimental values of c4f-EF estimated from XPS
and BIS for rare-earth hexaborides are explained by their
calculations for rare-earth metals. This observation indi-
cates that the considerable difference between our calcu-
lation and the BIS experiment for LaB6, CeB6, and PrB6
is due to the fact that we do not take into account the
effect of the 4f multiplets. Therefore, we can say at least
that XPS for CeB6, PrB6, NdB6, SmB6, GdB6, and YbB6,
and BIS for Gd86, TbB6, and Dy86, shows that the effect
of 4f multiplets is small compared to that in XPS for
TbB6, DyB6, and HoB6 and BIS for LaB6, CeB6, and
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PrB6. This would be the reason why our calculations
based on the one-electron approximation are approxi-
mately applicable to XPS for CeB6, PrB6, NdB6, SmB6,
Gd86, and YbB6, and BIS for GdB6, TbB6, and DyB6.

IV. SUMMARY

We have calculated the electronic structures of
trivalent rare-earth hexaborides R 86 (R =La, Ce, Pr, Nd,
Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) and divalent R B6
ones (R =Sm, Eu, and Yb) by using the modified
orthogonalized-plane-wave (MOPW) method within the
framework of the muffin-tin (MT) potential approxima-
tion based on the self-consistent-field (SCF) atomic-
structure calculation. It has been found that the densities
of states obtained are almost the same for the different
R B6's with the same valency, except for the energy posi-
tion of the pointed density of states originated from the
4f states.

In order to take into account as accurately as possible
the experimental situations of x-ray photoemission spec-
troscopy (XPS) and bremsstrahlung isochromat spectra
(BIS) for RB6, the concept of the transition state intro-
duced by Slater has been adopted for the transition be-
tween 4f and Sd states. By using Slater's transition state,
which includes the effect of the screening of 4f states by
Sd electrons, it has been shown that SCF atomic-
structure calculations using electron configurations
representing Slater's transition states provide values of a
so-called "ffCoulomb -interaction constant Uff,

" and
that its value for Ce+ is satisfactory compared to the
value estimated experimentally. Furthermore, we have
found that the values E4f Ez of the 4f-levels s4f relative
to the Fermi level EF calculated using Slater's transition
state approximately predict experimental values obtained
from XPS for trivalent CeB6, PrB6, NdB6, SmB6, GdB6,
and divalent YbB6, and BIS for trivalent GdB6, TbB6,
and DyB6. However, it has been shown that there is a
considerable difference between calculation and experi-
ment for XPS for TbB6, DyB6, and HoB6, and BIS for
LaB6, CeB6, and PrB6. Its origin is mainly attributed to
the effect of 4f multiplets, which is not taken into ac-
count in the present calculation.

0'z(r) specified by a wave vector k within the first Bril-
louin zone (BZ) is written as follows:

0'„(r)= g c(k+G)t)'jz+o(r)+ g g uL'$'(k)yP, '(k, r) .
G LU

(A2a)

Here, G is a reciprocal-lattice vector, and the function
Pz+G(r) is the orthogonalized plane wave given as fol-
lows:

(r) ei(k+G) ry+V

—g g U'", '(k+G)yP'(k+G, r),
p Lc

—= ik+G &
—y y U,'", '(k+ G }lxip, '(k+G, r) &,

p Lc

(A2b)

where V is the volume of a crystal. In Eqs. (A2a) and
(A2b), suffixes g and iu mean that the independent site
and the functions yj„'(k, r} and yg'", (k+G, r) are Bloch
functions characterized by the collective indexes
LU=(l„,m, ) and Lc=(l„m, ) for the quantum states of
valence and core orbitals. For example, the Bloch func-
tion ling'(k+G, r) & is given as follows:

lag'(k+G, r) &

= pe ' " if','(r —R, —d„)&IQN„.
R,

(A2c)

Here X„ is the number of the p atom, R, is the transla-
tion vector written by using primitive vectors ~&, ~2, and
'T3 as I~, +m ~z +n ~3 with integers l, m, and n, and the
function lPig, '(r —R, —d„)& is the atomic core orbital
with the quantum state L, for the p atom located at
R, +d„, where d„ is the position vector of the p atom in a
unit cell measured from the origin for the unit cell.

The orthogonality between the Bloch function
lyL",'(k+G, r) & constructed from the core orbital Pi&",'(r)
of the v atom and the orthogonalized plane wave

l gk+G(r) & leads to the following form for
l gk+G(r) &:
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APPENDIX A: MOPW METHOD

In the MOPW method, ' the wave function %z(r) is
represented by the linear combination of the wave func-
tions of the OP W and tight-binding methods. The
Schrodinger equation to be solved is

where H is a Hamiltonian consisting of a kinetic-energy
term and the crystal potential V„„(r),which is periodic
with the periodicity of the lattice. The wave function

By inserting the wave function %&(r) obtained from
Eqs. (A2) and (A3) into Eq. (Al), the following secular
equation is derived:

H(k)a)(k) =Aqb, (k)ce(k) . (A4a)

Here, c0(k) is a vector such as ca(k)
= I. . . ,c(k+G), . . . , u&P(k), . . . )', and the matrices
H(k) and b, (k) consist of matrices H& G(k}, hG G(k),
Hitch'L„(k), bitt' l„lk), Hiz, "f'(k)a, nd ,hP )'P, (k) as shown
below:

lq, +G(r) & =lk+G& —g g ling'(k+G, r) &

p Lc

X (pig, '(k+G, r) lk+G & .

(A3)
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HG G(k)
H(k)

H$, ' „(k)'
7

h,o o(k)
&(k)= ~g() (k),

7

H$'l „(k)
H(f )(j) (k)

g$() (k)

g(f )($) (k)

(A4b)

(A4c)

X &yI(", (k+G, r) ~k+G & (A5a)

The matrix elements Ho o(k) and b,G. o(k) are given as

H (k}=(k+G)'&oo + & G'l V„„(r)IG&

—y y eP'&k+G'lsd)(k+G, r) &

p Le

and

(k)=5 .—g g &k+G'~yi((,"(k+G,r) &

p Lc

X &yI),)(k+G, r)+k+G&,

(Asb)

where eI(', ) is the energy eigenvalue of the Lc state of the (M

atom (the detail of eg'," is given in Appendix C), and the
bracket term is given by

& k+G'lyI(', )(k+G, r) & &yg", (k+G, r) ~k+G &

=(4~1(1&/V)e "(21,+1)Pi,(cos8)f "r j(,(tk+G~(r)R„'+«,'(r)dr f "rj (~k+G'~r)g„()'i)(r)dr .
0

(A5c)

Here, vector q=G —G', and 8 is the angle between vec-
tors k+G and k+G'. P), (z) and ji, ( ~k+G~r) are Legen-
dre and spherical Bessel functions of the 1cth, respective-
ly, and R„()«)(r) is the radial wave function of the atomic
orbital (t)g'", (r), which is obtained from self-consistent-field
(SCF) atomic-structure calculations based on the
prescription of Herman and Skillman. ' &G'~ V«„(r)~G&
is the Fourier component of the crystal potential V«„(r),
and is described in Appendix B.

The matrix elements H(()'i„(k) and b, (o,'i„(k) are given
by

Ht(('i„(k) =(k+ G') 6('k'i„(k)

+ &k+G'I V„„(r)lyi((')(k,r) &,

&$'i,„(k)=(1V»/V)' e»4n( i )'"Yi„(k+—G')

(A6a)

X f r j~, (~k+G'~r)R„'&&', (r)dr, (A6b)
0

and the matrix elements Hi»"P)(k) and hi((U"$„'(k) are
given as follows:

HP"P,'(k) = g e»& (t)I». '(r) ~H
~
PP'(r R») &, —

R(.

hP"g(k)= g e»&(I}g'(r)~(I}g(r—R») &,
R~

(A6c)

(A6d)

where a function Yl„(k+G') in Eq. (A6b) is an example
of spherical harmonics in a real form. The method for
evaluating the matrix elements or overlap integral in Eqs.
(A6a), (A6c), and (A6d) will be described in Appendix C.

I

method and point out that it is not appropriate for a cal-
culation of the energy-band structure of a crystal in
which the effect of charge transfer must be taken into ac-
count exactly. Next, we describe the latter method based
on the MT potential, and show that it is applicable not
only to the case where the effect of charge transfer is not
important, but also to the case where the effect of charge
transfer must be considered.

1. Fourier component of crystal potential
using the LCAP method

The crystal potential V„„(r)is given by

V„„(r)= V, (r)+ V„(r), (Bla)

where V, (r) and V„(r) are Coulombic and exchange
parts of the crystal potential, respectively, and given as
follows:

V, (r) = g g V„'"'(r—R, —d„),
R, p

V„(r)= —6a,„I3p(r)/8n I
'

p(r) = g g p„'"'(r—R, —d„) .
R, p

(8 lb)

(Blc}

(B1d)

Here, a,„ is the exchange parameter, having a value of
0.7 for rare-earth elements and 0.76452 for boron;
Vp('t)(r —Rt —dp} and pp('t)(r —Rt —dp}, respectively, are
the atomic Coulomb potential and the atomic electron
density of the p atom located at R, +d„. If the exchange
parts of the crystal potential, V„(r), are written as

APPENDIX B:
FOURIKR COMPONENT OF THE CRYSTAL POTENTIAL

For the evaluation of the Fourier component
&G'~ V„„(r)~G& of crystal potential V,~(r), there are two
methods. One uses the crystal potential represented by
the linear combination of the atomiclike potential
(LCAP), and other is that using the muffin-tin (MT) po-
tential. In this appendix, we first describe the former

' 1/3
V„(r)= —6a,„3g g p„'"'(r—R, —d„)/8m.

R, p

= g g ( —6)g„(r)a,„I3p„'"'(r)/8n. I
'~

R p

= g gz„'"'(r—R, —d„),
R» p

(B2)
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the crystal potential V„„(r) is represented by the linear
combination of atomiclike potential Z„'"'(r) defined by
the following equation:

V„„(r)=g g t
V„'"'(r—R, —d„)

R,

(G'~ V„„(r)~G)= V ' f e'q'V„„(r)dr .
V

If we divide the volume V of a crystal into atom cells
whose volume is 0„,the following relation holds:

+z„'"'(r—R, —d„) I

= g gZ„'"'(r —R, —d„) .
R, p

(B3)
f dr= gg f dr .

R, p

By using Eq. (B3), the Fourier component
( G'~ V,„„(r)~G ) of the crystal potential is given as

( G'I V„,(r) 1G )

= g (Nq/V )e "f 4~r j0(qr )Z'„"'(r)dr .

Moreover, if we choose the muffin-tin (MT) zero as the
origin of energy for the integrations, the volume 0„is re-
duced to the volume 0„' ' of the MT sphere. Therefore,
Eq. (B5) is rewritten using the MT potential VMT(r) mea-
sured from the MT zero as follows:

"4'
In order to calculate Eq. (B4), we have to evaluate the
value of the atomiclike potential Z„'"'(r). It is very trou-
blesome to obtain the value of g„(r) defined by Eq. (B2),
and furthermore, if we consider the case in which the
e6'ect of the charge transfer must be taken into account,
the potential Z„'"'(r) becomes a long-ranged form due to
the existence of the long-ranged Coulomb potential.
Here it should be noted that the potential Z„"'(r) is a
short-ranged type when the atom is neutral. This fact
means that it is troublesome to calculate the Fourier
component of the crystal potential by using Eq. (B4),
when the e8'ect of the charge transfer must be taken into
account.

2. Fourier component of crystal potential
using the muffin-tin approximation

The Fourier component term (G'~ V„„(r)~G) is given

by

= g (N„/V)e "f „,e'q'VMT(r)dr

iq d MT= g (N„/V)e "f 4mr jo(qr)V'&z(r)dr, (B6)

where the MT radius R MT is defined by I 30„' '/4nI'~'. .
Theoretical details for the construction of the MT po-

tential have already been described in our previous pa-

per, in which we studied the x-ray-absorption near-edge
structure (XANES) of ionic crystals by using a multiple-
scattering theory based on the muffin-tin potential ap-
proximation. In the present paper, therefore, we present
only the final form for the MT potential.

If we denote an atom that we consider to be the origin
of space by the index o.'=0, and specify atoms surround-
ing it by a(WO), the MT potential VMT(r) is given as

VMT(r) = V,"(r)—6a,„t3p"(r)/8m )
'

R +r
V,"(r)=V,'"'(r)+(2r) ' g R ' f r W(r )dr + g 25q /R

a/0 a a&0
8 +r

p"'(r)=p'"'(r)+(2r) ' g R ' f r p'"'(r )dr
a&0 a

(B7a)

(B7b)

(B7c)

Here, the third term on the right-hand side of Eq. (B7b) is just a Madulung terin. W(r ) is a short-range function intro-
duced to separate a long-range Coulomb part due to the charge transfer, and is defined by using the value of the charge
transfer 5q as W(r )= V,'"'(r) —25q /r . Here it is noted that the value of 5q is defined by g„&co'„&'—Z, where Z
and co'„&' are the atomic number of the ath atom and the occupation number for the orbital specified by nX, respectively.

APPENDIX C: EVALUATION OF EQUATION (A6)

By using the muffin-tin potential, the term ( k+ G'
~ V„„(r)~y'r„'(k, r) ) in Eq. (A6a) is evaluated as follows:

MT(k+G') V, (r)~yP, (k, r) ) =(N&/V)' e r4m( i )'FL„(k+G')f r jI„(~k+—G'~r ) Vga(r )R„'&&'„(r)dr . (Cl)
0
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~Lu', Eu( } sLu ~Lu', Lu s4f 5mv', mu
(g )(~) —(R) —(R)

gf(I(f) (I )
—g

(C2a)

(C2b)

where m„and m„are the magnetic quantum numbers in

The method for evaluating Eqs. (A6c) and (A6d) is ba-
sically the same as in the extended Huckle tight-binding
(XHTB} method. In the present paper, we choose a 4f
orbital of rare-earth elements as the basis state of the
MOPW band-structure calculations; namely, g=g'=R
(rare-earth element) and L„=L„.=4f. In this case, for
the most closed rare-earth atom pair, the absolute values
of overlap integrals between two 4f orbitals (whose dis-
tance is ao) are, for example, 4.632X10, 9.993X10
7.560X 10,and 1.942X 10 for tr, m, 5, and P states of
4f orbitals of the Sm+ -Sm+ pair, respectively. This re-
sult means that the 4f orbital is strongly localized within
the MT sphere, since the MT sphere R MT of rare-earth
element R is ao/2 (see Sec. II). Therefore, Eqs. (A6c) and
(A6d} are evaluated as follows:

a real base. s4(f' is the energy level of the 4f state of the
rare-earth element R, and is calculated as follows:

~(R) (R)(scF)+E(R)
E4f 84f Mad

+($4f'(r)~V„„(r)—V,'„' (r)~$4f'(r)) . (C2c)

Here, c4f" "' is the energy eigenvalue obtained from the
SCF calculation and EM,'d is the Madelung energy
defined by the third term on the right-hand side of Eq.
(B7b). Since the 4f state is strongly localized within the
MT sphere, as already mentioned, the bracket term of
Eq. (C2c) can be evaluated using the MT potential:

g(R)
=f R4f(r)[(VMT'(r) V,'„—m(r)](r dr . (C2d)

0

It is clear that the energy correction based on Eq. (C2d) is
also useful for core states which are also localized within
the MT sphere.
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