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We found that the decay rate, A,, of the correlation function, G, in glass-forming liquids can be ex-

pressed in terms of G itself. A three-parameter function of the form )t, =++A,~G" leads to an analytic
solution for the function G in the time domain. This assumption also allows one to express the function
G as an infinite series of Lorentzians in the frequency domain. This model has been applied to
Mossbauer absorption spectra of aqueous FeC12 solutions in glycerol (14.4-keV line of ' Fe) and higher
temperature quasielastic (Rayleigh) scattering data obtained by the scattering of the '"W 46.5-keV
Mossbauer line from pure glycerol. The model describes the Mossbauer data as well as the empirical
Kohlrausch or Cole-Davidson (CD) laws. Also, the function A,(G) can be expressed in a two-parameter
form as Xoexp(aG). It has been shown, however, that a closed-form expression for the function G does
not exist in the time or frequency domain for this latter form. On the other hand, the exponential form

gives a two-parameter fit to existing data, suggesting a physical basis to this form and implies that small

changes in G are proportional to fractional changes in k. It has been found that the parameter a has

some universal meaning as it remains constant over a significant low-temperature range accessible exper-
imentally, decreasing to the zero value with increasing temperature. Our analysis suggests that the pa-
rameter a may change in steps as sample temperature is increased. Such a behavior suggests that some

processes (degrees of freedom) are "freezing out" at well-defined temperatures.

I. INTRODUCTION

Recently, noncrystalline systems have attracted consid-
erable attention and many attempts have been undertak-
en to explain their diffusive properties (for a review see
Refs. l —3) both from the experimental as from the
theoretical point of view. Various techniques have been
applied to look at diffusive behavior in disordered sys-
tems, ' e.g., dielectric susceptibility studies,
difFerential heat-capacity measurements, ' nuclear mag-
netic resonance, visible light scattering, " scattering
methods in the wave-vector transfer region comparable
to the inverse molecular dimensions, and also "classical"
methods such as tracer difFusion and viscosity studies and
many other techniques. ' Scattering methods have the
advantage of probing both the spatial and temporal
dependence of the appropriate correlation functions,
ho~ever, they suffer from limited time resolution and
limited time-scale range. " They can be divided into
coherent methods such as quasielastic scattering of
Mossbauer radiation, ' which in the completely elastic
limit is Rayleigh scattering, or coherent neutron scatter-
ing, and incoherent ones such as Mossbauer absorption,
emission spectroscopy or incoherent neutron scattering.
Mossbauer absorption and emission spectroscopies are
confined to probing the immediate vicinity of the surface
of the Ewald sphere. Coherent methods are sensitive to
properties of the pair-correlation functions, ' while in-

coherent methods measure properties of the self-
correlation functions. '

Noncrystalline systems comprise a variety of different
materials, e.g., large biomolecules, polymers of small mol-
ecules and viscous, glass-forming liquids. ' They share
many properties but differ in some subtle points. For ex-
ample, diffusion in glass-forming liquids has long-range
character, whereas bounded diffusion is observed in
biomolecules. ' A somewhat special case is the suspen-
sion of fine particles in highly viscous liquids. ' ' For
the latter case, a significant contribution to the local
diffusivity may come from rotational motion of the
suspended particles. '

Even for simple glass-forming liquids like glycerol,
there is no satisfactory theory explaining the observed
dynamic phenomena, particularly in the high viscosity re-
gion. There are many empirical laws describing temporal
dependence of the correlation function or the superposi-
tion of the "partial" correlation functions having usually
a simple exponential behavior. ' The former class con-
tains the widely used Kohlrausch law, ' while the latter
class is well represented by the Cole-Davidson (CD) law,
Cole-Cole, and Havriliak-Negami relationships. ' Ac-
tually, it has been shown that the Kohlrauseh and CD
laws are almost equivalent approximations as far as the
modeling of experimental data in the frequency domain is
concerned. Recently, Dixon et al. found that a single
scaling factor inherent in the Kohlrausch law is unable to
explain their dielectric susceptibility data measured over
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an extremely wide dynamic range. On the other hand,
they found an almost universal scaling transformation,
suggesting a multifractal behavior of the system (for more
details, see Refs. 5 and 23). Methods such as dielectric
susceptibility or differential heat-capacity measurements
tend to average over many processes occurring at
different temporal and spatial scales, while scattering
methods look at samples microscopically, as their spatial
scale is restricted to the appropriate coherence length.

It is, of course, possible to develop a dynamical model
of a complex system. Even for relatively simple cases,
however, such models depend on a variety of adjustable
parameters. An approximation to such an approach is
the mode-coupling theory ' describing phenomena in
the low viscosity region relatively well, where the dynam-
ic observables such as dielectric susceptibility tend to ap-
proach gradually a simple Debye behavior.

Another possible approach is to reformulate the prob-
lem as an eigenvalue problem. Such an approach is
particularly simple in the case of pure diffusivity in the
quasielastic limit, as in this case we may always trans-
form to a Hermitian problem. ' The dimensionality of
the problem is usually finite in solids, where diffusion
occurs between (and within} well-defined Bravais lat-
tices. ' ' In the case of noncrystalline systems, however,
an eigenvalue problem has to be defined in terms of
differential operators and continuous partition func-
tions. These operators contain the Fokker-Planck po-
tential, characteristic of the particular system (except
for the rotation of the Brownian particle Ref. 18), and
hence, one always obtains an elastic contribution (also in
the case of Brownian rotation). A special case of this ap-
proach is the overdamped Brownian oscillator which has
been applied to some spectra of biomolecules.
Glass-forming liquids, however, do not exhibit any
significant elastic contribution, indicating that the ensern-
ble average Fokker-Planck potential is almost constant
over the space. Such a situation is consistent with the
temperature dependence of the correlation functions, as
the latter obey a Vogel-Fulcher-Tammann or power law
rather than an Arrhenius law.

Summarizing the present situation, it can be stated that
fragile glass-forming liquids are still best described by the
empirical Kohlrausch law at least over the limited dy-
namic range currently accessible to experiment. The
Kohlrausch law, however, contains unphysical, i.e.,
infinitely fast relaxation processes. On the other hand, it
indicates clearly that the time evolution of a given relaxa-
tion "slows down" with the passage of time more rapidly
than expected for purely exponential behavior with a sin-
gle reIaxation time. Such a time behavior can be crudely
modeled assuming a sequence of events blocking each
other (see, e.g., Refs. 35 and 36). A real system is much
more complex than such crude models, and thus, realistic
models would be expected to contain many adjustable pa-
rameters for a precise description of the observations. It
is possible to incorporate formally a spatial behavior of
the correlation function into the CD approximation, '

and into the Kohlrausch law as well, however, the CD
approximation contains infinitely fast relaxation process-
es which cannot be physically meaningful.

II. SIMPLE MODEL
APPLICABLE TO SCATTERING METHODS

A. Basic model

Properly designed scattering and transmission experi-
ments measure either the self-correlation function of the
diffusing entity (incoherent methods} or pair-correlation
functions of the system (coherent methods) in the fre-
quency wave-vector domain, provided other degrees of
freedom can be neglected. ' For systems obeying the
Kohlrausch law, a single scalar correlation function
suffices to describe the scattering law in the quasielastic
limit. For unbounded diffusion, the time dependence of
the correlation function describing the system close to
equilibrium takes on the form

dG/dt+AG =0,
where t ~0 stands for the time, and 6 denotes either a
self-correlation function (incoherent methods) or ensem-
ble averaged configuration probability (coherent
methods) related directly to the pair-correlation function.
Hence, the function 6 has the following properties:
G(t =0)—= 1, lim, „[G(t)]=0, and dG/dt (0 for any
time t &0. For a simple linear (Debye) system the rate
parameter A, & 0 does not depend upon time, and hence,
the function 6 has a simple exponential time dependence.
However, for a nonlinear system, the parameter A. might
depend upon time, as pointed out by Dattagupta. In
fact, it seems more physical to introduce the time depen-
dence implicitly A, =k(G), where the parameter A, does
not depend explicitly upon time, as the time scale is in
effect defined by G. One can approximate A, by an expan-
sion into a Taylor series in 6, however, such an approach
generates inevitably an infinite set of adjustable parame-
ters having strong correlations when fitted to real data.
On the other hand, it seems likely that the unperturbed
system (G =0) approaches a linear limit, while the per-
turbed system is "more nonlinear. " Hence, we take the
first-order approximation to A, to have the following
form:

A, =A0+AiG",

where A0&0 denotes a decay constant in the linear re-

gime, and A, &G represents the nonlinear enhancement of
relaxation rate associated with large displacements from
equilibrium (A, ,

& 0). For systems that are rather well de-
scribed by the Kohlrausch law, the exponent k & 1 (in

general, it is required that k &0). Taking k =1 would
give the lowest order expansion of the Maclaurin series
and only two adjustable parameters, like the Kohlrausch
and CD approaches, but this assumption will not suffice
over a broad temperature range.

Substitution of the relationship (2) into Eq. (1) leads to
the Bernoulli differential equation, with the following
solution in our case [G (t =0)= 1]:

G (t) = [A0/(A0+ A. , }]"~"'exp( —
Rat }

X [ 1 —[A., /(A. 0+ A, , )]exp( —kk, at ) I

A frequency domain function G(co) can be obtained by
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Fourier transformation of Eq. (3) and, hence

G(m)=((/m) f dt G(t )e
0

=(1/m)[A, /(A, +A, , )]"~"'

X g C„[(P„—iso)/(P„+co )],
n=0

(4)

p(r}=p() '(p((r„t =0)pi(r, +r, t =0)), ,

in the case of incoherent scattering or as

p(r) =(No 'po ') g (p, (r„t=0)pi (r, +r, t =0)),
&

I'

where

S(to) =Re[6(to)], (5)

which is a sum of simple Lorentzian functions. This re-
sult is particularly appealing and gives the solution in a
form that indicates the distribution of relevant relaxation
times.

A spatial (wave-vector) dependence of the scattering
law (5) can be introduced in the simplest way by scaling
the constants A,o and A, , in the following way:

A,O=Ao[1 —ao(q)] and A, , =A&[1—ao(q)],

where AO and A& represent the appropriate unscaled
effective frequencies of the diffusive events, while

ao(q)= f" d r p(r}e'q ', (7)

where q denotes the wave-vector transfer to the system,
while p(3r stands for either the corresponding spatial
self-correlation function or for the instantaneous pair-
correlation function normalized to a single scattering par-
ticle. ' Hence, the distribution function p(r) can, in prin-

ciple, be calculated as (for details see Ref. 14):

P„=A, o(1+kn ), C() =1,
and the recursion relation between successive C„values is

C„+(/C„=(n+1) '[n+(1/k)][/)(, )/(/(o+/())] .

The scattering law then takes on the usual form

in the case of coherent scattering. Here, ( ) denotes
an ensemble average, po stands for the average density,
and No denotes a number of coherently scattering parti-
cles; pi(r, t } represents the density of the ith particle at
time t. For spherically symmetrical distribution func-
tions, e.g., for the glycerol case, one obtains p(r)=p(r),
where p(r ) stands for the appropriate radial distribution
function and, hence

ao(q) =ao(q) =(4m') f dr r~p(r )Jo(qr), (10)
0

where Jo(qr) denotes the zeroth order -cylindrical 13essei
function of the first kind. Such an approach is consistent
with the scaling rules described by Zabel' and with the
incorporation of the spatial behavior into the CD law. '

It is interesting to note that in our case successive
linewidths correspond exactly to the harmonic Fokker-
Planck potential, except for the absence of the elastic
component in our model, while the corresponding inten-
sities fall much more slowly with increasing linewidths.

The coefficients C„can be approximated by the follow-

ing expression, provided n »1:
C„=I' '(1/k)[A, , /(A, +A, , )]"n("~"'

where I'(1/k) stands for the Euler-gamma function. On
the other hand, expression (4) can be approximated in the
following way provided one has a very broad distribution
of Lorentzians, i.e., the system is close to the glass "tran-
sition" temperature, where 1V » 1:

G(to) =( I ln )[Ao/(Ao+/)(, i)]" "'

N
X g C„[(P„iso)/(P„+—to )]+f dx C(x)[[/(o(1+kx) iso]/[A—o(1+k )x+co ]]

n=0 N
(12)

where C(x) is obtained from Eq. (11) and the integral
gives an approximation to the sum above X. For such a
case, it is expected that A,0~0 and A,

&
& 0. Hence, the fol-

lowing approximations can be made: Ao/(/)(, o+ A, , ) —=A,o/A, ,
and PN=A&[1+kN]—=kAON, provided kN »1. There-
fore, the "continuous" part of the function G(co) takes on
the form

G, ( )= 'iL " "'I '(1/k)

X f "dP[A., /(A. +A, , )]'

XP[(Ilk) —1][(P i )/(P2+ 2)] (13)

For the limiting case A.0~0, the first term of the expres-
sion (12) makes a negligible contribution and hence

G(co)=n '(P //(, )
' I '(1/k)

X dz Z[(1/k)-1]
NZ

—l..N 2 Z2+N2

(14)

where z=P/Pz, with P~&0 and k &1. The latter ex-
pression cannot be normalized in the absolute sense, i.e.,
the integral over the whole frequency domain is diver-
gent, however, there is no need for the function G(co) to
be normalizable as it represents a scattering law and
hence, it has to be convoluted with the "instrumental"
function which is always normalizable. Hence, it is prac-
tical to use the following function instead of expression
(14) (particularly for the scattering case):
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g(co) = (1/PN )[G(co)/G(co=0) ],
where

Expression (16) is characterized by a significant contribu-
tion from very broad components characteristic of fractal
or multifractal behavior. ' The scaling factor Pz is likely
to depend upon the wave-vector transfer in the same
manner as parameters A,o and A, It is clear that all mo-
ments of the expression (16) are divergent. For relatively
narrow distributions, however, expression (4) holds which
allows one to calculate moments of arbitrary order, par-
ticularly an average width (P). The average decay con-
stant as well as higher moments can be alternatively and
more reliably calculated using directly the A,(G) depen-
dence.

Expression (2) can be fairly well approximated by the
form

A,oexp(aG ), (17)

where a~0 and A,o are the only adjustable parameters.
Unfortunately, this parametrization does not lead to a
suitable closed-form solution of Eq. (1). The parameter
a, however, can be obtained by minimizing the residuals
between the two forms of A,(G) given by expressions (2)
and (17). Optimization of the exponential form is ob-

g(~=0) =(I/P~) .

Hence, an almost closed-form expression for the function
g(co) can be found that depends only upon two parame-
ters: the scaling factor Pz and the exponent k. The func-
tion g (co) takes on the form

g(co) = [1—(1/k ) ]

X I dzz("~"' ' [(P z ic—o)/(P z +co )]

(16)

tained by minimizing
1I= J dG[(A, /Ao) —exp(aG)]

where the A, used is from the best fit given by Eq. (2). The
latter constraint leads to the condition (BI/Ba)=0, and
hence, one obtains the following relationship for the pa-
rameter a in terms of (A, &/Ao) and k:

3+4e (a —1)+e (1—2a)

+4(A, , /ko) g [aI + '/[(k+m+1)m!]j =0 .
m=0

(19)

The last equation has a unique solution for u ~ 0 and can
be solved numerically. For a linear (Debye) system one
obtains a=0, which represents the limiting single relaxa-
tion time case.

B. Application to Mossbauer transmission
and scattering experiments

Mossbauer spectra have rather limited dynamic range,
and hence, expression (4) can be used in most cases. For
a transmission or nonresonant quasielastic scattering
(Rayleigh) experiment, data treatment is particularly sim-
ple provided a source emits an unbroadened Lorentzian
line, scatterer (if present) is optically thin for the radia-
tion used (see, e.g., Ref. 30) and the absorber is resonantly
thin as well. We require a negligible broadening of the
intrinsic absorber line and negligible interference contri-
butions as well. If the number of counts far-off reso-
nance does not depend upon velocity (proper alignment),
and the Doppler velocity (to first order here) is well
defined, the spectral shape P(co) is approximately given
by

P(co)=B 1 —A g [(—,'I )/(P„+ —,
'I' )]C„

n=O

(20)

where Bo stands for the number of counts far-off reso-
nance, AL is the relative spectrum amplitude, coo denotes
the resonance velocity (frequency), while I 0 represents
the unbroadened linewidth obtainable at temperatures
low enough that all the relevant dynamic degrees of free-
dorn are frozen within the resolution of the experimental
setup.

C. Approximate treatment
of the electric quadrupole relaxation

An acidic aqueous FeClz solution dissolved in glycerol
exhibits Fe + ions in the high spin state subject to the

electric quadrupole interaction due mostly to the local
asymmetry in the molecular wave functions. There is
no indication of any preferential orientation and/or
Goldanskii-Karyagin effect. This interaction is practi-
cally uniquely defined, but it is hard to estimate an asym-
metry parameter due to the complex coordination of the
iron ion (—,'~ —'„practically pure Ml Mossbauer transi-
tion in ~7Fe-14.4 keV}. An inspection of the relatively
low-temperature data of Abras and Mullen indicates
that the quadrupole splitting 5 decreases with increasing
temperature, independently of the relaxation process it-
self. Such a decrease seems to be almost halted at higher
temperatures (note, that crystal-field levels responsible for



49 SIMPLE MODEL OF THE DIE I iJSIVE SCATTERING LAW IN. . . 15 611

such a behavior are very broad in the disordered systems)
and a genuine relaxation is clearly observable. It is likely
that the main reason for the relaxation is the rotation of
the iron coinplexes during difFusive events (at least at
moderate temperatures). It is a significant rotation effect
as compared to the similar situation in the Brownian par-
ticle due to the compactness of the complexes. ' It is, of
course, impossible to write down the exact relaxation
operator in any form due to the complexities of the
motion and poorly understood symmetry of the electric-
field gradient. However, the exact operator can be ap-
proximated by a simple Hermitian 2 X 2 operator acting
on the distinct eigenvalues of the hyperfine Hamiltonian
(note that the nuclear ground state does not participate in

the relaxation). Such an approach is equivalent to a pure
rotation leading to a maximum possible mixing of the dis-

tinctly different eigenvalues. Hence, the total super-
operator P takes on the form

lE W

lf W
(21)

i [1+(w2 e2)1/2/ ]

bl, =2[w —(w —e )'i ) bco =0

c2= —'[1—(w —E )' /w],

b, l =2[w+(w —e )' ] bco =0

(22)

where e =
—,
' b, ~ 0 and w ~ 0 stands for the effective relaxa-

tion rate of the electric-field gradient. The eigenvalues
and eigenvectors of the super-operator P can be readily
calculated leading to the following line intensities c (rela-
tive areas), contributions to the linewidths b, l", and
corrections to the line positions Leo:

c, =—' b, I', =2w, neo = —[ez—w')'"

c =
—,', b, I 2=2w, b, ro =[a —w ]'i

for w ~c, and

for w&c.
These corrections are to be incorporated appropriately

into expression (20), where each of the above shown com-
ponents is transformed in accordance with the diffusive
scattering law (4). A quadrupolar relaxation causes an
additional broadening, of course. In principle, the relaxa-
tion rate w is weakly correlated to the diffusive time
scales. We found, however, that for the experimentally
accessible range the approximation w —=A.o holds. It has
to be realized, that the latter approxiination is rather
crude as there is no reason for the rate constant w to de-

pend upon the wave-vector transfer. On the other hand,
the validity of the relationship w —=A,o indicates that the
fast processes remain rather decoupled from the charge
relaxation within the ferrous complex.

III. APPLICATION TO EXPERIMENTAL DATA
AND CONCLUSIONS

The model has been applied to the Mossbauer absorp-
tion data obtained for acidic (pH=2) aqueous FeC12 solu-

tion in glycerol (14.4-keV Mossbauer line of Fe) and to
the nonresonant quasielastic scattering data obtained
upon scattering of the 46.5-keV Mossbauer line of ' W
from pure glycerol. The scattering data have been ob-
tained at a constant wave-vector transfer, being set close
to the first "diffraction" maximum (the smallest coherent
broadening, Ref. 14) at 1.36 A '. Experimental details of
the iron spectroscopy can be found in Ref. 12, while de-
tails of the scattering experiment are described in Ref. 45
(for a description of the experimental setup see also Refs.
46 and 47). A summary of results found from this model
by fitting to the data are collected in Table I, while the
corresponding spectra are shown in Figs. 1 and 2.

It can be clearly seen that the system becomes quite
rapidly linear (Debye-like) with the temperature T in-

creasing far away from the glass "transition" point. Such
a finding means that our system is only approximately
scale invariant (a necessary symmetry of the "orthodox"

TABLE I. Essential results of the model fitting to the experimental data. See text for details. For a
simple Debye behavior (P) =AD. y2 denotes a mean variance of the fitted data —per degree of freedom.
RSMR stands for the Rayleigh scattering of the Mossbauer radiation.

250
255
260
265
270
275
308
330
361
386

(mm/s)

0.187(3)
0.294(6)
0.46(2)
0.54(3)
3.2(2)
6.0(4)
3.39(6)'

16(1)
56(6)

158(36)

22(16)
11(3)
9(2)

7.8(6)
2.1(3)
2.4(4)
0
0
0
0

0.09(1)
0.17(2)
0.34(4)
1.0(—)

1.0(—)

1.0(—)

(—)

( —)

( —)

( —)

(p&
(mm/s)

0.5(2)
0.8(1)
1.6(2)
2.6(1)
6.6(4)

13(1)
( —)

( —)

( —)

( —)

2.3(5)
2.1(2)
2.4(1)
2.6(1)
1.5(1)
1.6(1)
0
0
0
0

0.96
0.95
0.74
0.93
0.76
0.88
2.26b

1.14
1.20
0.53

Comments

Fe
Fe
Fe
Fe
Fe
Fe
RSMR
RSMR
RSMR
RSMR

'The apparent decrease seen here is due to a change in wave-vector transfer to the system and a change
from incoherent to coherent scattering. This results in this and subsequent numbers in this column be-
ing scaled down by roughly a factor of 60.
As seen in Fig. 2 one point is responsible for the exceptionally high y'.
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FIG. 1. Mossbauer spectra of FeC1& solution in glycerol
(about 5% water) versus temperature (taken from Ref. ).Ref. 12).

fractal system). However, very broad contributions are
clearly discernible upon lowering the temperature to-
wards the glass region. The latter behavior is reflected y

rogressively increasing role of the non inear term with
decreasing temperature. It is interesting to note that t
exponent k seems to "diverge" upon approaching the
"frozen" state. Due to the fact that ilk is related to the
fractal (multifractal) dimensionality, the overall picture is
consistent (in a very broad sense) with the hypothesis o
the system fractality (multifractality) in the almost glassy
state. We would like to comment as well that the shift co0

(iron data) starts to drop much more rapidly than expect-
ed from the Dulong-Petit rule in the region of already
fast diffusivity indicating some significant changes in t e
electron density experienced by the iron ion in this tem-
perature range.

It is interesting to note, that the parameter a responsi-
ble for a deviation from the simple liquidlike behavior
remains practically constant from the lowest accessible
experimentally temperature up to slightly above 265 K.
We find for the weighted average (a)&=2.53(6) in this
region (see Fig. 3). For higher temperatures the parame-
ter a decreases to the zero value, e.g., the weighted aver-
age of the data points measured at 270 and 275 K equals
( a ) 2

= l. 52(7), while the scattering data obtained at 308
K and above can be evaluated taking ( a ) 3 0 The criti-
cal exponent of the CD law can be uniquely related to the
parameter a y asb assuming that the average relaxation
t'mes are the same for both laws. From Fig. 3 this im-lmes

265plies that the CD critical exponent equals 0.33 below 26
K and is 0.55 in the 270 to 275 K temperature region.

The temperature where the collapse to e e ythe Deb e
behavior starts seems to be somewhat lower than report-

d f lycerol by measuring the dielectric suscepti-
bility and evaluating data within the CD law. uc a

O
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I
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~ 0FIG. 2. Quasielastic scattering spectra of Mossbauer radta-
tion (' W, 46.5 keV) obtained upon scattering off pure glycerol
at various temperatures (taken from Ref. 45). The wave-vector
transfer is q =1.36 A for all spectra shown.

FIG. 3. Parameter a plotted versus tempera urature. Solid hor-
izontal line represents weighted average over the low-

temperature region.
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behavior could be due to the water coordination of the
iron complex in the acidic environment. Our results,
shown in Fig. 3, suggest that the decrease of the parame-
ter a versus increasing temperature may well occur in
steps in accordance with the "hierarchical" model by
Palmer et a/. , where one can speculate that successive
degrees of freedom come into play at relatively well-
defined temperatures. One cannot exclude the possibility
that the observed steps are caused by the coupling be-
tween the ferrous complex and the host. Scaling of the
corresponding broadenings observed by the absorption
spectroscopy and scattering, respectively, indicates that
the majority of diffusive events occurs at distances short
compared to the Fe length scale of 0.86 A. It can then
be concluded that diffusive displacements are mainly due
to the collective motion within glycerol.

The question remains open how the parameter a (or
the parameter k) depends upon the wave-vector transfer
to the system q. Any such dependence is indicative of the

correlation between temporal and spatial scales. In order
to investigate such a correlation a Rayleigh scattering of
the Mossbauer radiation experiment has to be performed
at different wave-vector transfers and at sufBciently low
temperature, i.e., with a good enough energy resolution
(provided one is looking at a pair-correlation function).
It seems that such an experiment might be feasible with
the Mossbauer beams obtained from synchrotron-
radiation sources.
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