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We investigate the quantum states of a light particle (positronium, or Ps) in a disordered medium

(fluid xenon). The Ps atom is modeled as a hard sphere which has thermalized in a Lennard-Jones fluid.

The purpose of this paper is threefold: first, to test the efficacy of a recent analytic theory by comparing
its predictions with available results of path-integral Monte Carlo (PIMC) simulations; second, to ex-

plore the Ps-xenon system over a much wider range of circumstances than is possible with PIMC; third,
to report predictions for the lifetime of ortho-Ps and the momentum distribution of para-Ps at high den-

sity which should be of interest to condensed-matter experimentalists. In sharp contrast with the case of
an electron or positron, the reference-interaction-site-model (RISM)-polaron theory produces Ps-fluid

pair-distribution functions in good agreement with the PIMC results. As a result, the pick-off decay rate
of ortho-Ps in the transition region between localized and extended states is reproduced successfully.
We also find that the variance of the momentum distribution of para-Ps agrees qualitatively with experi-
mental measurements of the angular correlation of the annihilation photons. Compared with the
behavior at low density, above the critical density up to about 3p, the RISM-polaron theory predicts
strong confinement of the localized Ps atom and different distortion of the local fluid density, resulting in

the monotonic increase of the decay rate and the momentum variance with mean fluid density. As a
consequence, the slope of the decay rate is much greater than the extrapolated low density limit predict-
ed by the older density functional theories. These predictions of RISM-polaron theory for the behavior
of positronium in a dense fluid suggest that the traditional picture of self-trapping in a fluid is incomplete
and call for more careful experimental investigations to resolve this issue.

I. INTRODUCTION

Positronium (Ps) is a quasiatom consisting of an elec-
tron and a positron which is easily formed when a posi-
tron is injected into a fluid. This atom shares many of its
characteristics with hydrogen and occurs in two forms:
parapositronium (singlet spin state), which decays via a
2y process with a natural lifetime of 1.23 X 10 ' sec and
orthopositronium (triplet spin), which requires a 3y de-
cay process and has the much longer vacuum lifetime of
1.47X10 sec. In practice, the o-Ps annihilates in a
very short time via a 2y process due to the so-called
pick-off process in which the positron bound in o-Ps an-
nihilates with an electron associated with an atom of the
host material. Measurements of the o-Ps pick-off decay
rate and the p-Ps momentum distribution can provide in-
formation about the states of the light particle and its en-
vironment. As pointed out by Miller and Fan, ' the decay
rate provides a measure of the local distortion of the fluid
produced by the Ps atom, and the momentum distribu-
tion provides a measure of the localization of the Ps atom
due to the "pressure" exerted by the fluid molecules.
Positronium annihilation has a special position in the
study of the quantum states of an excess light particle in
disordered media such as insulating fluids, a subject that
has proven to be very useful in condensed-matter physics
as it permits the experimental study of the equilibrium
states of a self-trapping system.

The density and temperature dependence of the pick-
off decay rate have been observed in various simple fluids
such as helium, argon, xenon, and molecular fluids such

as ethane and methane. Since its de Broglie wavelength
is much larger than the mean interatomic distance in a
typical fluid, a Ps atom can simultaneously interact with
many atoms. Consequently, in certain regions of density
and temperature, it creates a region of altered density in
which it is localized. The so-called self-trapping
phenomenon is most significant near the liquid-vapor
critical point where the isothermal compressibility of the
fluid is large. The main features of the density depen-
dence of the experimental pick-off decay rate on an iso-
therm near T, are (I) at low density, the decay rate in-

creases linearly; (2) the rate of increase soon slows down
around the critical point, and (3) following a flat plateau,
it increases again. For most fluids, the final upswing at
sufficiently high densities has not been investigated.

The momentum distribution of the annihilation prod-
ucts has also been measured in many simple condensed
gases for a range of thermodynamic conditions. If the
center of mass of the electron-positron pair is at rest, the
2y decay process gives off two annihilation photons 180
apart. However, the pair has momentum regardless of
whether or not the positronium atom is localized, and
therefore there are departures from 180' which are direct-
ly proportional to the component of momentum perpen-
dicular to the photon direction. Thus, measurements of
the one-dimensional angular correlation (1DAC) of an-
nihilation photons yield the momentum distribution of
the annihilating electron-positron pair. It is found in ex-
periments that the self-annihilation of a p-Ps atom local-
ized in the host medium contributes a component with a
very small full width at half maximum (FWHM) in the
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1DAC spectrum. For helium at T =1.7 and 4.2 K, ex-
periments show that the FWHM of the narrow peak,
O„wHivi, increases from 1 mrad (10 rad) to 2 mrad when
the pressure is increased from 1 to 168 atm. For xenon
at T =170 K, OFwH~=2. 8 mrad. OFwH~ is an impor-
tant parameter which reflects how strongly the Ps atom is
confined in the host rnediurn.

Most existing theories employed for the quantitative
description of the self-trapping of a light particle in a
fluid, such as density-functional theory (DFT), ' are of
the mean-field type. In DFT, a free-energy functional is
constructed that depends on both the wave function of
the light particie and the local fluid density. Minimizing
the free-energy functional with respect to variations in
the wave function and the local fluid density results in a
pair of coupled equations that can be solved self-
consistently. To some extent the DFT approach is suc-
cessful in describing the self-trapping process of light par-
ticles. However, mean-Geld theory approximations do
not account for density fluctuations. DFT predicts that
self-trapping occurs only in a specific density interval and
that, elsewhere, the localized state collapses abruptly or
does not occur. The accompanying discontinuity in an-
nihilation rate is contrary to experiments which show
that the transition from extended to localized states and
back is smooth.

Reese and Miller recently performed a path-integral
Monte Carlo (PIMC) simulation of a Ps atom in xenon at
temperatures T =300 and 340 K. In order to correctly
predict the main features of the experimental measure-
ments of the p-Ps pick-off annihilation rate, one of their
major goals was to properly account for fluid fluctua-
tions. Their results compare favorably with experiment
and ofter insights for a better understanding of the
behavior and annihilation mechanism of positronium in
simple fluids. They considered the Ps atom as a single
quantum particle with double the electron mass, a simple
model that is often used in the literature and appropriate
for this first attempt to study positronium via PIMC.
They took a hard sphere as the Ps-Xe interaction and the
Lennard-Jones 6-12 potential (with parameters
o =4.0551 A, a=229 K) to model the fluid. PIMC pro-
vides a numerically accurate approach for treating this
type of system and has been applied to other similar sys-
tems consisting of excess electrons ' and positrons" in
simple fluids. The approach, however, is very cpu inten-
sive, and the convergence is extremely slow at high Quid
density. The method can only test a few points, so it is
dimcult to obtain a good picture of the predictions over
the complete range of density and temperature. Reese
and Miller carried out their calculations only for densities
p*=po. =0.017, 0.088, 0.17, and 0.35. For their hard-
sphere excess electron in a hard-sphere Quid, Sprik,
Klein, and Chandler's PIMC simulations were carried
out only for densities below p* =0.38.

Alternatively, the reference-interaction-site-model
(RISM)-polaron theory, an analytical theory developed
by Chandler, Singh, and Richardson, ' "can be applied
over a much broader range. It has yielded qualitatively
encouraging results for a number of problems concerning
excess electrons and positrons in some disordered sys-

terns. ' ' In this theory, the light particle is represented
by the path integral, and therefore quantum Quctuations
are naturally included. Although the theory inherits a
weak mean-field approximation, the solvent density fluc-
tuations are partially included as well. As a result, it pro-
vides a continuous transition from extended to localized
states with varying fluid density for the self-trapping pro-
cess. Very recently we have shown' ' that, with the
hypernetted-chain closure, the theory can provide a good
quantitative description of the particle-Quid pair distribu-
tion function g (r) for an excess electron or positron in
fluid xenon (T) T, ) above the critical density.

The purpose of the present work is to test the RISM-
polaron theory against PIMC simulations for the system
of a Ps atom thermalized in Quid xenon. To make a
direct comparison, we use the same hard-sphere potential
V(r) to describe the interaction between the Ps and a xe-
non atom,

oo, r&d
0 )d

and the same Lennard-Jones parameters to model the
fluid, where d =2.5 A and dio. =0.62. The goal of the
comparison is to determine if the theory works for posi-
tronium annihilation studies, and what results should be
expected for this theoretical model of a Ps atom over a
larger range of fluid density.

As in the case of a classical fluid, the RISM-polaron
theory requires a closure relation that must be deter-
mined independently. In contrast with simple fluids, at
the present time it is still not clear what kind of closure is
appropriate for the RISM-polaron theory and for the
specific particle-fluid interaction considered here. To
date, several distinct closures have been employed for
difFerent systems. Here we test the theory with two of
them, Percus- Yevick' (PY) and hypernetted-chain
(HNC), ' that are used widely in the modern theory of
simple atomic fluids. The comparison provides quantita-
tive criteria for choosing between them and explores the
sensitivity of the model to their difFerences. We find that
the PY closure is slightly more successful than HNC for
the present system, but it appears that the HNC closure
is more generally applicable for a wider variety of poten-
tials. From the results presented in the paper, it will be
seen that the RISM-polaron theory underestimates the
confinement of the localized positronium at low density,
but it yields a good Ps-Quid pair distribution function
when compared with the PIMC results. Thus, we are
able to reproduce the main features of the experimental
pick-off decay rate A, . In contrast with the existing DFT
calculations, in which A, and OFwH~ never simultaneously
agree well with experimental results, the OFwH~ ob-
tained from the RISM-polaron theory also qualitatively
agrees with experiments. Moreover, well above the criti-
cal density, the predicted behavior is significantly
different from that described by DFT. For example, we
find that both A, and OFwH~ are monotonically increasing
in this region and, moreover, that A. increases much faster
than the anticipated linear rate predicted by DFT.

It is noted that Sprik et al. tried to make a similar
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comparison with PIMC simulations for their hard-sphere
excess electron in a hard s-phere fluid. They compared
the (imaginary) time correlation functions and found that
the RISM-polaron theory with the PY closure underes-
timated the confinement of the localized electron. How-
ever, for reasons which are unstated, they did not com-
pare the electron-fiuid pair distribution function g(r).
The issue of closures was not considered either. Conse-
quently, to date, a consensus concerning the suitability of
the g(r) predicted by RISM-polaron theory for a light
particle with a purely repulsive hard-sphere potential in
fluids is lacking. It also needs to be mentioned that the
earlier RISM-polaron calculations for a hard-sphere par-
ticle were only carried out for a hard-sphere fluid, which
lacks a critical point. ' ' ' Lennard-Jones fluids have
proved to be a more realistic model for simple atomic
fluids, ' and were used in later RISM-polaron calcula-
tions. ' ' However, the treatment of the Lennard-Jones
fluid in Ref. 14 seems not accurate enough for accounting
for the critical behavior. A significant change in the
shape of g (r) around the critical point was found by Fan
and Miller. There the PY closure was used for the clas-
sical Lennard-Jones fluid, although it is more suitable for

short-range, repulsive interatomic potentials. ' In this

paper we will use a better description of the classical
Lennard-Jones fluid as input for the quantum mechanical
computations which we will describe later on, so that we
are able to account for the critical behavior more precise-
ly.

The paper is organized as follows: We briefly review
the RISM-polaron theory and the closure issue in Sec. II,
and describe the computational method in Sec. III. The
numerical results are then presented in Sec. IV, and final-

ly the discussion and concluding remarks are given in
Sec. V.

II. RISM-PGLARON THEORY AND CLOSURES

We consider a single particle dissolved in a simple fluid
in the adiabatic approximation in which the particle is
treated quantum mechanically and the xenon atoms clas-
sically. From a standard imaginary-time path-integral
formulation, ' the partition function of the system can be
written in the following form with boundary condition
r1 rp+1.

p N

Z = lim g f dr'zu(r', r'+';p/p) p fdRJexp[ —pU(E) —(p/p)V(r, g)],
phoo

1

(2)

where U(E)=( —,') g u(IR' —RJI) is the solvent interac-
tion potential energy and V(r, +)=g u(lr —RJI), where
u(lr —RJI} is the particle-solvent interaction, and
stands for the set of atomic positions IR~]. In (2), zo is
the free-particle density matrix in the coordinate repre-
sentation

zu(r, r';P) = [(2n.)'~2k, ,„]
Xexp( —Ir —r'I /2A, tz„), (3)

where A,,h=[pR /m]'~ is the thermal wavelength of the
light particle and m is its mass. A simple picture emerg-
ing from Eqs. (2) and (3) is that a quantum particle can be
represented by a classical ring polymer with p (p~ ~ )

classical interacting harmonic oscillators (classical iso-
morphism). In other words, an excess quantum particle
which has thermalized in a classical fluid can be de-
scribed within the context of classical fiuid theory.

The reference-interaction-site-model (RISM) was origi-
nally introduced by Chandler to study the structure of
molecular fluids. Since there is an isomorphism be-
tween a quantum particle and the classical ring polymer
described above, Chandler, Singh, and Richardson ex-
tended the RISM theory by combining the path-integral
formulation with Feynman's polaron approximation, " '

and developed the RISM-polaron theory, an analytical
representation for a quantum particle-Quid system. ' "
The main equation in the theory is

ph (r}=fdr' fdr"co(lr r'I )c(lr' —r"—I)y(lr" I) (4)

which provides the connection between the particle-Quid
direct correlation function c(r) and the particle-fluid

~co(lr r'I;r T ) (p—~ ~ } (Sb)

represents the probability density for finding polymer
sites i and j near r and r, respectively, in the limit of a
continuous chain (p ~~ ). Within the context of
Feynman's polaron approximation, " ' co(r;r) assumes
the following expression in k space:

co(k, )=rexp —k g (1—cosQ„r)/(PmQ„+y„)
n%0

y„=(6n pA) ' f dk k c'(k)g(k)
0

X f dr(1 cosQ„r)co(k,—~),PA

0

(6a)

(6b)

where Q„=2~n/PA'.
Equations (4}—(6) must be solved self-consistently in or-

der to obtain a solution for co(r, r) and h (r). In so doing,
we have to choose a closure relation for h (r) and g (r)
In earlier work, the PY closure' was employed for a

pair-correlation function h(r). In Eq. (4), the solvent
density-density correlation function y [y( Ir —r'I )
= (5p(r)5p(r') ) ] is an input to the theory and represents
the structural influence of the fluid on the state of the
light particle. co(r) is the zero-frequency component of
the polymer probability density function co(r, ~)

co(r) =(Pfi) ' f

draco(r,

r),Pfi
(Sa)

0

where

co(r, r';i, j)—:m(lr —r'I;i j)—
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hard-sphere excess particle, ' ' "
h(r)= —1, r +d,
c(r)=0, r &d,

(7a)

(7b)

while a HNC-like closure' was employed for an excess
particle with a long-range attractive potential. ' ' ' The
motivation for these choices arose from the analogy with
the classical equilibrium theory of fiuids and has not yet
been justified from a more fundamental argument. In
this paper we are going to examine both of these closures
with the hope of obtaining some useful information for
guiding the further development of a good closure for the
RISM-polaron theory. The reduced form of the HNC
closure for a hard-sphere potential given in (1) is

h(r)= —1, r ~d (8a)

c(r)=exp[h (r) c(r)]——[h (r) c(r—)]—1, r )d . (8b)

5l [c]/5c (r) =0, r ~ d,
c(r)=0, r &d,

where

1[c]=pc(0)+(16m. )
' f dkc (k)g(k)co(k, r) .

(10a)

(lob)

The direct correlation function, c(r}, can be obtained
from Eq. (4) with a good degree of accuracy for given

g(k) and co(k, r) by adjusting a trial function representing

f (r) and the parameter cs and checking the constraint
(10). According to Eq. (10b), it is easy to find a good trial
function for f (r) because f (r)=c(r)=0 for r &0. For
example, Nichols et al. ' ' ' took f (r) to be a cubic poly-
nomial for r & d, and the cs and four coefficients in f (r)

III. NUMERICAL METHOD

As pointed out by Nichols et al. ' ' ' the solution of the
RISM-polaron equation for g (r) is a continuous function
of r with a discontinuous slope at r =d. As a result, c (r)
possesses a delta function singularity at r =d, i.e.,

c (r) =cs5(r d)+f (r),—

where cs is a constant coefficient and f (r) is continuous
everywhere.

In earlier RISM-polaron calculations for a hard-sphere
excess particle in a fiuid, ' ' " ' a variational method
was used to determine cs and f (r). The main idea is that
the PY closure in Eq. (7) can be expressed as

ph(k) =co(k)c(k)g(k}

=r)(k}f(k}g(k}

+4ncsd to(k)g(k)[sin(kd)]/kd, (12)

which is simpler in form and easier to use. In Eq. (12) we
have used the Fourier transformation of Eq. (9). cz can
be calculated from the equation

were then determined by nullifying the variation in l. Al-
ternatively, Fan and Miller used a truncated set of
spherical Bessel functions with equal success.

However, the variational method for determining f (r)
is not applicable if the HNC closure (8) is used. This is

simply because the behavior of f (r) for r )d is now un-
known. For our purposes we have to employ a more gen-
eral method that will accommodate both closures.

The approach we will employ is to first determine the
cz by variation and f (r) numerically. It has two itera-
tion loops: The first one is the outside loop which is used
to evaluate (y, , y2, . . . , y„). For a given g(k), we start
with an assumed set (y, ,y2, . . . , y„) and obtain the ini-
tial co(k, r) from Eqs. (6). Then we run in the second loop
to achieve convergent solutions for h (r) and c (r). By us-

ing the resulting h (r) and g (r) we obtain a new set of y's
and repeat the above procedure until the y's arrive at the
required accuracy. The method devised by Fan and Mill-
er was used to speed up the summation in Eq. (6a). The
integrals over r in Eqs. (Sa) and (6b) are carried out by a
self-adjusting mesh integration program so that an accu-
racy of 10 is guaranteed regardless of the shape of the
integrands. As for the number of y values selected, we
find that there is no significant difference in the final re-
sults when we include the first 20 values (n =20) or the
first 40 values (n =40). In fact, for the final runs we
selected n =30. Fewer than 10 iterations of the entire
process yielded at least three-digit accuracy for the y's.

In the second loop, we took 8(r)=h (r) —f (r) as the
iteration variable to obtain convergent solutions for h (r)
and c (r). The reason for doing so is that the closure rela-
tions in Eqs. (7) and (8) can be simply written in the form
c (r) =F [8(r)]. In particular, h (r) = —1 is equivalent to
F [8(r)]= 8(r) —1 for r—~ d. The iteration is carried out
via fast Fourier transformation (FFT) techniques on a
grid of N =2" points equally spaced with hr =0.0811 A.
(Experimentation with finer meshes did not produce no-
ticeable improvements. ) This also allows the use of the
RISM equation (4) in k space:

2m. pd2+ f (kd)sin(kd)f(k)g(k)co(k, ~)dk—4mcgd =
f k sin (kd)j(k}co(k, r)dk

0

which results from Eqs. (11) and (10a) because of the
equivalence of Eqs. (7a) [or (8a)] and (10a). In each itera-
tion we begin with an initial choice for 8(r) and substitute
it into a closure equation for f (r). With the resulting

f (r) or f(k) we calculate cs from Eq. (13) and h(k) from

(13)

I

Eq. (12). After taking the Fourier transform of h(k), we
complete an iteration and find a new 8(r)=h (r) —f (r)
for the input of the next iteration. To stop the cycle, we
require that the error in h (r) for r ~ d is less than 0.001
[h (0) should equal —1 as the potential (1) is infinite for
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r & d] and that the quantity 12

vive 0.01? 0.017

b,8= g [8 +'(r, )
—8 (r, )]. /N (14}

is less than 0.0001. To accelerate convergence the Ng
method, in which the mth iteration input is obtained
from a suitable linear combination of the preceding three
iterates, is used. Even so, when approaching the
liquid-vapor critical point, between 10 and 10 iterations
are required to achieve the stated accuracy in If (r} for a
given set of y's.

To accomplish the present study, we need g as input;
RISM-polaron theory can only be as good as y. The best
possible y can, of course, be obtained from Monte Carlo
or molecular-dynamics calculations, but this defeats the
purpose of constructing a theoretical model. In our pre-
vious RISM-polaron studies for a positron and an excess
electron in xenon, ' ' the solutions of the reference-
hypernetted-chain (RHNC) equation of simple classical
fluids were used. The solutions are found by applying
the Rosenfeld-Ashcroft procedure to model the bridge
function in the RHNC integral equation with its hard-
sphere values, and selecting the sphere diameter which
minimizes the free energy of the system. The RHNC
equation for simple fluids has also been tested recently by
an alternative computational procedure. The results
given in Refs. 24 and 25 show that the difference between
the solutions of RHNC and the computer simulations is
comparable to the uncertainties in the simulation data.
For our purposes, we used a computer code designed by
Lado to generate the structure factor S(k) of the
RHNC solution for xenon with a Lennard-Jones poten-
tial (o =4.0551 A and a=229 K} at T =340 and 300 K
for various densities to obtain g(k)=pS(k), the Fourier
transform of y(r). Unfortunately, as pointed out by Lom-
ba, RHNC solutions may not exist in a certain range of
Quid density and temperature. For example, we obtained
solutions at T =340 K for all the desired scaled densities
in the range 0&p' &0.95 but found it difficult to obtain
solutions at T =300 K (i.e., closer to the critical tempera-
ture) when 0. 16&p'&0.36. However, we will see that
this problem does not greatly afFect our conclusions.
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FIG. 1. The comparison of the RMSD between the PIMC
simulations (left column) and the RISM-polaron theory predic-
tions with the PY closure (right column) for various fluid densi-
ties p at T =300 K (upper graphs) and 340 K (lower graphs).
Because of symmetry, only the data for 0 t&t'&PA'—2/are
plotted.

12

ted. If the RMSD takes on values in a narrow range, or
if its maximum value at t t'=Pfi/2 is—small, then the Ps
atom is strongly compressed. To quantitatively under-
stand the dependence of the RMSD on density, the max-
imum value of the RMSD, R (PR/2), as a function of p'
is plotted in Fig. 2. It clearly shows that the RISM-
polaron theory greatly underestimates the confinement in
the low density region. For high density, above
p'=0. 35, there are no PIMC data available, but the
RISM-polaron theory predicts that, up to p'=0. 95, the

IV. RESULTS

A. Structural behavior

We first consider the confinement of the positronium,
which can be described by the second moment
R (t t') = ( Ir(t) —r( t')

I ), the—mean-square displace-
ment (MSD) between two polymer particles on the chain
separated by an imaginary time displacement t —t' in the
interval [O,PA'). In the RISM-polaron approximation,

10
CI
(0

8

E
6

X

0.2 04

P =P&

0.6 0.8

R'(t —t') =6 g [1 cosQ„(t——t')]/(Pttt 0'„+y„) .
n%0

(15)

In Fig. 1, the results of R (t —t') (RMSD) from PIMC
and RISM-polaron theory with the PY closure are plot-

F1G. 2. The maximum value of RMSD [R (t t') evaluated-
at t t'=PA/2j as a functi—on of fluid density from p =0.0 to
0.95 for T =300 and 340 K. The available PIMC results are
only for p =0.017, 0.088, 0.17, and 0.35. The dashed line is in-
terpolated in 0. 16(p (0.36 for the RISM-polaron theory with
PY closure at T =300 K.
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higher the fluid density, the more compressed is the Ps
atom. If, as we expect, this is also true for PIMC, the
theoretical prediction could "catch up" to that predicted
by PIMC at about p'=0. 60. This contrasts strongly
with the comparison by Sprik, Klein, and Chandler,
where the two are already almost equal when p'=0. 373.
There could be many reasons to explain the difference,
but we believe that the most important one is that here
the thermal wavelength is small. Our value of A, ,„ is
2.99a for T =300 K and 2.8 lo. for T =340 K, less than
half of that considered in Ref. 8. This suggests that, all
things being equal, RISM-polaron theory does better
with a longer A,,h. Since a larger A,,„allows the Ps atom to
interact with more fiuid atoms, as it does at high density,
we also expect that RISM-polaron theory will be more
effective at high density. In other words, it is very likely
that the R (t t') r—esulting from simulations will follow
the same trend at high density as that predicted by the
RISM-polaron theory and shown in Figs. 1 and 2.

It is seen from Fig. 2 that the RMSD of the RISM-
polaron theory begins to change its behavior at p*=0.33
for T=300 K and at p*=0.28 for T=340 K. This is an
indication of the response for the RISM-polaron theory
to the critical point of the Lennard-Jones fluid under con-
sideration, for which p,' =0.35 and T, =289 K, It shows
that, although the size of the response is small, the
RISM-polaron theory does reflect the critical region. It
is also seen from Fig. 2 that a small discrepancy occurs
between the two closures in the critical region (see the
curve for T =300 K), in which the HNC closure results
in a slightly more compressed Ps atom than that induced
by the PY closure. However, in genera1, there is no
significant difference between the corresponding theoreti-
cal predictions for the compression of the Ps atom.

The Ps atom to solvent radial distribution function

g (r) =h (r)+ 1 is the other central quantity describing lo-
calization. It reveals the local fluid distortion produced
by the Ps. The available PIMC results are for p'=0. 017,
0.088, 0.17, and 0.35 at T =340 and 300 K and we com-
pare them with the RISM-polaron results in Figs. 3 and
4, respectively. The general picture which emerges shows
that the two are in good agreement. In particular, the
magnitudes of g(r) at short distances, say for r &10 A,
are very close. However, the disagreement at large dis-
tance is obvious. The g(r) from PIMC simulations goes
to unity from above, which contrasts with the theoretical
predictions where it goes to unity from below. We
suspect that the disagreement could be a result of the
periodic boundary conditions imposed in the PIMC simu-
lations. If this is the case, we would expect better agree-
ment with the g (r) generated by a larger simulation. We
do observe a disagreement that appears to be an intrinsic
result of the RISM-polaron theory, in which the slope of
g (r) at r =d is discontinuous. Also, as numerically indi-
cated in Figs. 3 and 4, g "(r =d +) (0, where d +
represents a distance infinitesimally larger than d. But
what we have seen in the figures is that the PIMC simula-
tions seem to produce a g (r) with a continuous slope at
r =d and g "(r =d + ) )0.

The general dependence of g(r) on Iluid density, as
predicted by the polaron theory, is shown in Fig. 5 for
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FIG. 4. Comparison of the Ps-xenon radial distribution func-
tion g(r) as predicted by PIMC and RISM-polaron theory for
&arious Quid densities at T =300 K. Because of the difficulty in

obtaining RHNC solutions for p* =0.17 and 0.35, instead we

plot g(r) from the RISM-polaron theory at p*=0.16 and 0.36
in the lower graphs.

FIG. 3. The comparison of the Ps-xenon radial distribution
function g(,r) between the PIMC simulations and the RISM-
polaron theory predictions for Quid densities p =0.017, 0.88,
0.17, and 0.35 at T =340 K.
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FIG. 6. The plot of the distance z at which the pair-
distribution function g (z) =0.7 as a function of fluid density p*.
The results from RISM-polaron theory at T=300 and 340 K
are presented. The dashed line in the interval 0.16(p &0.36
represents the interpolated value from the PY closure at
T =300 K where the RHNC solutions do not exist.

T =300 and 340 K. As also illustrated by Nichols et al.
in Ref. 12(b), we see that the dependence on p' at a given
value of r is not monotonic. But what we emphasize here
is that, for our present system, the lack of monotonicity
corresponds explicitly to the critical behavior of the fluid:
at small distances the rate of approach of g(r} to unity
becomes minimized when the fluid approaches its critical
point. To see this more quantitatively, in Fig. 6 we plot
the density dependence of the distance z at which

g (z) =0.70. The value of z can be considered as a repre-

sentation of the slope of g(r) at small distances: the
greater z, the smaller the slope. For T =300 K, which is
about 10 K above the critical temperature, we see that, as
the density increases from zero, z first monotonically in-
creases until p*=0.33 and then reverses direction as we
continue up to p'=0. 95 with z[p'=0. 95]&z[p'=0].
Similar behavior is found for the higher temperature
(T =340 K},but the reversal occurs at the smaller densi-
ty of p'=0. 28, and z traverses a smaller range. It is ex-
pected that, for T =T„ the reversal will occur at p' =p, .
We observe that, for a given density, z ( T =300
K) )z( T =340 K}, particularly in the region near the
critical density, although the two are close at low density
and appear to approach the same constant in the high
density limit. This is a consequence of the larger iso-
thermal compressibility at T =300 K. We also observe
that g(r) is a monotonic increasing function of r at low
density, but becomes oscillatory at high density. Consid-
ering the good agreement with PIMC shown in Figs. 3
and 4, and the fact that the RISM-polaron theory also
provides a good description of the particle-fluid pair dis-
tribution function for an excess electron' in xenon in the
high density region, it is reasonable to consider the
theoretically predicted g (r} shown in Fig. 5 to be a good
supplement to the PIMC calculations.

In the above discussion of g(r), we did not specify
which closure was selected. This is because the compar-
ison made in Figs. 3 and 4 shows that each closure con-
sidered works well at low density, and Fig. 5 shows that
the general picture of g(r) resulting from each is nearly
identical. There are some quantitative discrepancies.
The g(r) from HNC is generally greater than that ob-
tained from PY for a given r, particularly in the critical
region (see Figs. 3, 4, and 6). It is interesting to recall
that the RMSD generated by the HNC closure is smaller
than that resulting from the PY closure in the critical re-
gion.

B. Annihilation properties

The two quantities discussed above, g (r) and R (t t'), —
characterize the localization of a Ps atom in the fluid.
We now discuss their experimental consequences by ex-
amining the o-Ps pick-off decay rate and the p-Ps momen-
tum distribution, which are observables. We discuss the
decay rate first.

The pick-of decay rate I, of the positron in an o-Ps
atom annihilating with an electron of a fluid atom can be
calculated from the following expression

A, =(1/8nao)p fdR fdr exp( —R/ao)f, &(Ir —R/2I)g(r),

(16)

where ao is the Bohr radius and f„(IrI) is the electron
charge distribution at r associated with an atomic nu-
cleus located at the origin. It is seen that k is directly re-
lated to g(r), which reflects the distortion of the fluid
around the Ps atom. In order to determine an accurate
decay rate it is necessary to have a good representation
for f. This is not an easy task. In their PIMC studies,
Reese and Miller investigated various alternatives and
finally calculated the decay rate with a 5-function ap-
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FIG. 7. The scaled 0-Ps pick-off decay rate (from both PIMC
and RISM-polaron theory) as a function of the scaled fluid den-
sity p/p, at T=300 K (upper graph) and T=340 K (lower
graph) in the low density region. The dashed line in the upper
graph is interpolated in the interva1 0.16(p*(0.36 for the
RISM-polaron theory with the PY closure.

proximation. In this approximation, the atomic electron
distribution f ( ir —Ri ) is simply taken to be 5(r —R), and
expression (16) then becomes

A, = ( I /ma 0 }pf d r exp( —2r /ao)g (r), (17)

which is merely the overlap of the molecular center-of-
mass coordinates with the portion of the positron wave
function falling outside the hard sphere diameter. Using
the g(r} resulting from the RISM-polaron theory, the
theoretically predicted decay rate can be worked out
from Eq. (17). Since the radius of the hard sphere is
d =2.5 A=5ao, the exponential term in (17}decays very
rapidly for r &d. Therefore the decay rate A, reQects the
nature of the fluid distortion in a very close vicinity of the
hard sphere (r =d). In Fig. 7, we compare our theoreti-
cal results with their PIMC simulation counterparts in
the low density region. Following Reese and Miller, we
have scaled the Quid density, p~p/p„and the decay
rate, A, ~ai, , where a is a parameter chosen so that at
very low density the slope of the decay rate is unity. It is
seen that the decay rates predicted from the RISM-
polaron theory are in good agreement with the PIMC
simulation results. In particular, the PY closure results
in a better agreement, which is excellent at T=300 K.
This is not surprising since it is shown in Figs. 3 and 4
that g(r) from PIMC and the RISM-polaron theory are
very close to each other in the vicinity of the Ps atom.
The thermal wavelength at T =300 K is slightly greater
than that at T =340 K and our results also show the sen-
sitivity of the RIMS-polaron theory to this difference.

When the fluid density becomes higher, the theoretical-
ly predicted decay rate shown in Fig. 7 does not appear
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FIG. 8. The scaled o-Ps pick-off decay rate predicted from
the RISM-polaron theory as a function of the scaled fluid densi-

ty p/p, for values of p/p, up to 3 at T =300 and 340 K. The
dashed line is interpolated in the interval 0.16(p*(0.36 for
the RISM-polaron theory with the PY closure at T =300 K.

=1.5k' T 1+2 g y„/(Pm02+y„)
n&0

The variance q„resulting from (19) is presented in Fig. 9
as a function of fluid density where q has been divided
by mc (c is the speed of light) so that the units are radi-
ans. It is seen that the variance q„, or OFwHM, of the
1DAC is directly related to the compression of the Ps
atom since it depends solely on R (t). The data at low
density shown in Fig. 9 may be questionable because the
comparison made in Fig. 1 shows that the theory predicts
a less compressed Ps, but the range of magnitude qualita-

to be constrained by the long dashed line that is linearly
extrapolated from very low density, but rather it in-
creases much more rapidly. To see this more clearly, we
plot the decay rate in Fig. 8 for a much larger density re-
gion (up to 3p, }. The reason for this unanticipated
behavior can be understood from Figs. 5 and 6 which
show that the "slope" of g(r) is not constrained by its
value at low density when returning from the situation
where g(r) has its smallest slope but, rather, the slope
continues to increase. Consequently the decay rate does
not return to the linear extrapolation at high density.

We now analyze the p-Ps momentum distribution
P(p). As we mentioned in the Introduction, the experi-
mental P(p) gives rise to a narrow peak in the one-
dimensional angular correlation spectrum. The full
width at half maximum, 8FwHM, of the narrow peak pro-
vides a crude characterization of the p-Ps momentum

distribution. The variance q=((p ))' of P(p}, or
q„=((p„))'~ of P(Px),

P(p„)=f dpJ f dp, P(p), (18)

is comparable with (mc)HFwHM and is readily obtained
from the average kinetic energy Ek = (p /2m ):
q =((p'))' '=(2mE„)' ', or q„=((p„'))' '
=(2mEk/3)'~2. In the RISM-polaron theory Ek can be

calculated from the expression 13, 14

Ek= —(m/4)[d R (t)/dt~]i, o
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tively agrees with the experimental estimates. For exam-
ple, for xenon at T =170 K, 8FwHM=2. 8 10 rad. We
are not aware of other data available for xenon in this as-
pect. It is interesting to note that the trend of q„ to high
density shown in Fig. 9 is quite similar to that found for
helium at T =1.7 and 4.2 K where the OFwHM increases
with pressure on a given isotherm. We also note that
8FwHM at high density is about three to four times greater
than that of an extended Ps atom computed from the
value of q„at p'=0 shown in Fig. 9. This is expected
from Figs. 1 and 2 and the uncertainty principle.

V. DISCUSSION AND CONCLUSIONS

PIMC is a time-consuming method and it is diScult to
use it to cover the complete range of the parameters
needed for describing systems such as that considered
here. However, the results it provides are numerically
accurate, and thus are considered as a testing ground for
any analytical theory. In this paper we have compared
our RISM-polaron calculations for the system of a Ps
atom in xenon with the available PIMC simulation re-
sults and investigated the system in the high density re-
gion, for which there are no available PIMC data, be-
cause the convergence of the simulations is extremely
slow there with existing algorithms. From the compar-
ison we have the following immediate conclusions: (1)
The RISM-polaron theory can predict a good Ps-fluid
pair-distribution function g(r) but underestimates the
compression of the Ps atom; (2) both closures, PY or
HNC, work well with the theory, but PY seems better; (3)
the nonlinearity of the o-Ps decay rate in the transition
region of the fluid is well reproduced by the RISM-
polaron theory. The comparison provides some numeri-
cal verification for the closures and the theory, and a
justification for accepting the theoretically predicted re-
sults extended over a broad range of parameters.

It is seen that the closure problem for the RISM-
polaron theory for a light particle with a hard-sphere in-
teraction is not as sensitive as in the case of a particle

pal=pa
3

FIG. 9. The variance of the one-dimensional angular correla-
tion distribution of p-Ps as a function of fluid density. The re-
sults predicted from the RISM-polaron theory at T=300 and
340 K are presented. The dashed line is interpolated in the in-

terval 0.16&p (0.36 for the RISM-polaron theory with the
PY closure at T =300 K.

with a long-range attractive potential tail, such as a posi-
tron' or an excess electron' in xenon. For the latter sys-
tems, the HNC closure produces reasonably good results
when compared with simulations, but we found
difBculties with the PY closure. Due to numerical
overflow, the direct application of the PY closure did not
converge, while Alnatt's modified version of the clo-
sure, although it converges, cannot reproduce the clus-
tering shown in the particle-fluid pair distribution func-
tion. In our present system, the PY closure is better than
the HNC, but the HNC closure converges and gives
reasonable results. Thus, it appears that the HNC clo-
sure is more generally useful than PY for the RISM-
polaron theory. However, a common weakness of the
theory found in the present work and in Refs. 16 and 17
is that the light particles are all predicted to be less local-
ized, particularly in the low density region. It seems that
the issue of the closure problem plays a minor role in this
respect. Chandler et al. attributed this weakness to the
polaron approximation which ignores large-amplitude
fluctuations, ' '" but pointed out that the approximation
should be good for high density. The fact that the
theoretical results presented in this paper at high density
can be considered as a good extension of the PIMC simu-
lations provides convincing evidence for the validity of
this conjecture.

From our results we can see that, to some extent, the
PY and HNC closures are applicable to the RISM-
polaron theory, although these closures are derived from
the classical equilibrium theory of simple atomic fluids.
This apparent success raises some new questions: First,
will different closures which are chosen sensibly strongly
affect the results~ We have seen that the predictions of
both HNC and PY for our system are similar. Second,
can a different closure improve the predictions? We have
seen that both HNC and PY provide reasonable correla-
tion functions, but underestimate the degree of polymer
localization. The lack of chain compression predicted by
each closure may be a consequence of the polaron ap-
proximation rather than the particular closure. Laria,
Wu, and Chandler' and Schweizer and Yethiraj have
argued that adapting the closures arising in the theory of
simple monatomic Quids to a polymer fluid or a polymer
in solution may be incorrect. While more work is re-
quired to resolve these issues, at least here we have pro-
vided both a numerically accurate reference based on the
standard closures and direct comparison with PIMC
simulations which employ the identical Hamiltonian for a
realistic fluid model.

There are two major distinct quantities describing the
quantum states of light particles in fluids: the particle-
fiuid pair-distribution function g(r) and the root-mean-
square displacement R(t) (RMSD). The former illus-
trates the distortion of the fluid produced by the light
particle and the latter describes the compression of the
particle due to the actions exerted by the fluid atoms. In
mean-field theories such as DFT, the stronger the poten-
tial well experienced by a particle, the stronger the distor-
tion of the fluid and the compression of the particle. In
other words, if the distortion of the fluid is strong, the
compression of the particle must also be strong, and vice
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versa. A strong potential is produced only in certain ranges of fluid density and temperature and therefore the distor-
tion and the compression do not occur elsewhere. This is not the case in the present calculations where the compres-
sion of the Ps atom is a monotonic function of the fluid density in the range concerned, and the distortion of the local
fluid occurs in the form

gi=go(at p=0) —+gt &go (monotonically decreases until p=p ),
~gi &go (monotonically increases from p=p ),

i.e., first increases and then reverses with increasing den-

sity, for a given temperature T, where g&
=pi /p and

go =po/p [p& represents the value of the local Quid densi-

ty in the vicinity of the Ps atom and po its value in the
low average Quid density limit (p —+0)]. It appears that if
T & Tc, then p &p„and vice versa. Thus, the picture of
the localization process which emerges from both PIMC
and the RISM-polaron theory is quite different than that
of DFT.

Positronium annihilation measurements play a unique
role in the study of the localization of quantum particles
since, in contrast with the mobility, the two observable
quantities, the 0-Ps pick-off decay rate and the p-Ps
momentum spread, are equilibrium properties which de-

pend, respectively, on only g (r) or R (t). In DFT, the de-

cay rate at high density approaches the linear extrapola-
tion value since, in that theory, the potential well col-
lapses and gi ~go rather than g& & go. The state of the Ps
atom also becomes extended and, therefore, the variance
of the p-Ps momentum distribution will decrease after
achieving a maximum at some density in the range of in-

terest. The substantial differences between our calcula-
tions and the predictions of DFT are not surprising, since
in the actual Quid the wave function is constrained to
move in narrow channels of decreasing width as the den-

sity is increased. Therefore, the new predictions deserve
experimental exploration. It should be kept in mind that
DFT cannot produce a smooth transition region, and
cannot simultaneously predict the pick-off decay rate and
the variance of momentum distribution with the correct
order of magnitude. Our calculations show that the
RISM-polaron theory provides a promising tool for stud-
ies of positron annihilation and quantum particle locali-
zation in Quids.

The 0-Ps pick-off decay rate is readily obtained from
the RISM-polaron theory, as is the variance of the p-Ps
momentum distribution. However, to obtain the com-
plete momentum distribution function P(p) is not an

easy task. Miller and Fan' derived P(p) using the path-
integral formalism and found

P (p) =(2M) f dr exp(ip r/A)(pq(r) ), (20)
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where (pz(r)) =(pz(x, x')) is the density matrix. Since
r=x —x'%0, the path-integral representation for the Ps
atom is not a ring polymer, but rather open ended and
separated by r. There is no analytical theory available for
quantum particles with the representation of open poly-
mers. A possible approach for computing P(p) is, of
course, an extension of the PIMC method, but it appears
that large blocks of cpu time will be required. It is for-
tunate that we can at least obtain the variance of P(p)
from the RISM-polaron theory, a ring polymer theory.

Finally we remark that the hard-sphere interaction po-
tential used in the PIMC simulations and the present
work is a simplified model for the Ps atom. In fact, the
Ps atom is very polarizable with an atomic polarizability
eight times greater than that of the hydrogen atom. Ob-

viously the effect of polarization could play an important
role in positronium annihilation because it could result in

an increase of both the pick-off decay rate and the
FWHM of the 1DAC. Since the RISM-polaron theory
has demonstrated its ability for describing the hard-core
model, it would be interesting to see if it works for a posi-
tronium model which includes polarization effects. We
are considering this for future work.
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