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Local chemical order in a (Ni3Fe)Q 93Cro o7 single crystal
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In a ternary alloy, there are three independent pair-correlation functions for each orbit. Diffrac-
tion experiments cannot extract this information unless variations in the scattering factors of each
atomic species are exploited. Such an experiment, using x-ray anomalous scattering with a syn-
chrotron radiation, is described in this paper on a (NisFe)o. gsClp. py single crystal. Due to the small
amount of Cr, only two pair-correlation functions have been obtained directly from the diffraction
data. The missing information has been supplied using an original method based on the inverse clus-
ter variation method. As a by-product, the method gives plausible effective pair potentials which
have been used in Monte Carlo simulations. Atom distributions of the alloy and intensity maps of
the diffuse scattering are calculated as a function of the temperature, through the order-disorder
transition. The method used opens a way towards a better knowledge of ternary alloys, for which
very few direct determinations of the degree and nature of the ordering are possible.

I. INTRODUCTION

The ordering of atoms in alloys has a great influence
on their properties. Both the ordering and the way the
properties are subsequently afFected are controlled by in-
teraction energies. These have to be known before any
modeling, and hence any optimization of the composition
in order to obtain the properties desired, can be achieved.

In an Ising like model, effective pair potentials are de-
6ned for each kind of heterogeneous atomic pair and each
coordination shell:

where V„'~ is the pair interaction energy between nth
neighbors i and j atoms.

These effective pair potentials can be determined &om
x-ray or neutron diffuse scattering measurements on
short-range ordered single crystals.

In a solid solution where the different kinds of atoms
are randomly distributed on the lattice, x-ray-diffraction
produces a monotonic diffuse intensity, the so-called
"Laue monotonic diffuse scattering. " The presence of
local order causes the Laue diffuse intensity to be modu-

lated and a study of this modulation leads to the deter-
mination of the Warren-Cowley short-range order (SRO)
parameters:

P" (r)
C.C,

'

where C, , C~ are the atomic fractions ofi and j atoms in
the solid solution and P's (r) is the probability of finding
the i and j atoms in a pair separated by a lattice vector
r. The short-range order parameters are then direction
dependent except for temperatures very close to the crit-
ical temperature, where the correlation length behaves
isotropically. Prom the SRO parameters, effective inter-
action potentials can be calculated using thermodynamic
methods such as the inverse Monte Carlo method or the
inverse cluster variation method (lCVM).

The distribution of atoms in solid solutions is in general
not random and a number of structural data have been
accumulated on a variety of binary alloys. On the other
hand, there have been very few investigations on ternary
alloys, due to severe diKculties involved: three atomic
pair correlation functions per shell are required to de-
scribe the SRO state in ternary alloys, in contrast to just
one in binaries, so special experimental techniques have
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to be used. To the knowledge of the authors, such mea-
surements have been performed only two times: on the
Fep 56Nip 23Crp 2q alloy, by neutron diffraction on three
single crystals with different isotopic compositions, and
on a Cup 47Nip 29Znp 24 single crystal, using x-ray anoma-
lous scattering phenomenon with a synchrotron radiation
source. 4

We present here a study of the SRO state in a
(NisFe)Q93CIQ97 single crystal, using the anomalous
scattering method. This alloy was selected for both sci-
entific and technical reasons: (i) Ni3Fe is the basis of
a number of important magnetic alloys and chromium is
widely used as a third component. However, the nature of
short-range order in these alloys has still not been deter-
mined, the structural data having mainly been obtained
by indirect methods (Mossbauer spectrometry, resistiv-
ity). (ii) Diffuse scattering measurements on Fe-Cr (Refs.
5 and 6), Ni-Cr (Refs. 7—9), and Ni-Fe (Ref. 10) binary
alloys and on a Fe-base Fe-Ni-Cr alloy (Ref. 3) have been
reported in the literature and these data can be used for
a comparison. (iii) The atomic size differences between
Ni, Cr, and Fe are small, and size effect scattering is ex-
pected to be negligible. Indeed the neutron diffraction
study of Lefebvre et al. IQ showed that, in a Nio 7ssFeQ 333
single crystal quenched &om 535 'C, the atomic displace-
ment parameters are very small. However, in a very nice
experiment using an anomalous-x-ray-diffraction proce-
dure on a Nip 775Fep 225 single crystal, Ice et al. recently
showed obvious displacement parameters about 10 times
stronger, beside similar SRO coefBcients. Anyway, in the
work reported here, the measurements are made in the
6rst Brillouin zone where the size effect intensity remains
small and can be neglected to a first approximation. (iv)
The use of anomalous scattering can be optimized be-
cause wavelengths near the absorption thresholds of the
three elements of the alloy are available with the syn-
chrotron radiation source of LURE-DCI (the wavelength
range available for diffuse scattering intensity measure-
ments extends from 1 to 2.5 A). Several studies have
shown that Cr additions in Ni3Fe rapidly destroy the
long-range order (LRO), which changes to a SRO state.
Ferjani, Bley, and Calvayrac, using x-ray diffraction,
determined the order-disorder transition temperature T,
of (Ni3Fe)1 Cr alloys for values of x up to 1.5% and
Marwick, Piller, and Cranshow, using Mossbauer spec-
trometry, have extended these studies to concentrations
x up to 17%. Marwick, Piller, and Cranshow, 13 using
electron irradiation to increase the ordering rate, have
detected LRO up to 6.1 at. % Cr. This result is con-
sistent with the results of Gomankov and Nogin who
showed by neutron difFraction that LRO extends only to
6 at. '%%uo Cr.

In the ¹iFe-Cr system the fcc solid solution range is
large, so it was expected that Cr-rich alloys might be
studied, in order to obtain suKcient partial difFuse in-
tensity arising &om the Fe-Cr correlations. However,
preliminary difFuse scattering intensity measurements on
(Ni3Fe)1 Cr single crystals with x = 0.04, 0.07, and
0.10 showed that the difFuse intensity rapidly decreases
when Cr is added, and we had to limit our study to the
single crystal with 7 at. % Cr. As we shall see below,

this Cr content does not allow the direct determination
of all three independent correlation functions, only the
two corresponding to the majority pairs ¹iFe and ¹iCr
may reliably be obtained. Hence we have tried to extract
the lacking information from thermodynamic consistency
considerations using other independently obtained data.
A thermodynamic study of order in dilute L12-ordered
ternary alloys has provided relationships between both
the variation of the transition temperature T, and that
of the LRO parameter of the ternary addition gc and
the same linear combination of the effective potentials.
We shall see that using these relationships, together with
available value of the LRO parameter for Cr measured
in a long-range ordered (Ni3Fe)QQQCrQQ4 sample, we
have succeeded in determining a "plausible" set of SRO
parameters for the Fe-Cr pairs, as well as effective pair
interaction potentials.

II. GENERAL EQUATIONS

For a given scattering vector q, the SRO diffuse scat-
tering intensity per site for a ternary alloy can be written
in electron units as follows:

IsRo (q) = &~&a I f~ —fa I' ~" (a)
+&~&c

~
f~ —fc (' ~" (q)

+&abc
I fa —fc I'

where f~ is the atomic scattering factor of the element A.
The functions a'~ (g), in Laue units, are partial diffuse
intensities resulting &om the three kinds of interatomic
correlations, AB, AC, and BC. These partial intensities
are the Fourier transforms of the Warren Cowley param-
eters for the three kinds of pairs:

AB( ) ) AB( )
3imgr„

ai a2 a3r„=k—+l—+m —,
2 2 2'

k+E+m = 2p,

where aq, a2, a3 are the unit cell vectors and k, l, and m
are integers summing on even numbers. In order to deter-
mine the three correlation functions we have to obtain a
system of at least three independent and well-conditioned
equations. The scattering contrast was varied using the
sharp variation of the atomic scattering factors for inci-
dent energies near the absorption edges of the elements.
Figure 1 shows the behavior of the three Laue factors
C;C~

~
f; —f~ ~

as a function of the x-ray wavelength,
for the (Ni3Fe)Q 93CIQ Q7 alloy for g = [100]. The Laue
factors rapidly vary close to the absorption edges, how-
ever, owing to the low product CF Cg„the Laue factor
for the Fe-Cr pairs always remains small compared to
the others, so that the Fe-Cr correlations will be masked.
Hence, we have first considered that only the ¹ipe and
Ni-Cr pair correlations contributed significantly to the
difFuse scattering, and we have estimated the efFect of
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FIG. 1. Laue factors C, C~
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for the three par-
tial intensities, as a function of the x-ray wavelength, for
(Ni3Fe)Q g3CrQ, Q7 (q = [100]).

this approximation on our results. Under this assump-
tion, experiments near Fe and Cr edges are sufficient,
leading to a well-defined linear system of equations from
which SRO parameters for ¹iFe and ¹iGr pairs are ac-
curately determined.

III. EXPERIMENTAL

A. Sample preparation

The single crystal was grown in an alumina crucible
under a purified argon atmosphere using a Bridgman
technique. The purity of the elements was 99.95%. The
crystal was annealed for 48 h at 1623 K under a purified
argon atmosphere for homogenization. It was then cut
by spark erosion to obtain a disk of 20 mm diameter with
a normal close to the (112) direction. The surface was
mechanically polished then electropolished to remove any
surface damage.

The disk was sealed in vacuum in a pyrex tube, an-
nealed at 767 K for 18 h, then at 723 K for four days,
and quenched in ice water. This annealing temperature
was chosen as being slightly above the critical temper-
ature (718 K) estimated from the results of Marwick,
Piller, and Cranshow. The sample was electropolished
after this heat treatment, to remove a thin oxide film.

The sample was examined by scanning electron mi-

croscopy in a Zeiss DSM-950 equipped with an energy
dispersive x-ray spectroscopy system (TRACOR North-
ern TN 5450) with a Si-Li detector. This analysis con-
firmed the nominal composition to within 0.2% and
showed that the homogeneity of the Cr concentration was
better than 0.2% over the area irradiated during the ex-
periment.

B. Diffuse scattering intensity measurements

The intensity measurements were performed on the
four circle goniometer set up on the OD230 beam line
at LURE-DCI (Laboratoire pour l'Utilisation du Ray-
onnement Electromagnetique, Orsay-France). The beam
line is equipped with a double crystal (Si(111))fixed-exit
monochromator. The second crystal is bent to horizontal

beam focusing. The sample is maintained under an evac-
uated beryllium hemisphere, fixed on a goniometer head.
The Si-Li solid-state detector has an energy resolution
of 200 eV. The chosen wavelengths were adjusted by ref-
erence to extended x-ray-absorption fine structure (EX-
AFS) spectra from Cu, Ni, and Cr foils. The accuracy
of the energy determination is 2 eV, so the wavelengths
are measured within an accuracy of 2 x 10 A. The in-
stabilities of the incident monochromatic beam are auto-
matically corrected by a monitor detector, which records
the diffuse scattering from a Kapton foil.

This spectrometer has been described in detail
elsewhere. An important instrumental modification was
necessary to carry out our experiment. The first diffuse
scattering intensity measurements on the sample showed
that appreciable amounts of harmonics 3 and 4 in the
beam produce fluorescent radiations &om the elements
of the alloy. These radiations have wavelengths close
enough to the fundamental wavelength for them to be
counted. This causes a uniform increase in the back-
ground intensity, which cannot be measured and sub-
tracted because it evolves during experiments: as a mat-

ter of fact, the amount of harmonics in the beam depend
sensitively on the orientation of the second crystal of the
monochromator, which deviates slightly as time goes on.
The technical solution has consisted in mounting, after
the monochromator, a flat double mirror oriented for cut-

ting energies greater than 10 keV. For the material used

(borosilicate) the critical angle is 3 mrad at 10 keV.
The diffuse intensity was measured through a

volume in the reciprocal space bounded by the

(111),(100),(110),2 (111)positions. This is the minimum

volume nearest to the origin in which intensity has to
be measured to determine the SRO parameters when no

account is taken of any static displacement effect. The
diffuse intensity was measured over 160 points in this
volume; the mesh interval used was Ah = 0.1 in recipro-
cal lattice units. Within this volume, the measurements

are done for low values of the magnitude of the scatter-
ing vector, so the contribution to the diffuse scattering
intensity of Compton scattering, thermal scattering and

static displacement effects are minimized.
As stated above, we considered that the static displace-

ment effects could be neglected, the atomic radii of the
three elements being nearly the same. In order to ascer-
tain whether this assumption was valid, we measured the
diffuse intensity along a [h, 0, 0] direction (Fig. 2). There
are neither a shift nor asymmetry around the (300) po-
sition, which supports the absence of static displacement
effects in this alloy.

The measurements were made at 100 K in order to
minimize dynamic displacement effects due to thermal vi-

bration of the atoms. The diffuse intensity was measured

using a set of five wavelengths close to the K absorption
edges of Fe and Cr: 1.7458, 1.7587, 2.0720, 2.0734, and

2.0803 A. .

C. Data analysis

The measured intensity was converted into absolute
electron units, from the integrated intensities of Bragg
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a I uniform residual background that depends both on the
incident radiation wavelength and on the setting of the
pulse-height analyzer of the detector. We have therefore
considered it as an additional unknown for each wave-
length.

The final corrections to the intensity deal with the
Bragg peak intensity cutoff. In the volume we consid-
ered, all the measured intensities within a sphere of ra-
dius ~q, ~

around the position of the (111) Bragg peak
were removed. As the SRO parameters were determined
through a least-squares fitting method and as we set ~q, ~

small enough, it was unnecessary to extrapolate the data
under the Bragg peaks.

2.75 3 3.26

FIG. 2. Experimental intensity in electron units in a [h00]
direction, around the (300) position.

peaks &om a compacted Al powder reference sample.
The scattering factors fo were taken from Doyle and
Turner and the anomalous scattering corrections Af'
and b,f" from Sasaki. 2i The Compton inelastic scatter-
ing, calculated &om Cromer and Mannl and Cromer,
was then subtracted.

The thermal diffuse scattering (TDS) was minimized
by making the measurements at low temperature and
as near as possible to the reciprocal space origin. The
TDS contribution is usually calculated from experimental
lattice dynamics data following Walker and Chipman.
The validity of this calculation depends on the assump-
tion that the average energy of the elastic waves is kT
for each wave, so that the energy is equally distributed
over all the normal modes. This assumption is valid
when the measurements are made at a temperature T,
which is high with respect to the Debye temperature O~.
For NisFe, OD = 450K,2 while our measurements were
carried out at T = 100 K. As the basic assumption of
Walker and Chipman24 is not met, we have estimated
the TDS contribution &om the calculation given in the
Appendix. It shows that the scattering factors have to
be weighted by a factor in the expression of the

first-order term of the thermal difFusion intensity, where
the averaged mass m is given by m = g cgmg if m~
is the atomic mass of species A. The knowledge of the
elastic constant being part of the calculation, we used
the data measured by Turchi, Calvayrac, Plique on a
Ni3pe crystal: C~~ ——25 x 10' Pa, C» ——15 x 10' Pa,
and C44 ——12 x 10 Pa. Each value of the measured
intensity was corrected for its first-order thermal diffuse

scattering component.
In addition to these contributions, a residual back-

ground remains due to Huorescence &om the sample and
resonant Raman scattering: in the experimental condi-
tions we used, when the energy of the incident radiation
is just below the absorption edge of an element, the reso-
nant Raman scattering has an appreciable cross section.
In some experiments, due to the limited resolution of
the detecting system (about 200 eV), a fraction of these
unwanted contributions is counted and this generates a

IV. RESULTS
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FIG. 3. The first ten o. ' ' SRO parameters as a function
of the number of orbits taken into account (n ), for two
values of the cutting radius (~ q, ~) around the Bragg peaks:
(a)) q, )= 0.35 and (b)) q, [= 0.20.

The value of ao was taken as unity for each pair, while
the higher-order SRO parameters were obtained by least-
squares analysis of a linear system, which is overdeter-
mined insofar as the range of local order is short (see
Sec. V). Weights were given to each equation inversely
proportional to QImeasures

The number of unknown parameters depend on the
number n of orbits taken into account. We give in
Fig. 3, the first ten parameters as a function of n „,for
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two values of the cutting radius ~q, ~. Each n parameter
oscillates on both sides of a mean value, with an am-
plitude depending on ~q, ~. Therefore, we used a value

~q,"~ equal to 0.2 that minimizes the oscillations. Given

~q,"~, the agreement ratio between the measured intensi-
ties and the intensities reconstructed from the set of o. s,
was found insensitive to n „beyond the sixth orbit.
Hence we limited nm

„

to ten, and 25 unknown parame-
ters were considered: 20 SRO parameters including ¹iFe
and ¹iCr pairs and 5 residual backgrounds.

The set of n's obtained are given in Table I and are
plotted in Fig. 4, and in Fig. 5 as a function of the orbit,
with error bars estimated &om the statistical errors in
the intensities. An example of the measured SRO inten-
sity is shown in Fig. 6(a), for a wavelength A = 1.7458
A(10 eV below the absorption edge of Fe), along with the
reconstructed intensity in Fig. 6(b).

For the Ni-Fe pairs, the sign of the set of SRO param-
eters oscillates in the same way as in a L12 superstruc-
ture. The values of o;, as well as the range of SRO, are
quite similar to those determined by Lefebvre et al. on
a Ni3Fe single crystal quenched from 808 K, which are
also listed in Table I for comparison: thus the addition of
7 at. % Cr in NisFe does not affect the ordering behavior
for the Ni-Fe pair.

For the ¹iCr atomic pair, the evolution of the o.'s

as a function of the shell number is clearly different and
qualitatively reflects the behavior associated with a DO22
long range ordered state. This result can be compared
with the result obtained by Schonfeld et al. by neutron
scattering on a Nip 8pCrp 2p single crystal annealed at 741
K and water quenched (see Table I). For the first three
n, the sequence of the sign is the same. However, in
this binary alloy, as pointed out by the authors, the sign
sequence for the whole set of o.'s corresponds to the A2B2
long-range ordered structure. The o. values obtained by
Sarfati, on a Ni3Cr crystal measured at 833 K, are in
excellent agreement with those of Schonfeld et at.

V. PLAUSIBLE a FROM THERMODYNAMIC
SELF-CONSISTENCY

In the Introduction, we pointed out that the fundamen-
tal physical parameters, which need determining are the

0.2

NiZ
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-0.
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~ ~

8

FIG. 5. Warren-Cowley SRO parameters for the ¹iCr pair.

001

01

effective potentials. From the potentials we can attempt
to calculate the ground-state energy, antiphase boundary
(APB) or interphase boundary (IPB) excess free energy,
or the local topology of the phase diagram. There are
several ways to achieve this goal.

Because the diffuse scattering intensity forms a part of
the Fourier spectrum of the correlation functions, there
is a direct link between the J's and the diffuse intensity.
In binary alloys the famous Clapp and Moss formulas
gives an explicit simple example of such methods, when
the basic cluster of the CVM is taken to be a point. The
accuracy of the method can be improved further, using
larger clusters, as shown by Sanchez. The main advan-
tage of the method is that fewer parameters (the J's) are
used to fit the intensities, and that once these parame-
ters have been determined, the set of n parameters can
be obtained directly &om an exact Fourier transform.
However, owing to the splitting of binary correlation
functions, the method starts to be very heavy in mul-
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FIG. 4. Warren-Cowley SRO parameters for the ¹iFe pair.

(h@,1.0)

FIG. 6. Distribution of the SRO di6'use scattering intensity
in reciprocal space for A = 1.7458 A(Fe edge): (a)measured
and (b)reconstructed from the n's.
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TABLE I. SRO parameters cr&
„

for the Ni-Fe and Ni-Cr atomic pairs in the (Ni3Fe)Q 93Clp Q7

alloy along with the results obtained for binary alloys: Nip 793Fep 333 (Ref. 10) and Nip QpCrp 3Q

(Ref. 7).

lmn
110
200
211
220
310
222
321
400
411
330

(Ni3Fe) Q, 93C1p Q7

O'Ni-Fe
—0.143 + 0.015
+0.149 4 0.019
+0.015 + 0.011
+0.068 6 0.013
—0.029 + 0.010
+0.016+ 0.015
—0.021 6 0.008
+0.010 6 0.017
—0.003 6 0.010
—0.002 6 0.013

—0.141 + 0.020
+0.050 6 0.026
+0.046 6 0.015
+0.020 6 0.018
—0.002 6 0.014
—0.005 6 0.021
+0.000 + 0.011
—0.004 + 0.023
+0.022 6 0.013
+0.006 + 0.01?

N10.765Fep 235

~Ni-Fe
—0.111
+0.136
—0.006
+0.052
—0.022
+0.031
—0.014
+0.022
—0.013
—0.013

Nio. 8o Crp. gp

~Ni-Cr
—0.106
+0.089
+0.042
—0.036
—0.019
—0.034
+0.007
+0.029
+0.003
+0.022

ticomponent alloys where rather small clusters should be
considered.

In this section, we address ourselves to the same prob-
lem, but using a more unusual feature of the CVM, based
on the internally self-consistent character of the Ising
model. In other words, calculate the J's will allow us
to de6ne a plausible set of a's even when the informa-
tion relative to one pair is experimentally masked, as it
is the case here for the Fe-Cr pair.

To answer this question, we will begin by describing
the least-squares procedure in some detail. As men-
tioned in the previous paragraph, we have to solve an
over-estimated set of linear equations, given by

I,„(q,A) —) L,' (q, A).
i7j)i

&mbx

where I,„(q,A) is the SRO intensity in electron units for
wavelength A at position q L~ (q, A) is the Lane factor of
the pair i j, B (A) is the resid-ual background considered
as an unknown, and F„(q)is the 71th lattice generating
function. The Laue factor LF,'(q, A) of the Fe-Cr pair
being small with respect to the Laue factors of the two
other pairs, we first look for the solution of Eq. (1), as-
suming that o.„'= 0 for all n & 1. Let the row vectors

Exp
— A y ct2 A ~ „represent the corresp onding

solution. In a second stage, we try to quantify the vari-
ations of the previous solution vector bcxp on variations
of the unknown parameters bc' '. It follows from Eq.
(1), that the perturbations of our initial guess ap~ are
given by

&mbx

—) LF' (q, A) F„(q)ha„

+mbx

= bB(A) + ) L~ (q, A) ) E„(q)ba'„~. (2)

This over-estimated linear system is solved by restricting
the pair index ij of the right member of Eq. (2) to Ni-Fe

In summary, at this stage of the analysis, and dropping
the variation symbol b, the SRO parameters are given by

Ni —Fe
n
Ni —Cr
n

Fe—Cr
n

' —0025m '
cx

' ' —015cx '
p )

The next step of the data analysis will be to reduce the
range of allowable values for the unknown parameters
cx„' '. This can be partially done, requiring physical
solutions from cluster convex polyhedra algebra. For ex-
ample, consider the probability of occurrence of a nth
neighbor Cr-Cr pair, which in terms of the SRO param-
eters is given by

In the case of the nearest-neighbor pair, if we substitute
a ' ' by —0.141 —0.15a ' ', it can be seen that any
physical state corresponds to a ' ' & 0.22 and there fore
a ' ' ( —0.174, which is much lower than our initial
guess. The extension of these considerations to larger
cluster, aamely, the tetrahedron octahedron (TO), give
only lower or upper bounds on the a ', so additional
criteria are needed. These can come from consideration
of the Ising model internal self-consistency.

The inverse CVM (ICVM) maps a set of short-range
order a onto a set of efFective potentials J(a), which is
used as input in the CVM to deduce the thermodynamic
properties of the system at other temperatures or other
concentrations. For our problem, we add constraints to
confine the available set of values for a ' ', forcing the
set of values for J(a) to be compatible to the known
results about the LRO and the decrease in the critical

and Ni-Cr. We found that the matrices involved in Eq.
(2), that link the vector baQN' F' and the vector bap '

to the dummy vector bapF' C' are diagonal dominant (a
diagonal element corresponds to wavelengths of the same

q vector). The vectors are thus almost coliaear, and can
be fairly accurately approximated by

Ni —Fe p p25baFe —cr

Ni —Cr p 15b Fe—Cr
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P oce )

pC/I I —PHc/ I r

(5)

temperature of Ni3Fe upon Cr addition.
In a preceding paper, we showed that both LRO and

the change in critical temperature of dilute ternary al-
loys, are functions of a unique linear combination of the
effective interactions Xi ——(Ji ' ' —Ji' ')/Ji '

This work was done using nn interactions (tetrahedron
CVM), while the TO ICVM also involves next-nearest-
neighbor (NNN) interactions. Adding the contribution
of the second-nearest-neighbor interactions to our previ-
ous formalism can be done approximately by defining an
effective nn pair that sums the effect of the nn and nnn
pairs J = Jq + A J2. In the binary L12 alloy, we substi-
tute a ternary addition on each of the two sublattices of
the L12 structure, with a probability proportional to the
corresponding Boltzman factor, that is

dynamic self-consistency with available LRO results, we
constrained the parameter X to lie within the interval

[
—0.5, 0.5], which is intermediate to the cases X = +1,

where the slope of the change in critical temperature
upon ternary additions vanishes.

A plausible set of o. s was finally obtained using the
simplex algorithm to minimize the sum of the squares
of the constraints. At each step of the algorithm, the
ICVM is used to compute the J's from any set of o.'s.
The results we have obtained in this way are summa-
rized in Table II. As a by product of the minimization
involving the ICVM, we have also computed the reduced
susceptibility matrix that gives the order of magnitude
of the variations of the effective interaction energies with
respect to the variations of the a parameters. The coeffi-
cients of this matrix are also given in Table II. It can be
seen that errors in the a ' ' parameters do not imply
drastic errors in the effective energies.

C/I stands for the substitution of the impurity C on
sublattice I; Kc/I is the resulting energy cost. The long-
range order parameter for the impurity atoms, which
measures the trend for atoms C to sit preferentially
on one sublattice, is thus proportional to the difference
P / —P /I . Assuming that the degeneracy of the sub-
lattice II is three, we find:

pC/I pC/II y
—PQ H

PC/I + 3PC/II ] + 3e—PEH ' (6)

(JNi —Cr 3 JNi —Cr) / JFe—Cr 3 JFe—Cr)
1 2 2 ) L. 1 2 2

(
JNi —Fe 3 JNi —Fe)

1 2 2

is close to zero. Hence, in order to ensure the thermo-

In the above expression AK, which accounts for the en-

ergy difference between the two possible substitutions of
the impurity C, can be estimated considering a perfectly
ordered L13 structure, and we find A = —2. Extend-
ing our conclusion in paper, the measurement of gc, in
a (NisFe)p M4Crp pss long-range ordered alloy, s and the
lowering of T, of Ni3Fe when Cr is added, show that
the parameter

VI. DISCUSSION

The variant of the ICVM, which we have described in
the preceding section, simulates the first two SRO param-
eters associated to each pair. In this section, we would
like to check the inQuence of the assumptions we made
on the diKuse scattering itself. For that purpose, and
also to study the behavior of the alloy with respect to
temperature, it is convenient to use the canonical Monte
Carlo (MO) method.

The MC runs were made on a 4x16x16x16box (16384
spins), applying periodic boundary conditions. The first
20 pair-correlation functions were computed over Markov
chains about 3000 MC per spin, disregarding the first
few hundred steps to allow for the thermalization of the
system.

The results we obtained at the annealing sample tem-
perature are listed in Table II, and as expected match
the ICVM data. However, this result is not really signif-
icant in the sense that we already know that the CVM-
TO and the MC method give almost identical results for
temperatures a few percent above the transition temper-
ature. More instructive is the comparison of the third

TABLE II. Effective pair energies, SRO parameters and their associated Jacobian matrix for a
"plausible" solution.

PJ;
1, meV

CVM
s
MC
t

(Ni-Fe) i
+0.382
+23.7
—0.152
—0.156

(Ni-Cr) i
+0.818
+50.7
—0.194
—0.196

(Fe-Cr) i
+0.231
+14.3
+0.360
+0.361

(¹iFe)q
—0.043
—2.7

+0.148
+0.163

(Ni-Cr)2
+0.088
+5.5

+0.035
+0.048

(Fe-Cr) 2
—0.264
—21.8
+0.100
+0.096

BPJi
g~Ni- Fe

~l3 Ji
g~Ni-Cr

Bi3J;
Fe —Cr

8P Ji
g~Ni-Fe

8$J;
g~Ni-Cr

8$J,
Fe—Cr

BQg

—6.0
—1.2
—0.0
—2.4
—0.5
—0.0

—4.1

—3.4
—1.7
—3.2
—0.2

—0.4
—10
—3.9

+0.2
—0.8
—0.2

—1.2
—0.3

+0.0
—1.6
—0.1
—0.0

—0.8
—1.6
—0.1
—0.5
—2.5
—0.5

+0.1
—0.3
—0.1
—0.5
—1.5
—1.1



49 LOCAL CHEMICAL ORDER IN A (Ni3Fe)0 93Cro 07. . . 15 633

and fourth SRO parameters, that can be made from the
MC data and Eq. (4) as follows:

Ni —Fe Ni —Fe 0 025 Fe—Cr
MC 0 ' MC

Ni —Cr Ni —Cr 0 g5 Fe—Cr
MC 0 MC

We have found that within the limit of the accuracy
given in Table I, the above relations are fairly well ap-
proximated. The same argument, applied to more dis-
tant neighbors become less significant but shows that the
trend is fulfilled. A typical snapshot of the equilibrium
configurations sampled at this temperature is given in
Fig. 7. As it can be seen, the SRO looks homogeneous
through the box, whereas the sequence of SRO parame-
ters would have inclined us to view the SRO state as a
phase separation into small L12 and DOq2 domains. This
shows that the realm of ternary alloys cannot be simply
analyzed in term of the binary components. In fact, the
efFective pair energies given in Table II do not reBect the
symmetry of a ternary alloy around the stoichiometry
(si, si, si). These are only linear combinations of the pair-
correlation functions conjugated energies. For example,
setting one of these J to zero does not imply that the cor-
responding n will vanish. The behavior of the first four
order SRO parameters with respect to temperature are
shown in Fig. 8. The sharp variations of these param-
eters in the neighborhood of the reduced temperature

= 0.72, correspond to the crossing of a transition
CXP

line. This dimensionless parameter corresponds to the
temperature 248 'C, which is lower than the value extrap-

000000000000000ppopoyppppppp
~ Oo0000000opopo0000000000rpgop
000' 00o0000000opopogoyopppppoyp000000opo000000000opogoyoOQOopopopopopopo ~ppo00opopopoopooopo ~0000o000000000rpopopopo00opopo000000o0o00000op
opopo ~ os 0000oprpopopoQoQoQoQQQQQ00ppopopopo ~000oo000000p0 00F000000000r00000opopopoppp00000rprpopo000000o00000o00o0000 F000000000oopopppopopoyo0000000ro0 ~oo000000oQOQpQp0000opo00000000000opogopopogopo0r000010000000000000000p00rpo0000rpolopo000popooppp000000ooor0000000opoopopopr00opr00000o00000000000000000o0000000000000o000000o0op00000
~ OoOo000r0000000000000000r000000000000000000000opppopr000000000opopopopo0000opopppopo000oopopopppoo0o00000ppopo0o00000000o000opppppo00000o
000000oQoOQrOQQ0QQOQQQOQQQQ
0~ r0000000o00000000rpopo000000000o0opropopopopopopopoQoo
00000OQOQOQopoopopoopo00000~0QQQQQQQopo0opoQQOQOQoprQo ~ 0OOo00000o0000000000000000000QoQOp000o0000000o00000000000op0000000000000o000000pOoo00
FIG. 7. Snapshot of a typical configuration, which con-

tributes to the thermal equilibrium SRO state at the exper-
imental temperature. As can be seen, and as checked over
many such configurations, there are no domains which corre-
spond to a microstructure of the alloy.
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FIG. 8. Variations of the n parameters with the dimension-
less temperature. The experimental temperature corresponds
to T = 1. The sharp variations of the cx's at T 0.72 signals
the occurrence of a transition. The data close to the transi-
tion temperature should be considered with care as the spe-
cific-heat curve (not reproduced here) indicates that long-life
metastable states may have been trapped.

olated &om the data of Marwik, Piller and Cranshow.
This minor disagreement could be a result of the simpli-
fication involving the second-neighbor interactions in the
ICVM analysis.

In Fig. 9, we display a snapshot of the configurations
sampled at the low temperature of &

——0.5. This
CXP

configuration maps the ground state of the alloy, and
clearly exhibits two ordered phases. This corresponds to
the phase separation of the L12(NisFe) and DO22(NisCr)
phases. This intuitive result, considering the sequence of
binary SRO parameters, means that there are no other
competing ground states around the chosen composition.
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FIG. 9. Snapshot of a low-temperature configuration

T = 0.5. At this temperature, the picture reveals a phase
separation between the L12 (Ni&Fe) and the DO22 (Ni3Cr)
structures. At lower temperatures, it is expected that the
remaining randomly distributed chromium atoms will gather
in a thicker IPB to accommodate the o6-'stoichiometry, while
lowering the excess free energy.

The overall mapping of the diffuse scattering intensity
at temperatures above the transition temperature dis-
plays the decomposition of the concentration waves. In
Fig. 10, we have mapped the behavior of the diffuse scat-
tering intensity for Ni-Cr and Fe-Cr pairs on crossing
the disorder-order transition temperature. The diffuse
intensity &om the ¹iFe pairs is not shown: it simply
concentrates into sharp [100] maxima.

The diffuse scattering &om the ¹iCr pairs is sensitive
to the [120) concentration wave, the spots being elon-

T .72
Fe-Cr

„

T=.7/2.

t

't ==Pa

FIG. 10. Diff use scattering intensity maps for the two par-
tial Ni-Cr and Fe-Cr, above and below the transition temper-
ature. The Ni-Cr pair intensity evolves as the DO22 structure
and the emergence of the (100) wave in addition to the (1-'0)
wave is clearly seen. The Fe-Cr pair intensity gathers into
the Bragg peaks at low temperature. It should be noticed
that the maxima and the minima between the ¹iCr and the
Fe-Cr intensities are in an almost one to one correspondence
to ensure the positive definition of the total intensity.

gated along [100] direction. As the temperature is low-

ered, the maximum becomes narrower and even splits
into two spots at the transition temperature, and then
at a lower temperature the [100] wave appears.

The diffuse scattering from the Fe-Cr is gathered into
Bragg peaks, and shows splitting around the [100] wave

maxima. As the temperature is lowered, the splitting
stretches and finally disappears at temperatures close to
the transition temperature.

Below the transition temperature, all the intensity
gathers into the Bragg peaks.

For all temperatures the total intensity is dominated
by the Ni-Fe pair partial intensity, and the [120] max-
ima are not present. This is due to mutual cancellation
of the intensity extrema between Ni-Cr and Fe-Cr pairs.
In a ternary aBoy, only the total diffuse scattering in-

tensity has to be positive de6nite. In a Gner analysis of
the diffuse intensity map we found that to maxima of the
intensity relative to Ni-Cr pairs correspond negative min-
ima of the intensity of Fe-Cr, while simultaneously Ni-Fe
plays a symmetric role with Fe-Cr pairs. The splitting
of the maxima of the two partial ¹iCr and Fe-Cr might
result Rom different rates to reach thermal equilibrium
between the I 12 and DO22 phases.

VII. CONCLUSION

In this paper, we have described an original method of
analyzing the diffuse scattering for dilute ternary alloys,
where conventional experimental analysis techniques fail.
The method uses the self-consistence of the Ising model,
and assumes the transferability of the eifective energies
to different temperatures, at least for nonmagnetic sys-
tems. The method includes the experimental knowledge
about I.RO to determine a plausible set of SRO parame-
ters. As a by-product the method gives the effective pair
potentials, which we have been able to use in the Monte
Carlo simulations. We have shown that, in contrast to
the intuitive picture from the sequence of SRO param-
eters, the experimental diffuse scattering corresponds to
a homogeneous distribution of the species in the solid
solution, without specific microstructure.

The behavior of the alloy as a function of tempera-
ture has also been studied. The ground state of the alloy
corresponds to the order-order phase separation of the bi-
nary Ni3Fe L12 structure, and of the binary NisCr DO2&
structure. The diffuse scattering intensity maps have re-
vealed some speci6c features of ternary alloys, such as
negative contributions of some partial to the total inten-
sity.

The analysis of ternary solid solution will always re-
main a dificult problem because except in a few cases
some necessary information will always be missing. How-
ever, this paper shows that theoretical tools can be de-
signed to get rid of the problems associated with this lack
of information.
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APPENDIX A: CALCULATION OF THE TDS
CONTRIBUTION

I.„=) f„'fa(CACB+x„")
A, B,n

iqR„—([q(Us —Uo ) j)/2 (A1)

where fA is the scattering factor for atom A, CA is the
concentration of atoms A, LAB is the pair correlation
function for the nth neighbor pair AB, A sitting at an
arbitrary origin, q is the scattering vector, and U„is the
instantaneous position vector measured &om the lattice
position R„.The argument of the second exponential
factor in (Al), which should be time averaged (()), can
be written as:

([q(U. —U.")'])
2

((«.")') ((«.)')
2 2

+((qU.")(qU.') ). (A2)

In this appendix, we describe in some details a new
method to analyze the contribution of the thermal difFuse
scattering (TDS) to the difFuse intensity. The method
is based upon the diagonalization of the dynamical ma-
trix and takes the alloy elastic constants into account.
This analysis is expected to improve upon the "classical"
treatment of the TDS correction for experiments done at
temperatures lower than the alloy Debye temperature.
Before discussing this method, let us briefly review the
basic definitions and the main steps in analyzing the dif-
fuse intensity.

According to Warren, 9 the scattered intensity for a
homogeneous solid solution can be written [in electronic
units (eu)]

The above equation for the total difFuse intensity should
normally involve a fourth term ITDs, which accounts for
the correction to ITDs, due to the short-range order. As
a first approximation, we may neglect this term as its
contribution is scaled by a Laue factor, while ITDs, is
scaled by a structure factor term.

At this level of approximation, the vector UA, which
describes the atomic motion of the atom A around its
equilibrium lattice position R, is given byso

U„=) '
2 e;s cos (gR„—ur;st + 4;s) . (AS)

NmAu)2

In equation (AS), E;s, u;s, 4,I and e,g are, respectively,
the mean energy, the frequency of oscillation, the ran-
dom phase and the polarization vector associated with
the wave mode ig, where i = 1, 2, 3 and g belongs to the
first Brillouin zone.

In the case of a lattice with cubic symmetry, if we as-
sume spring forces between the nearest neighbor, we may
assign to each mode g = (gi, g2, gs) a dynamic matrix D
whose elements are defined in terms of the elastic con-
stant C~q, Cq2, C44 and of the lattice parameter a by the
following equations:

D,;(g) = acti(2 —cos (ng;) [cos (xgi) + cos (mgs)])

+a (2C44 —Cri) [1 —cos (erg~ ) cos (7rgs)],

D;~(g) = a (Ci2+ C44) sin(xg;) sin(corgi) . (A6)

Using Eq. (A2), the first-order Taylor expansion of the
total intensity with respect to ((qUo )(qU„)) is given by

I.„=) f A'fa (CACB+ X„"B)
A,B,n

xe*q "(1+((qUO ) (qU„))), (A3)

i(~U") )

fA = fAe ~ being the scattering factor of atom
A, corrected for the Debye-Wailer factor.

Finally, having expanded the sum argument in (A3),
we can make explicit the contributions of the Bragg in-
tensity (Ia), of the short-range order intensity (IsRQ)
and the TDS intensity of the completely disordered alloy
for the one-phonon approximation. The difFuse intensity
can therefore be written

The dynamical matrix D is then diagonalized and u;
and e,g are the corresponding eigenvalues and eigenvec-
tors. The time-averaged factor in Eq. (A4) can then be
evaluated as

((«.) («."))=
„Ii/ gmamA

x ) 's2 (qe;s) cos (gR„), (A7)
%g

mu;

m = ) CAmA.
A

IB + IsRQ + ITDs1 )

Ia =( ).CAfA ('4(q —K),
A

ISRO = ) . CACB
~ fA —fB ~ ).o'

A~B n

ITDS ) CACB fAfa ) e *q " ((qU„)(qU,")).
A, B

In the above expression, the sum is only once over the
index i and g as the time average of the cross products of
cosine factors associated to difFerent wave modes cancel
owing to the randomness of the phase factors. Substi-
tuting Eq. (A7) in Eq. (A4), and using the symmetry
property of the dynamic matrix with respect to the in-
version of the g vectors, we find that the TDS intensity
factor can be written
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IT», (q) =) f„"f&C&C& ) ", (qe;, )' I

—Qe' - cos(gR„)

) ~ ~~CAfA )~ @g
( )2

/mal mar 2

(A8)

This Anal expression for ITDS, shows the following.
(1) The first-order thermal disuse scattering is not ex-

actly proportional to the square of the atomic scattering
factor, and that the atomic scattering factor has to be
weighted by the square root of the inverse of the relative

atomic mass, i.e., 7A Q

(2) The first-order thermal diffuse scattering increases
quadratically with respect to the scattering vector g.
The average energy of the wave mode i g given
from the Bose-Einstein statistic is E;s —— Ru;s[2 +
1/(e" '&~" —1)j. In the classical approximation, 24 we
substitute kT for E;, which require that the condition
kT &( ~;g is met. This approximation is justified for
the g associated to the acoustic modes near the origin
of the first Brillouin zone if the measurements are made
at high temperatures. However, the relevant diff'use scat-
tering lies between the Bragg peaks, and for a vector I

close to the limit of the first Brillouin zone, Ro;g is of the
order of magnitude of the Debye temperature kO~. In
our case, where OD ——450 K and T = 100 K, we found

the quantum correction factor && may be as large as 2.3,
making the classical approximation invalid.

A correction factor to the proportionality between

ITDS, and kT have been proposed by Boric, which re-
quire measurements to be made at two diHerent tem-
peratures but which is still based upon the assumption

The method we have described gets rid of these diffi-

culties and satisfactorily takes into account the disper-
sion relationship for highly symmetrical directions. This
new correction scheme only requires for a little additional
computational effort, namely, the diagonalization of the
dynamic matrix.
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