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Decagonal quasicrystalline or microcrystalline structures: The specific case of Al-Cu-Co(-Si)
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An extensive structural analysis of a decagonal A163Cu» 5Co» 5Si& alloy is reported. The structure is

analyzed within the context of both microcrystalline and quasicrystalline models through the examina-

tion of single-crystal x-ray diffraction patterns. We conclude that our sample is in a microcrystalline
state formed of coherent twins of an approximant state of the quasicrystal. We underline that diffraction

patterns exhibiting sharp peaks and perfect tenfold symmetry do not necessarily correspond to long-

range quasiperiodic order, which could have implications for the physical properties of quasicrystal-like
alloys. The present work also gives us the opportunity to point out and discuss some general features: (i)

the intensity cutoff problem for quasicrystal structure determinations, (ii) the consequence in structure
determination if a sample supposed to be a quasicrystal is in fact a microcrystal, and (iii) the proper
determination of basis vectors in decagonal quasicrystals.

I. INTRODUCTION

Soon after the discovery of an icosahedral quasicrystal
in an Al-Mn alloy in 1984,' a decagonal quasicrystal
formed of periodically stacked quasicrystalline planes ex-
hibiting tenfold symmetry in their diffraction patterns
was found in the same alloy in 1985. Numerous quasi-
crystalline alloys have now been found (see, e.g., Tables
4—6 in Ref. 3}. The first quasicrystals were not equilibri-
um states and had important structural defects. Stable
and perfect quasicrystals have been discovered since
1988. This is, particularly, the case of Al-Cu-Co(-Si) al-
loys. Decagonal A165Cu2OCo&5 was discovered in 1988
(Ref. 4) and decagonal A165 „Cu20Co,5Si„,substituting a
little silicon for aluminium, was discovered in 1990. Ex-
tensive structural studies, transport, and mechanical
property investigations of Al-Cu-Co(-Si} alloys have been
made since these discoveries. Metallurgical studies were
carried out, leading to an Al-Cu-Co ternary equilibrium
diagram. Decagonal approximants or twins of domains
of approximant phases were also found in Al-Cu-Co-Si
(see, e.g., Refs. 7-13).

This paper is devoted to the A163Cu&7 5Co,7 5Siz "struc-
ture analysis" with the aim of distinguishing between
quasicrystalline and microcrystalline structures. It also
gives us the opportunity to review and discuss some gen-
eral features about these models. Section II describes the
experimental part in which x-ray single-crystal diffraction
patterns are presented. In Sec. III, we first summarize
the quasicrystalline model of Steurer and Kuo' (SK) and
discuss the direct space description. Then we show that
our diffraction data cannot be analyzed within the frame-
work of this model. Within this part, we also discuss the
reciprocal space intensity cutoff problem for quasicrystal
structure determinations. In Sec. IV, after a generic pre-
sentation of the microcrystalline model, we describe our
data analysis and prove that our sample is in a microcrys-
talline state formed of coherent twins of an approximant
phase of the quasicrystal. In Sec. V, we discuss the prob-
lem of choosing the exact atomic decoration in the ap-

proximant phase and we raise three general points: (i) the
question of the domain arrangement in a microcrystal, (ii)
the consequence in structure determination if a sample
taken as a quasicrystal is, in fact, a microcrystal, (iii) the
proper determination of basis vectors in decagonal quasi-
crystals. Finally, Sec. VI concludes the paper.

II. EXPERIMENTAL RESULTS:
X-RAY SINGLE-CRYSTAL STUDY
OF DECAGONAL Alg3Cu)7 5COf7 $Si2

A. Experiments

The growth method which allows one to get decagonal
needles in Al-Cu-Co(-Si) alloys is as follows. The first

stage consists in a rapid solidification: an alloy of nomi-

nal composition A163Cu&7 5Co, 7 5S12 and of initial weight
3.7 g is prepared by induction melting of the high-purity
elements (99.99%} into a pointed boron nitride crucible
under argon atmosphere. In order to homogenize the in-

got and to produce very small quasicrystalline-type seeds,
the melt is overheated about 100 K above the liquidus
temperature. A rapid cooling (by switching off the heat-

ing electric high-tension current) produces a porous ingot
with a fine peritectic structure (small decagonal grains)
embedded in various crystalline phases. The second stage
of the thermal treatment is a slow solidification process
which consists in melting again the ingot in the same cru-
cible, under argon atmosphere, near above the solidus
temperature (1273 K) and then in slowly pulling the cru-
cible out of the heating zone of the induction coil
(Bridgman-type technique) at a rate of 2 —6 mm/h. The
final ingot contains an important distribution in sizes of
decagonal needles which have grown inside cavities. Ar-
guments for the growth mechanism are based on the
knowledge of icosahedral short-range order in overheated
liquids and of a large quantity of vacancies in
aluminium-rich alloys: they will be published else-
where. '

Single-crystal x-ray diffraction patterns were carried
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out on A163Cuf7 5Co, 7 5Siz decaprisms (volume:
10 —10 mm ), performing rotating crystal or preces-
sion experiments, with conventional x-ray sources (Mo or
Cu anodes) and with synchrotron radiation at LURE (Or-
say, France). The crucial role of high-resolution x-ray
diffraction patterns (experiments using synchrotron radi-
ation) will be emphasized in the paper.

B. Experimental results

A rotating crystal experiment was made with the nee-
dle axis parallel to the imaging film, using Mo Ea radia-
tion: A, =0.711 A. The diffraction pattern (Fig. 1) exhib-
its layers of Bragg spots. After standard geometrical
correction, they are found equidistant: samples are
periodic along their longitudina1 axis, with a periodicity
c =4. 13 A. Between the layers of Bragg spots there are
layers of diffuse scattering, corresponding to twice the
period.

The tenfold symmetry of the layers was displayed using
the precession technique for which a reciprocal plane is
selected and restored on the imaging film without any de-
formation. The l =0, 1 =

—,', and I = 1 reciprocal planes

perpendicular to the c' direction are shown on the
diffraction patterns in Fig. 2, the x-ray wavelength was
equal to 0.711 A. In this paper only Bragg peaks will be
taken into account in the data analysis but, nevertheless,
you will note the peculiar structure of the I =

—,
' diffuse

scattering plane, which exhibits "Christmas trees" simi-
lar to those observed for decagonal A170Ni&5Co».

' En-
larged small-Q areas of the 1 =0 plane are obtained (i) us-

ing conventional x-ray source, for Cu Ka radiation
(A, =1.542 A) (Fig. 3), (ii) using synchrotron radiation
(A, = 1.495 A) (Fig. 4): "high-resolution" experiments.

Although Al-Cu-Co(-Si) SK samples' and our sam-

ples ' have slightly different nominal compositions
[(65/20/15/0) for (63/17.5/17.5/2)j, their 1 =0 and I = 1

reciprocal planes (obtained for Mo Ka radiation) are very
similar (SK data are known from the list of structure fac-
tors, available upon request). '@" This similarity is evi-

denced by comparing, for example, Fig. 2(a) in this paper
and Fig. 1(a) in Ref. 14(a). Nevertheless, SK data were
interpreted within the scope of a quasicrystalline model'
whereas our data were interpreted within the scope of a
microcrystalline model. ' Consequently, in Secs. III
and IV, we present a detailed analysis of our data within
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FIG. 1. Monochromatic rotating crystal pattern of decagonal
0

A163Cu», Co» 5Si,: A, =0.711 A {Mo Ka radiation), the wave-
length is selected using the {0,0,2) reflection of a pyrolytic
graphite monochromator, A, /n (n =2,3} contaminations are
avoided by choosing adequate generator voltage. The needle
axis is parallel to the pattern.

FIG. 2. Monochromatic x-ray precession patterns of decago-
nal A163Cu» 5Co» 5Siz obtained using Mo Ea radiation
(A, =0.711 A), the wavelength is selected using the (0,0,2)
reflection of a pyrolytic graphite monochromator, k/n (n =2,3)
contaminations are avoided by choosing adequate generator
voltage. (a) 1=0 reciprocal plane (zero level reciprocal plane
perpendicular to the periodic axis c ). The sample-film dis-
tance is 60 mm. We refer to solid and dotted line pentagons in
Sec. V. (b) 1=

2
reciprocal plane: diffuse scattering. (c) 1=1

reciprocal plane: note the pseudoextinction observed along one
of the two types of twofold axes (termed 2'}. Scales are indicat-
ed in the picture: in this paper, all reciprocal vectors are
defined without 2~ factor.



DECAGONAL QUASICRYSTALLINE OR MICROCRYSTALLINE. . . 15 575

A. Al-Cu-Co(-Si) quasicrystalline structural models

FIG. 3. Monochromatic x-ray precession pattern obtained
from the 1=0 reciprocal plane perpendicular to the periodic
axis c* using Cu Ea radiation [A,=1.542 A, the wavelength is
selected using the (0,0,2) reflection of a pyrolytic graphite mono-
chromator, some very weak reflections may be due to small con-
taminations by A, /2 or A. /3 radiations; the sample-film distance
is 60 mm].

the scope of the two models in order to discriminate be-
tween the two possible interpretations.

III. DATA ANALYSIS WITHIN THE FRAMEWORK
OF A QUASICRYSTALLINE STRUCTURAL MODEL

After a brief summary of quasicrytalline models in Sec.
III A we will concentrate on the model of SK.' In Sec.
IIIB, the main features of their hyperspace description
will be summed up and the resulting direct space atomic
decoration will then be discussed. In Sec. III C, the in-
tensity cutoff problem, for quasicrystal structure deter-
mination, will be pointed out from the example of their
model. In Sec. III D, we shall attempt to analyze our x-
ray difFraction data within the same framework.

Quasicrystals are usually described either on the basis
of deterministic models (within the framework of the
cut-and-projection method ' ' or with decorated
quasiperiodic tilings ' ') or on the basis of random tiling
models. We will not discuss random tiling models in
the present paper.

Let us mention three deterministic models which were
developed to describe decagonal Al-Cu-Co(-Si): the
Steurer-Kuo model, ' the Burkov models, and the
Daulton-Kelton model. They are discussed in Ref. 21
which presents current models of decagonal atomic struc-
tures.

The structural model of Steurer and Kuo' is derived
from the Penrose tiling: it is formulated within the same
cut-and-projection formalism. It was derived from the
analysis of single-crystal x-ray diffraction data. It is thus
of special interest for us, because it is based on results
which can be directly compared to our results. In this
paper it is this model which is nearly exclusively dis-
cussed and which is used for our experimental data
analysis.

Burkov models are deduced from more theoretical con-
siderations, the starting point being the existence of "de-
cagonal" clusters. They are formulated in a decorated
tiling formalism or in hyperspace formalism. It might be
interesting in the future to apply such a description to the
analysis of our experimental data.

The Daulton and Kelton model gives an atomic
description of the relationships existing between the de-
cagonal phases with diferent c periodicities by fitting to-
gether distorted icosahedra but it does not describe how
quasiperiodic order spreads out at large distances in the
decagonal planes and cannot be applied to discuss the re-
sults of our experiments.

RXlS 2

FICx. 4. Monochromatic x-ray precession pattern obtained
from the I =0 reciprocal plane perpendicular to the periodic

0
axis c . The x-ray wavelength A, =1.495 A is selected using the
(1,1,1) reflection of a germanium monochromator (no A, /2 con-
tamination). The sample-film distance is 125 mm and beam col-
limation is better than for experiments with standard x-ray
sources. This pattern obtained with synchrotron radiation is a
better resolution one. Spots 1 have the strongest intensity.

B. Hyperspace and real-space descriptions
of the Steurer-Kuo model

The two-dimensional (2D) Penrose tiling is a quasi-
periodic packing of two kinds of rhombs: a large one,
with an acute 72' angle and a small one, with an acute 36'
angle. It can be built using matching rules, a defiation
procedure, or the cut-and-projection method. Only this
last method will be used in this paper. We will summa-
rize the main features necessary for the understanding of
the SK model, the detailed calculations being developed
in Refs. 18 and 27-30, and references therein.

The Penrose rhomb vertices can be determined by cut-
ting a 5D hypercubic lattice ' the edge length of which is
noted d, . In the 3D perpendicular space, the atomic"
volume is a rhombic icosahedron, which is connected to
the hyperlattice points by a vector Y. As proved by Jarie
in Ref. 27, tilings satisfying the relation gy; =0, where y;
(i =I—5) are the coordinates of Y, have the same
difFraction patterns. Consequently, when respecting the
condition gy;=0, the knowledge of the difFraction pat-
terns does not give any information about the "origin" Y.
For most quasicrystals in the present work, atomic
volume is placed at the point Yo de6ned by y&=3,
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y, = —
—,', y3 ll y4 ys —g (k=1—4). Itcor-

responds to a generic origin and it does not lead to singu-
lar Penrose lattices.

Hyperlattice points do not project densely onto the
fivefold axis of the rhombic icosahedron but only fall
onto equidistant points; on the contrary, orthogonal sec-
tions of the rhombic icosahedron through these points
are densely filled. So, only these sections are in fact used
as atomic surfaces. For Y satisfying the condition
gy;=0 (i =1—5), one gets four pentagonal equidistant
sections as shown, for instance, in Fig. 7 in Ref. 27; sur-
faces of the four pentagons are respectively equal to
d, sin(72') for the first and the fourth ones and to
Hd, sin(72') for the second and the third ones, r being the
"golden mean" [~=2 cos(36') j. Correlatively, in 2D
parallel space, projected basis vectors point towards the
vertices of a regular pentagon and their sum is equal to
zero: one among the five dimensions is redundant. One
can restrict the 5D cubic hyperspace to a 4D oblique one
via a section perpendicular to the fivefold axis of the
rhombic icosahedron. One gets the above-mentioned
four pentagons. They are located at the four Wyckoff po-
sitions: (v/5)(1, 1, 1, 1), v=1,2, 3,4, in the basis of the
4D oblique lattice. See Fig. 5(a). Intersection points of
the pentagons with the parallel space are the vertices of
the Penrose tiling [Fig. 5(b)j. Edge lengths of the rhombs
are equal to (&2/&5)d, .

Using the hyperspace formalism of the Penrose tiling
and single-crystal difraction data, SK proposed a struc-
ture for the quasicrystalline A165Cu2OCo». For details
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FIG. 5. Penrose tiling. (a) Schematic representation of the
four pentagonal surfaces in perpendicular space [Wyckoff posi-
tions v/5(1, 1, 1, 1), v= 1, . . . , 4]. Relative sizes and orienta-
tions of the pentagons are respected but not their relative posi-
tions. For a better understanding of their positions, see, e.g.,
Fig. 7 in Ref. 27, where the rhombic icosahedron and its pentag-
onal sections are drawn. {b) Penrose tiling with 36' and 72'
rhombs, the vertices are the intersection points of the perpen-
dicular space surfaces with parallel space.

FIG. 6. Decagonal A16,Cu~oCo».. SK model. (a) Schematic

representation of the hyperunit cell of the SK model [Ref. 14(a)]

[eight atomic surfaces ("a.s."), three of which are independent].

(b) Atomic planes in parallel space: (a) the plane at z =0.04
coordinate in the c direction, the atomic sites of which are

selected by "a.s. 3", (P) the z =0.2S plane, the atomic sites of
which are selected by "a.s. 1"and "a.s. 2". Solid lines point out

the similitude with Fig. 7{a) in Ref. 14(a). (c) Projection along

the c axis of the atomic planes. All atomic positions are

represented without taking into account their occupancy fac-

tors. Circle, "a.s. 1" (Cu/Co:92%, Al:8%%uo); horizontal cross,
"a.s. 2" (Al only, occupancy factor: 86%), turned cross, "a.s. 3"
(Al only, occupancy factor: 25%). These drawings are made

for the origin Yo (see the definition of this origin in Sec. III 8).
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about the structure refinement method used (Patterson
and Fourier syntheses), the reader is referred to Ref. 14
and to the review papers. '

The used hyperspace is the 4D Penrose hyperspace
plus the periodic direction c: perpendicular space is 2D
and physical space (parallel space) is 2D plus the periodic
direction. The hyperspace group was found to be
P105/rnrnc with an hyperscrew axis along the periodic
direction c, the hyperscrew axis and c-glide planes were
deduced from systematic extinction of peaks
(h, , hz, —hz, —h, , l) for I =2n+1 (Ref. 14) [cf. axes 2' in

Fig. 2(c)). The parameters of the hyperunit cell are
d, =2.381 A and c =4. 148 A. The Patterson analysis led
to the determination of the positions of three independent
pentagonal atomic surfaces located at the Wyckoff posi-
tions: (v/5)(1, 1, 1, 1,0)+(0,0,0,0,z), where the z coordi-
nate corresponds to the periodic direction c. For "atom-
ic surface 1," v=2 and z =0.25, for "atomic surface 2,"
v=4 and z =0.25, for "atomic surface 3," v=1 and
z =0.04; there are six atomic planes within the period c
in parallel space. Subsequent least-squares refinement has
led to refined values concerning the atomic surfaces
which are given in Table I of Ref. 14(a). For atomic sur-
face "k" (k =1,2, 3}, SK determined the radial atomic
size A, k X3.765 A, the total site occupancy pk and the
partial Al-occupancy factor pk(A1): A, ,

= —0.335, p, =1,
pi(A1)=0.08, A2=0. 444, p2=0. 86, pz(Al)=1, A3=0. 16,

p3 =0.25, p3(A1) =1 (negative A, k denotes opposite penta-
gon orientation).

A schematic representation of the hyperunit cell and
portions of the atomic planes z =0.04 and 0.25 in parallel
space are shown in Figs. 6(a) and 6(b). The contents of
the z =0.04 and 0.46 planes are the same and the
z =0.54 and 0.96 planes are related to the previous ones
by the hyperscrew and mirror operations. The z =0.25
and 0.75 planes are also related one to the other by these
symmetry elements. So the projection of all the atoms on
a single plane gives rise to pseudodecagonal atomic rings
[see Fig. 6(c}].

Let us now discuss the atomic structure in direct space
when calculated by cutting the hyperspace structure.
The existence of (pseudo-)decagonal rings shown in Fig.
6(c) is an important point, which was first pointed out by
Burkov: " high-resolution electron microscopy micro-
graphs also show decagonal rings in projection along the
c axis (see, e.g., Refs. 11 and 33). Nevertheless, note that
in Fig. 6(c) decagonal ring symmetry is often uncomplet-
ed, which is not the case in Burkov models.

The SK model leads to a density p=4. 4 g/cm, ' in
rather good agreement with measured density p=4. 7
g/cm . Some discrepancies appear when precise atomic
environments are studied. Indeed, (i) extended x-ray ab-
sorption fine-structure study of quasicrystalline
A165Cu2oCo, 5 (Ref. 35) shows that the near-neighbor
structures around Co and Cu consist of 9+2 Al atoms at
distances of 2.43+0.03 and 2.47+0.03 A, respectively;
(ii) from the SK model, we calculate that the distance be-
tween a Cu/Co atom and its nearest Al neighbors is
effectively 2.44 A but that only a small number of Al
atoms are concerned, the next Al neighbors being located
at a distance of 2.56 A.

Moreover, nonphysically short Al-Al bonds of 1.2 or
1.77 A are calculated (see, e.g., pair potentials of Refs. 36
and 37 and references therein). These results are ob-
tained without any correlations between atomic occupan-
cy factors of surfaces "2" and "3"for instance. As sug-
gested by SK Fourier analysis [Fig. 7 in Ref. 14(a)], such
correlations may exist and, if taken into account, they
would probably allow one to improve the model from the
point of view of chemical bonding.

Direct space structure deduced from the SK model can
also be discussed with regard to channeling experi-
ments. Comparison of experimental ion channeling
profiles with those calculated on the basis of the SK mod-
el indicate that Co and Cu do not play the same role,
which should be incorporated in the quasicrystalline
model. Electron channeling experiments also show that
some Al atoms may be found slightly out of the z =0.25
and 0.75 planes, which may be related to the large
Debye-Wailer factor relative to the c direction found by
SK for "atom 2" (indeed, Debye-Wailer factors may ac-
count not only for phonon-type fluctuations but also for
static disorder).

Despite of the above discrepancies, the SK model
remains, at the present time, one of the most advanced
models developed to understand the structure of quasi-
crystalline Al-Cu-Co and we will use it to analyze our
diffraction data in Sec. III D.

C. The intensity cutofF problem

in quasicrystal structure determinations

In structure refinements, a reliability factor is defined:

~ =gll~obs I

—IF.mull

where F,b, is the measured structure factor of a
diffraction peak, F„&,the calculated one; the sum runs
over all observed independent peaks, the number of
which is as large as possible. The smaller the reliability
factor is, the better the structure refinement.

Let us underline a general problem regarding structure
refinements of quasicrystals on the example of the SK
model. ' " In quasicrystals the reciprocal space contains
a dense set of difFraction peaks. There may happen that,
after refinement of the quasicrystal structure, the calcula-
tion of the reciprocal space, starting from the refined
structure model, generates diffraction peaks the intensi-
ties of which are higher than the smallest peak intensity
measured in the experiment although they have not been
looked for during the experiment. Indeed, when calculat-
ing ' for instance the I =0 diffraction pattern correspond-
ing to the SK model with their experimental cutoff in in-
tensity, we find that the model predicts numerous peaks
the intensities of which are higher than the sensibility
threshold of the experiment but which have not been
measured (see Fig. 7). These peaks are not taken into ac-
count in the structure refinement where the reliability
factor is calculated as a sum over the observed peaks and
information is then lost. It means that the classical ex-
perimental method, which consists of measuring a data
set and the subsequent refinement of the structure from
this data set, must be reconsidered for quasicrystals.
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Indeed, it should, namely, include further stages: (i) the
calculation of the diffraction patterns within the experi-
mental intensity cutoff, (ii) additional measurements at
the calculated peak positions for the peaks not found in
the previous measurements, (iii) additional refinements
taking into account these peaks (whether it be observed
or not). This procedure should be iterated until conver-
gence.

D. Failure of the quasicrystalline model
concerning the analysis of our experimental results

Our diffraction data obtained with conventional x-ray
sources [Figs. 2(a), 2(c), and 3] present similarities with
SK data (comparison was made in a quantitive way for
peak positions but only in a qualitative way for peak in-
tensities because all peak intensities in our imaging films
were not studied quantitatively). Moreover, we have
shown previously that the indexation of peak positions in
Figs. 2(a) and 3 was possible within the scope of a micro-
crystalline model. So in order to discriminate unambi-
guously between a quasicrystalline or a microcrystalline
state, we performed a "high-resolution" x-ray diffraction
experiment: see Fig. 4 and Ref. 10.

Figure 8 displays the diffraction peak positions gen-
erated within the scope of the SK model' "' for an inten-
sity cutoff' equal to 5X10 (our experimental cutoff,
without taking into account either Lorentz or absorption
corrections) and for a much smaller cutoff equal to 10
Peak positions measured on the high-resolution x-ray
diffraction pattern are reported in the same figure. Many
experimental peaks are not fitted, which evidences some
discrepancy between the model predictions and our ex-

iB~E ~ 2 E ~ E

pp
[
5--:r(:r":—.E;: z

0.0 0.5 1.0 1.5 2.0

q„(A ) —-)
FIG. 7. l =0 diffraction plane of quasicrystalline

A16&Cu&pCo». The squares represent the peaks measured by SK
[Ref. 14(a)] (cf. the list of experimental data disponible upon re-
quest). Ip being the intensity of the strongest peak measured in
the l =0 plane (see the peak indicated by an arrow), we have re-
ported calculated peaks for the intensity ratio I/Io ~ 0.0008 [ex-
perimental cutoff in Ref. 14(a)]. They are represented by crosses
for I/Ip ~0.01 and by dots for 0.0008 & I/Ip (0.01. This figure
shows that many calculated peaks have not been measured,
even, for example, the relatively strong one indicated by a dou-
ble arrow. On the contrary, some measured peaks, while corre-
sponding to well-defined quasicrystalline positions, would re-

quire a smaller cutoff value to be interpreted.
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FIG. 8. 1=0 diffraction plane in the area of small wave vec-
tors. The circles represent peak positions measured from the
high-resolution x-ray diffraction pattern shown in Fig. 4 (peaks
resulting from A, /3 and A, /4 contaminations have been
suppressed). The dots represent peak positions calculated from
SK model [Ref. 14(a)]. (a) For our experimental cutoff
I/Ip 0.0005 Ip being the intensity of the strongest peak, peak
"1" in Fig. 4 (peak intensities are obtained by taking photo-
graphs of various duration in order to avoid saturation effects).
(b) For an even smaller cutoff: I/Ip =0.0001.

perimental results. So let us also consider the problem
from a complementary approach. A reciprocal plane of a
quasicrystal is a dense set of peaks: taking into account
experimental precision in peak position determination,
each peak in the plane can be indexed. Nevertheless
detectable peaks are locally isolated in a background of
nondetectable peaks of too weak intensities (see, e.g., cal-
culated peaks in Fig. 7): the detectable peaks must be in-
dexed by a combination of sufficiently small indices in the
hyperspace basis. Figure 9 plots the percentage of fitted
peak positions for the peaks of the high-resolution
diffraction pattern versus the SK reciprocal basis vector
length a*. If reciprocal space positions are generated for
hyperspace indices varying between —10 and +10, only
30% of the experimental peak positions are fitted and for
indices varying between —30 and +30, 10%%uo of them are
still not fitted. Although Fig. 4 is relative to a smaller
wave-vector area than SK data, noting that all peak posi-
tions measured by these authors are fitted for indices
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IV. DATA ANALYSIS WITHIN THE FRAMEWORK
OF A MICROCRYSTALLINE MODEL

In the first subsection, we will set out the microcrystal-
line model. In the second subsection, we will present the
analysis of our data within the scope of this model.

A. The microcrystalline model

Just after the discovery of quasicrystals, their true ex-
istence was debated (see, e.g., Ref. 42}. Indeed, apparent
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varying between —3 and 3,' one concludes that the sets
of indices in Fig. 9 are really large. This observation
clearly demonstrates that our data cannot be interpreted
within the scope of the SK model.

icosahedral or decagonal symmetries can also be due to
multiple twinning.

It is one of the components of the microcrystalline
model: we consider crystalline domains with well-defined
orientational relationships which restore forbidden crys-
tallographic symmetry in reciprocal space. For instance,
in the decagonal case, they restore a perfect tenfold sym-
metry. In particular, a decagonal microcrystal can
be constructed from domains the unit cell of which is a
72' rhomb in the plane perpendicular to the c axis [Fig.
10(a), Ref. 46]: the domains are rotated relative to each
other by 72' in direct space and peak positions in recipro-
cal space are calculated by superimposing the reciprocal
lattices of the five rotated domains [Fig. 10(b}].

Another important component of the microcrystalline
model is the domain unit-cell decoration. Indeed, mi-
crocrystals have been discovered in alloys which are
quasicrystals for a slightly different composition or a
different temperature range and local atomic order was
found to be very similar between the microcrystal and the
quasicrystal, this has been shown for example from x-ray
diffraction data. ' ' Very similar atomic order between
a domain unit cell and the quasicrystal means that each
domain in the microcrystal is an approximant of the
quasicrystal (for a review paper on approximants, see,
e.g., Ref. 50).

The third component of the microcrystalline model
concerns the domain coherence. Although the micro-
crystal is formed of crystalline domains, difficult prob-
lerns are raised when one tries to take into account the
arrangement of the domains with possible coherence be-
tween them. They will be discussed in Sec. V. In brief, a
microcrystal is formed of twins of crystalline coherent
domains of approximant phase.

Characteristics of a microcrystal diffraction pattern are
illustrated in Fig. 11. A single-domain approximant of
the Penrose tiling is drawn in Fig. 11(a}. Its calculated
diffraction pattern is reported in Fig. 11(b). Strong peaks
have nearly the same position and intensity as those of
the quasicrystalline Penrose tiling [compare with Fig.
11(c)],but some weak peaks clearly show deviations from
the perfect tenfold symmetry. On the other hand,
diffraction patterns of a microcrystal, which consist of
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FIG. 9. Percentage of fitted peak positions of Fig. 4 as a
function of the reciprocal length a of the SK basis
(a =0.2656 A ' in Ref. 14): (a) for quasicrystalline peaks gen-
erated for hyperspace indices varying between —10 and +10,
(b) for quasicrystalline peaks generated for hyperspace indices
varying between —30 and +30. Peak positions are measured
with a precision of 0.002 A

FIG. 10. Microcrystalline example: (a) orientational rela-
tionships between domains formed of 72' rhombs; (b) corre-
sponding diffraction peaks: peak positions are calculated by su-
perimposing the reciprocal lattices of the rotated domains.
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adequately twinned approximant domains, exhibit perfect
tenfold symmetry [see Fig. 11(d)]. Hence, the characteri-
zation of quasicrystalline and microcrystalline states can
be an experimental challenge, as will be illustrated in Sec.
IV 8. %ith regard to diffraction patterns, we must lay
emphasis on the existence of multiple components in mi-
crocrystal strong diffraction peaks. Indeed, strong
diffraction peaks of a single domain of the approximant
type being very close to those of the quasicrystal, the su-
perimposition of the diffraction patterns of, e.g., five

types of domains turned relative to each other by 72'
leads to sets of five very close peaks [see Fig. 11(d)]:
strongest peaks of microcrystal diffraction patterns are
multicomponent peaks.

B. Data analysis

Some of the results have already been published in
Refs. 9 and 10 but the present analysis is more extensive
and gives a better understanding of the structure and of
related questions. In a first stage, we analyzed the data

of Figs. 2(a) and 3 (l =0 diffraction plane, conventional
x-ray sources). Two microcrystalline models were chosen
to try to fit the diffraction peak positions: (i) domains
tiled with a rhomb of edgelength r and acute angle 36',
orientational relationships between domains consisting in
36 rotations [Fig. 4(a) in Ref 9.], (ii) domains tiled with a
rhomb of edgelength r and acute angle 72', orientational
relationships between domains consisting in 72' rotations
[Fig. 10(a)]. The peak positions are calculated by super-
imposing the rotated reciprocal lattices of the domains.
Four different unit cells have allowed the fitting of all the
data: 36' rhombs with edges ro and rolr (r0=51.S A)
and 72' rhombs with edges rc and re lr [see Fig. 5 in Ref.
9]. As previously underlined, ' similitudes between our
diffraction patterns and quasicrystaBine diffraction pat-
terns show that these unit cells must be of the approxi-
mant type. At the time of these first experiments, resolu-
tion was not good enough to distinguish unambiguous1y
between a microcrystal and a quasicrystal and in the case
of a microcrystal between the four unit cells.

To get conclusive results, "high-resolution" x-ray
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FIG. 11. (a) (1,3) Penrose approximant [notation (1,3) from Ref. 51]. Its rhomb unit cell is indicated by solid lines: its edge is
equal to 3.1495 A; edges of small rhombs inside are equal to &2/&5 A (d~ =1 A). This drawing is made for the origin Y& (see the
definition of this origin in Sec. III B). (b) Its diffraction pattern for an intensity cutoff I/I(Q =0) equal to 10 . Atomic scattering
factors are equal to one for each vertex. Spot radii are proportional to peak intensities. (c) Diffraction pattern of a quasicrystalline
Penrose tiling with rhomb edge equal to &2/&5 A (d& =1 A). Atomic scattering factors are equal to 1 for each vertex. The cutoff
I/I(Q =0) is chosen equal to 10 . Spot radii are proportional to peak intensities. (d) Superimposition of the diffraction patterns
[from (b)] of five approximant domains rotated relative to each other by 72 . Strong rotated peaks are very close to each other (see,
e.g., peak "a")and are difficult to resolve in a diffraction experiment. Other peaks (e.g., peak b) are single-component peaks.
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diffraction experiments were performed.10 f rmed. Resulting
1=0 precession pattern is shown in Fig. . pFi . 4. Com arison
between the different possible microcrystalline unit cells

b
' f d from Fig. 12, which gives the percentage

of fitted peak positions for 36 and 72' rhom s: on y e
microcrystal constructed from five rotated domains
formed of rhombs with acute angle 72 and with edge
r =51.515 A fits the whole set of experimental peak po-

s. Comparison between measured andd calculated
ou h this resultk ositions is shown in Fig. 13. Althoug

does not eliminate the possibility of the coexistence oof
domains tiled with an (ro, 36') rhomb, for examp e, it
makes it unlikely. In agreement with an (r0, 72') micro-
crystal, note also that peak positions in the / =1 plane,
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FIG. 12. Percentage of fitted peak positions of Fig. 4 as a
function of the edge-length r of the rhomb unit cell within the

0framework of the microcrystalline model: (a) with a 36 angle,
(b) with a 72' angle. Peak positions are measured wit a pre-
cision of 0.002 A '. All peak positions are fitted in (b) for
rp =51.515 A.

FIG. 13. Comparison between measured and pand calculated peak
positions (circles an o s

'
stald dots) for the nondecorated microcrystal

formed of domains with (rp=51. 515 A, 72') rhom s, t e
domains being rotated relative to each ot er y

m A, /3 and A, /4 contaminations have been suppressed.
Note the dotted line constructed from measure i

eaks: it corresponds to the (0, +1,0) reciprocal planes coming
from two o t e ve ypesf h five t es of crystalline domains (the rhom
unit-cell parameters being a =b =51.515 A, y = 108' .

deduced from Fig. 2(c), are all fitted within the scope of
this microcrystalline model.

So, our experimental data show that our sample is in a
11' t t the domain unit-cell parametersmicrocrysta ine s a e,

'
s

being a =b =51.515 A, c =4. 13 A, and y=108 [whtc
corres onds to the (51.515 A, 72') rhomb in the plane

Please note that theperpendicular to the c axis .
same microcrystalline state was foun

' - 1in Al-Cu-Co alloys
co techni ues.usinging transmission electron microscopy ec 'q

theSuch perio ic
' d' 2D structure can be easily related to

~ ~ ~

approximants of 2D Penrose-type lattices as studie in
bRefs. 51 and 58. Following the method developed y

Edagawa, Suzuki, Ichihara, and Takeuchi ' which con-
sists of changing the slope of the selection window, one
finds for the (k, k') a proximant the following par-
ameters: a =d (~2I 5)(2r—1)r"+' and b =d, (&2/
V5 V(3 —r)r"+', where a is normal to b;, is

S

is the
hyperunit-cell parameter (,= .
(k'+1) are equal modulo 3, the unit cell is centered and
the rimitive unit cell is a rhomb. ee pr
rhomb in microcrystalline Al-Cu-Co-Si is t en found to

d to a (5,7) approximant. Three-dimensiona
(k k') a proximants for which the c direction is a
into account can also be constructed w p
Edagawa et al. method, starting from a hyperspace
description in which the periodicity c is included.

It is importan o et t t st the effect of the unit-cell decora-
tion on Fig. 13 results. Indeed, Fig. 13 shows that mea-
sured eak positions are fitted within the scope o t esure pea p

decorated microcrystalline mode, u1 but that numerousnon e
1 1 ted eaks were not observed in the expx eriment.

To introduce the unit-cell decoration, we s ar e
SK quasicrystalline model: a (5,7) approximant is calcu-

Fi . 14(a). The rhomb unit-cell decoration is,
indeed, very similar to the decoration foun in some p
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FIG. 14. (a) Part of a single domain of a (5,7) approximant of
the SK model [Ref. 14(a)] in projection along the c axis (origin

Yo,' see the definition of this origin in Sec. III B). A11 atomic po-
sitions are represented without taking into account their occu-
pancy factors. Circle, atomic sites selected by- "a.s. 1";horizon-
tal and turned crosses, "a.s. 2" and "a.s. 3". Solid lines show
the rhomb unit cell and the corresponding centered rectangle.
(b) Circles, measured peak positions of the high-resolution x-ray
diffraction pattern of Fig. 4. Dots, calculated l =0 diffraction
peak positions for the five rotated domains (the cutoff is equal to
5X10 with regard to peak "1"intensity calculated for one
domain. Note that the interferences inside multicomponent
peaks are not taken into account when superimposing the
diffraction patterns of the five rotated approximant domains).
(c) Calculated / =1 diffraction plane (the intensity cutoff with
regard to the strongest peak in this picture is equal to 10 ').
Spot radii are proportional to peak intensities. Pseudoextinc-
tion along axes 2' is verified.

of the quasicrystal [see Fig. 6(c)]; like the quasicrystal,
the approximant exhibits (pseudo-)decagonal clusters.
Calculated I =0 diffraction pattern of this approximant is
shown in Fig. 14(b). It does not lead to an exact agree-
ment with the experiment. Indeed, some weak measured
peaks which were fitted with the nondecorated micro-
crystalline model are not generated for such a decoration
within the cutoff interval of the calculation. On the con-
trary, some weak calculated peaks have not been mea-
sured. Such results could be attributed, for example, to
the problem of the choice of the origin in hyperspace
when generating the approximant: see Sec. V A. They
must be partly due to the starting quasicrystal, since the
quasicrystalline model already did not account for peaks
of weak intensities (cf. Fig. 7). Nevertheless, despite
these discrepancies, Fig. 14(b) clearly shows that for such
a high-order approximant as the (5,7) one, a certain
amount of calculated peaks present, as seen in Fig. 13,
too weak intensities to be observed.

An important result concerning the pseudoextinction
lines in the / =1 diffraction plane [Fig. 2(c)] must also be
underlined. In their quasicrystalline models, Steurer and
Kuo' and Burkov introduced a screw axis and glide
planes in hyperspace to account for the extinction of all
the peaks belonging to axes 2'. When choosing for our
microcrystalline unit cell a (5,7) approximant of one of
their models, since the atomic arrangement in the unit
cell still reflects rather well the atomic arrangement in
the quasicrystal (roughly a 36' rotation from z to z+ —,

'

planes), axes 2' are pseudoextinction lines, i.e., no rela-
tively strong peaks are measurable on these axes. It is il-
lustrated in Fig. 14(c) where an I = 1 calculated
diffraction pattern of a (5,7) approximant is drawn, clear-
ly showing that there are no observable peaks located on
axes 2' up to a low cutoff in intensity.

V. DISCUSSION

A. What approximant7

After showing that the unit cell in the microcrystalline
A163Cu]7 5Co, 7 5Siz is a (5.7) approximant, we have been
faced with the question of its detailed atomic decoration,
as discussed from Fig. 14(b). Within the scope of the
cut-and-projection method, an extremely large number of
approximants can be calculated depending on the
choice of the "origin" Y=(y„yz,y5,yt, y5). Moreover,
linear transformation corresponding to small distortions
may have to be applied after the cut operation to find the
true structure of the approximant (it is not the object of
the present work).

As mentioned in Sec. III B, there exists an infinity of
equivalent Penrose-type quasicrytals corresponding to
different origins Y= (y, ,y2, y 5,y4, y 5 ) with gy; =0 and
al1 their diffraction patterns are the same. For crystal-
line approximants it is not the case, which is illustrated in
Fig. 15: approximants of the same order (i.e., which have
same unit-cell parameters), but calculated with different
origins Y, exhibit different diffraction patterns. For
higher-order approximants, these differences mainly con-
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cern peaks of weak intensities. At the present time, be-
cause our diffraction results are not quantitative enough
and because the quasicrystalline model' does not ac-
count for weak intensity peaks, we have not been able to
determine the Y origin. Moreover, even if the previous
problems were solved, (5,7) approximants are so
numerous that it mould be difBcult if not impossible to
simulate all their diFraction patterns. In fact, other argu-
ments such as energetic considerations ' ' ' ' and crys-
tallographic considerations'"' about the unit-cell sym-

metrics may be of a great help for the determination of
the unit-cell atomic decoration.

One could also make a direct attempt to determine the
unit-cell content. This unit cell (a =b =51.5 A, e =4. 13
A, y=108') contains about 480 Al/Si atoms and 260
Cu/Co atoms (these numbers are computed for a density
4.7 g/cms). Its structure refinement could be performed
for a single-domain sample. But for a rnicrocrysta11ine
sample, the direct attempt would probably fail because
the composed peaks have to be rejected (see Sec. V C) and
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because a sufficient number of single peaks of reliable in-
tensities could hardly be investigated. In brief, significant
progress in this structure determination would be made if
a single-domain sample was available.

B. Domain arrangement in the microcrystal

In the microcrystalline state coherence lengths are
probably larger than the domain sizes: coherence of the
domains would be not only orientational but also posi-
tional. A direct proof of such a coherence has been
found in icosahedral microcrystalline Al-Cu-Fe. Indeed,
a high-resolution experiment has enabled the observation
of separated components inside a strong multicomponent
peak: see Fig. 3 in Ref. 62. In this figure, not all the
components of the strong peak are found, which may be
attributed to (destructive) interferences between some
component peaks.

Description of how the coherence can be maintained in
a microcrystalline arrangement of domains is a difficult
problem. A paradigm for the microcrystalline model
would be a quasiperiodic arrangement of two types of
domains with 36' and 72 rhombs if they present the
rhombic forms of their unit cells. ' In fact, one should
rather consider that a microcrystal is formed of only one
type of domain: it is almost certainly the case for micro-
crystalline Al-Cu-Fe (Ref. 49) and Al-Cu-Co-Si (Ref. 10
and Sec. IV 8 in this paper). If, for instance, one assumes
that in decagonal planes the domains form sorts of large
72' rhombs, the problem of tiling a plane with 72'
rhombs —which was raised by the quasicrystal
discovery —is present at a larger scale. Then the coher-
ence problem may lie for instance in the characteristics of
the domain walls. ' ' ' Further theoretical and exper-
imental studies will be performed in order to try and un-
derstand this complicated problem.

C. Consequence in structure determination if the sample
considered as a quasicrystal is in fact a microcrystal

In this section, we will point out that the determination
of a structure might be wrong if the sample supposed to
be a quasicrystal is in fact a microcrystal and we will ex-
plain how to try and distinguish between a quasicrystal
and a microcrystal by x-ray experiments. As shown
above, domains are very probably arranged in a relatively
coherent manner on a large scale in the microcrystal.
Moreover, as explained in Sec. IV A, strong peaks in a
microcrystal diffraction pattern are multicomponent
ones. Under the assumption of domain coherence, the
peaks inside such peaks interfere: there are interferences
between peaks in exact coincidence and between overlap-
ping wings of very close peaks. Let us consider only in-
terferences between peaks in exact coincidence to illus-
trate consequence of interferences on structure deter-
mination in a simple manner. Let us take the very simple
example of a microcrystal constructed from five domains
formed of /2' rhombs and which have 72' orientational
relationships [cf. Fig. 10(a)]. For such a simple model, in-
terferences take place between peaks corresponding to
diffracting planes parallel to the domain walls and they
are constructive. So one finds two classes of composed

peaks: (i) the ones in which there are no interferences:
their intensities are roughly equal to the related quasi-
crystal peak intensities for a microcrystal formed of high
order approximant domains; (ii) the ones in which there
are interferences: their intensities are roughly equal to
'+'+'+' =—', times the quasicrystal peak intensities. %hat

we w'ant to underline is as follows. If one wrongly takes a
high-order single-domain approximant for a quasicrystal,
structure determination within a quasicrystalline model
will probably be valuable. But if one takes a microcrystal
for a quasicrystal, due to the interference phenomena in
multicomponent peaks which are just the strong ones,
structure determination will surely be erroneous.

So, it is important to try —within experimental
limitations —to distinguish between a quasicrystal and a
microcrystal. Starting from x-ray diffraction patterns ex-
hibiting quasicrystal-like characteristics, one can index
diffraction peak positions not only in the scope of a quasi-
crystalline model but also in the scope of a microcrystal-
line model. If the microcrystalline model works, one can
deduce from the crystalline unit cell the experimental
conditions necessary to test the two models. For exam-
ple, for icosahedral microcrystalline Al-Cu-Fe standard
x-ray diffraction experiments are sufficient whereas for
decagonal microcrystalline Al-Cu-Co-Si "high-
resolution" experiments are needed.

D. On the proper determination of basis vectors
in decagonal quasicrytals

Crystal diffraction patterns lead to an obvious deter-
mination of the basis vectors of the direct space lattice.
As underlined in Refs. 3 and 18, it is not the case for
quasicrystals because of the scaling property [illustrated
in Fig. 11(c)by the pentagon sequence]. The possible pa-
rameters d, found for the hypercube are defined modulo
r" (with n integer) but it has no inliuence on the structure
found after refinements.

%e will not point out another difficulty concerning the
basis vector choice. %e can illustrate it on our experi-
mental data for microcrystalline Al-Cu-Co-Si. Indeed, in
the following demonstration, only peaks of relatively
strong intensities are used which should be in one-to-one
correspondence with the strong intensity quasicrystalline
peaks because the microcrystal unit cell is a high-order
approximant of the quasicrystal. Depending on the
wave-vector area where the diffraction pattern is ob-
tained, two different sets of pentagon sequences can be
chosen [see the solid and dotted line pentagons in Figs.
2(a), 3, and 4]. Solid line pentagons led to the basis
chosen for the quasicrystal by SK.' If diffraction pattern
had been available only in a small wave-vector area (Fig.
4), dotted line pentagons would have been chosen and
new reciprocal basis vectors ~ould have been determined,
related to the first ones by an 18 rotation and a
1/&(r+2) factor (modulo r"): the hyperspace parame-
ter would have been found equal to d, &(r+2 ) (modulo
r") instead of d, . This result should be kept in mind
when trying to elucidate the structure of decagonal quasi-
crystals.

Correlatively, let us mention (i) the discovery of a "de-
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cagonal quasicrystal with superlattice ordering in Al-Ni-
Co alloy" by Edagawa and co-workers. Superlattice or-
dering is evidenced by the appearance of diffraction peaks
of weak intensities which are indexed with new reciprocal
basis vectors related to the parent lattice basis vectors
just by an 18' rotation and a 1/&(~+2) factor (modulo
r") L.et us also mention (ii) the theoretical work of
Landon and co-workers who discuss "on choosing proper
basis for determining structures of quasicrystals. " In
the case of 2D tilings, they show how a wrong choice of
the basis vectors, due to the nonobservation of weak su-
perlattice peaks of the type of those of Ref. 67, can lead
to important mistakes in the structure determination
within the cut-and-projection formalism.

In the case of the present study and of the SK one, the
1&=2.381 A value in hyperspace' and the (ro, 72') tile
for the approximant in the microcrystalline state appear
as the good choice. To prove it, let us assume that the
choice of basis vectors is wrong for the decagonal quasi-
crystal of Ref. 14 or that the decagonal quasicrystal, to
which the microcrystal approximant unit cell is related, is
not the one described by SK but one in which superlat-
tice ordering has occurred 7Th. en one would expect that
use of a microcrystal formed of domains with a unit cell
with a 72' angle and with edge r, =ra[&(x+2)lr ]j
=37.4 A or r'j =r&~=60.6 A, domain orientations
differing from that used previously by an 18' rotation,
would lead to the fitting of our experimental data. With
such an assumption, only, respectively, 26 and 32'f/o of
the measured peak positions in Fig. 4 are fitted, which
demonstrates the above assertion about the proper choice
of basis vectors in Al-Cu-Co-Si (similarly, for 36'
domains, only 6 and 26 % of the measured peak positions
are fitted).

VI. CONCLUSION

We have presented single-crystal x-ray diffraction ex-
periments performed on decagonal A163Cu&7 5Co$7 5Si~.
"High-resolution" experiments using synchrotron radia-
tion are well interpreted within the scope of a microcrys-
talline model and not within that of a quasicrystalline
model: the decagonal needles are in a microcrystalline
state formed of crystalline domains having 72' orienta-
tional relationships, the unit cell of which can be de-
scribed as a (5,7) approximant in the cut-and-projection
formalism. Two questions remain open concerning the

exact atomic decoration of this unit cell and the domain
coherence.

The difBculties in structure determination for a micro-
crystal have been raised. They are mainly due to the ab-
sence of knowledge concerning both the domain arrange-
ment and the nature of the domain walls. In particular,
domain walls can modify peak intensities by introducing
specific phase shifts. Very recently, high concentrations
of vacancies have been found in quasicrystals. If these
results are confirmed, the location of the vacancies
(domains, walls, etc.) will be an important parameter
which will have to be introduced in the structure deter-
mination.

To conclude, we shall also consider our study in an en-
ergetical context. In Al-Cu-Co(-Si), the Hume-Rothery
criterion (nesting of the pseudo-Brillouin zone defined
from the strong diffraction peaks and of the Fermi sur-
face) seems to be verified, indicating that an electronic
mechanism is to some extent responsible for the quasi-
crystal stability. ' The Hume-Rothery criterion is also
verified for the microcrystal because quasicrystal and mi-

crocrystal strong difFraction peaks are very close. In fact,
although the Hume-Rothery mechanism plays an impor-
tant role in the stabilization of quasicrystals, approxi-
mants, and microcrystals, a more detailed description
for their stability has still to be given. Transformations
between quasicrystalline and microcrystalline states may
be of a great help to get insights into the understanding
of stability. Such transformations may take place in Al-
Cu-Co(-Si) alloys. ' After our careful structural
analysis of the microcrystalline A163Cu&7 5Co&7 5Si2, we

plan to study the evolution of the samples versus temper-
ature in order to investigate the possible occurrence of
close states such as other microcrystalline approximants
or the quasicrystalline state.
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