
PHYSICAL REVIE% B VOLUME 49, NUMBER 22 1 JUNE 1994-II

Model of ion-induced luminescence based on
energy deposition by secondary electrons

K. Michaelian and A. Menchaca-Rocha
Instituto de Fisica, Universidad Nacional Autonoma de Mezico, Apartado Postal 20 M$,

01000 Mexico Distrito Federal, Mexico
(Received 12 October 1993)

A model is proposed to describe the production of light induced by energetic ions in scintillator
materials, based on the distribution of energy deposited by the secondary electrons produced along
the ion's track. The initial energy of the electrons is determined using an impulse approximation
in which their motion is constrained to the radial direction, perpendicular to the ion s track. The
residual energy of the electrons along the radial coordinate is obtained from an expression for the
speci6c energy loss obtained from Lindhard's potential theory. Contributions from backscattered
electrons to the energy deposition are included in the calculation. Local production of energy carriers
is assumed to be proportional to the local density of deposited energy, in the absence of quenching
effects. The latter are introduced by assuming the existence of a maximum energy density greater
than which prompt quenching predominates and the energy carrier density reaches a maximum
constant value. Light production is related to the process of energy transport through thermal
diffusion of energy carriers to luminescence centers. Simple algebraic expressions are given for the
energy deposition pro6le and for the speci6c luminescence. Model predictions are compared with
published experimental data from various organic and inorganic scintillators.

I. INTRODUCTION

The extensive use of scintillating materials in experi-
mental particle detection systems has motivated an im-
portant theoretical e8'ort to understand the underlying
physical processes in the production of light induced by
energetic incident ions in these materials. Although a
number of models describing the luminescent response
of scintillators have existed for some time, they have been
almost completely ignored by experimenters using parti-
cle detection techniques based on organic and inorganic
scintillation materials. In particular, the energy calibra-
tion of the light output response of these scintillators is,
most often, based on an arbitrary n-parameter fit to the
data, where n is usually greater than 6.

The present authors believe that this situation is due
to two principal reasons. First, the quantitative models
are so complex as to make their application to routine
detector calibration impractical. These complexities of
the existing models, based on electron energy deposition,
arise from the complicated nature of the electron pro-
duction cross section and low energy electron scattering
and backscattering. Second, and more importantly, the
models have not beea demonstrated to accurately and
unambiguously describe the data over a wide range of
incident charges and energies without the need for ion
dependent parameters.

Similarly, no uniformity has been demonstrated in de-
scribing data from both organic and inorganic scintillator
materials with the same mode1. Part of this latter de6-
ciency has had to do with speculation about the origin
of nonlinearities in the light production process. In fact,
there has been experimental evidence for some time '

that the activator depletion mechanism in inorganics (a
feature of many of the above referenced models) does not
contribute significantly to the observed decline in scintil-
lation eSciency at high specific energy loss. Nonradia-
tive electron-hole (e-ti) pair or exciton-exciton annihila-
tion, and damaged molecular or crystal structures act-
ing as electron or hole traps, collectively refered to as
"quenching mechanisms" in regions of high energy depo-
sition density, are now generally accepted as being the
principal causes of the observed nonlinearity.

In the present work, we determine the secondary elec-
tron energy deposition profile p(r) by using a number
of justifiable approximations which lead to a simple al-
gebraic expression. This expression includes contribu-
tions &om the backscattered electrons, commonly over-
looked in luminescence models. We assume that the re-
gional density of e-6 pairs or excited molecular structures
(which we define as "energy carriers"), in the absence
of quenching efFects, is proportional to the local energy
deposition density and that the quenching is an explicit
property of each particular material and one which can be
determined, quantitatively, directly from the data. The
assumption of proportionality of the observed light out-
put to the quenched energy carrier density is shown to
provide good fits to the experimental light versus energy
data for all ions but requires a z dependence of the nor-
malization constant for the ver'y light ions (z ( 5). For
alkali halides, this dependence is removed by a simpli6ed
consideration of the process of energy transport through
thermal diffusion of electrons and holes to luminescence
centers or Vg centers in the lattice, which leads to de-
tectable visible light or to partially detectable ultraviolet
light, respectively. A similar, though diferent, process is
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described for organic scintillators. Simple algebraic ex-
pressions are also obtained for the specific luminescence
dL/dz. The model is compared to experimental data
from a wide range of incident ions and energies and from
both organic and inorganic materials with good results.

Besides providing a description of the underlying
physics, the simplicity of the model makes it ideally
suited to scintillation detector calibration. Other po-
tential applications of the energy deposition part of
the model include radiation therapy of tumors with ion
beams, dosimetry measurements, the formation of etch-
able tracks in dielectrics, and other experimental par-
ticle detection techniques.

II. A HISTORICAL PERSPECTIVE

In the following, we will review those models that have
contributed in a general way to the scheme of our pro-
posed model. It is in no way meant to be an exhaustive
review. Reference 12 contains a good summary of the
data and theoretical approaches taken before 1963.

An in depth analysis of the luminescence observed in
organic crystals in response to various incident radiations
was 6rst attempted by Birks. In this theory, the pas-
sage of an ionizing particle through the crystal produces
a number (AdE/dx) of "excitons" (loosely defined as ex-
cited or ionized molecular structures for organic mate-
rials) proportional to the specific energy loss and also
a number (BdE/dz) of damaged molecules, acting as
quenching agents for the excitons, also proportional to
the specific energy loss. Assuming that the light output
is proportional to the effective number of excitons, the
speci6c luminescence is thus given by

dL AdE/dz
dz 1+kBdE/dz '

where k is the exciton capture probability of a damaged
molecule relative to an undamaged molecule. The val-
ues of A and kB are taken from experiment and depend
on the nature of the incident particle and the medium
through which it is passing. Therefore, Eq. (1) has little
predictive capability and says little about the underlying
physical processes.

There followed a number of attempts to describe the
scintillation process from a more fundamental approach.
The fact that luminescence production diKered for two
particles of exactly the same dE/dz but different atomic
number led Meyer and Murray (MM) to look for some
property of the energy loss process which diHers for the
two particles. This property was found to be the energy
distribution of the secondary scattered electrons from the
ionizing collisions of the incident particle with the elec-
trons of the stopping material. The particle with a higher
z value, for the same dE/dz, will produce a more ener-
getic spectrum of secondary electrons. Thus the density
of deposited energy about the track of the ion will be less
and there should be less quenching, viewed by MM as
a local depletion of available activator sites (saturation),
leading to a greater eKciency at producing luminescence.

In the MM model the total observed specific lumines-

cence (dL/dz)i is composed of two parts. One part,
(dL/dz)„, is due to a primary column of ionization im-
mediately surrounding the track of the ion and which is
proportional only to the «/dx of the ion. A second
part, (dL/dz)g, is due to the escape f'rom this column of
the higher energy b rays, which would be z dependent.
Therefore,

(dLI (dL& t'dE't (dL& («)
i«& „«*)„

From the NaI(Tl) experimental (dL/dE), versus («/dz)
data of Newman and Steigert, is MM derived a single (in-
dependent of the incident ion) curve for (dL/dE)~ ver-
sus (dE/dz)„Froi. n other experiments, they suggested
that in the energy range of the electrons of the experi-
ment (1—22 keV), (dL/dE)s was very nearly a constant.
Making various extreme assumptions about the electron
emission isotropy, they calculate limits for a universal
curve of the fraction of energy Ii—:(dE/Cz)g/(dE/dz)i
deposited outside the primary column. This fraction was
found to depend only on E/A of the ion if the primary
column radius is only weakly dependent on (dE/dx)~. In
other words, the primary column radius was assumed in-
dependent of the charge of the ion. Qualitatively their
model represented the data but quantitative predictions
were not possible.

There followed experimental investigations ' on the
validity of the activator-depletion hypothesis of quench-
ing, showing that saturation is not an explanation of the
observed decline in scintillation efficiency at high speci6c
energy loss.

Kobetich and Katzs (KK) quantified the work of Mur-
ray and Meyer by determining explicitly an expression for
the energy density deposited by the scattered electrons
at a given radius from the ion's track. They did this
by considering the following three pieces of information:
the number of secondary electrons generated with a given
initial energy, the residual energy of these after passing a
given radial distance from the ion track, and the proba-
bility of these arriving at this radius when backscattering
is considered.

The number of b rays per unit length of the ion's
track liberated from the stopping material was taken
from the Mott formulais for elastic scattering of elec-
trons by the Coulomb field of a nucleus. The residual
energy of the electrons was calculated from the empirical
relation B = A~o[l —B/1 + Condo], where R is the prac-
tical range of an electron of initial energy uo, and A, B,
and t are constants valid for a range of electron energies.
Because of backscattering, the low energy electrons fol-
low a complicated route. Thus, the fraction of incident
electrons that are transmitted by an absorber was taken
from the empirical relation of Rao.

These three ingredients were combined in the KK
model to obtain an expression for the energy flux W, car-
ried by the b rays through a cylindrical surface of radius
r whose axis is the ion's path, which could only be solved
numerically. Based on the hypothesis of local depletion
of activator sites, the probability per luminescence cen-
ter for the emission of a photon from a region which has
absorbed a uniform energy dose of
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dW
(3)

where A is the area transverse to the ions track, was

taken as

P = 1 —exp( —p/pp), (4)

where K is some constant and z' is the effective charge of
the ion. For every incident ion in the Luntz model there
are two adjustable parameters, one of which determines
the radius of the high-density cylinder for a given ion of
charge z and velocity V, and the other which normal-
izes the final L versus Ep curve (where Ep is the incident
ion energy) to the data for a given z. Comparison of the
Luntz model with the data of Ref. 13 showed that the two
parameters are nonlinear in z, at least over the experi-
mental range of z to which the model was applied, and
only a rough quantitative agreement with the data was
found. In a later, revised version of the model5 they con-
sidered contributions to dL/dE &om the high-density re-

gion through a "linear-falloff' approach. The regional lu-

minescence response was assumed proportional to the de-

posited energy density at radii greater than the "falloff"
radius and fell linearly to zero contribution in a small
core region in the immediate vicinity of the ion track.
This core region was determined by V/fp where fp is the
electron natural &equency. The beginning of the falloff
is an adjustable parameter of the model. With these re-
visions, an improvement was claimed in the comparison
with the data in the low and intermediate ion velocity
regions.

Muga, Griffith, and Diksics'7 (MGD) have developed a
model for luminescence production in thin organic films
based on the formula

dI.
nsO (6)

dz

where pp is the energy density required to excite 63% of
the luminescence centers of the region. In spite of the
experimental evidences against the argument, depletion
of activation sites (saturation) was maintained as an ex-
plicit feature of this model. Comparison of the theory
with the experimental data of Ref. 13 for NaI(Tl) showed

good results for some ions but poor fits for others.
Luntz proposed a model for luminescence production

in NaI(Tl) similar to Meyer and Murray2 in which an
imaginary cylinder surrounds the ion track to partition
the crystal into regions of high and low energy deposition
density. Luntz assumed that the scintillation efficiency
dL/dE receives a negligible contribution &om within the
high-density region because of nonradiative events fa-
vored by high ionization density such as electron-hole
recombination, radiation damage, and lattice heating ef-

fects. The luminescence response to energy deposited
outside the high-density cylinder is assumed to be lin-

early proportional to the deposited energy. The energy
deposition density for the region beyond the high-density
cylinder was obtained by a survey of the numerical re-
sults of Kobetich and Katzs [Eq. (3)] from which they
empirically deduced

Kz'

for specific luminescence in the absence of quenching-
saturation effects. Here X is the number of electrons
penetrating a thin disk, perpendicular to the track of
the incident ion, of thickness dx, and n, is the number

of scintillator sites per unit volume. The cross section
0 for luminescence production is taken to be a constant,
independent of electron energy. Regional luminescence is
therefore assumed to be proportional to the number of
electrons penetrating the region and not to the regional
energy deposition. To determine 2, the distribution of
the scattered electrons is taken &om the Rutherford scat-
tering formula and, for simplicity, their range in the ma-

terial is taken to be linearly proportional to their initial
energy, i.e., 8 = a~o.

Saturation effects are assumed and taken into account
by supposing that there is a radius &om the ion's track
r, t, below which the number density of scattered elec-
trons p(r, t, ) is greater than some critical number den-

sity p, t at which all luminescence centers are excited and
the light output reaches a constant maximum value. The
specific luminescence is then proportional to the number
density of electrons scattered through the thin disk, ex-

cept in the saturation region where it is proportional to
psat~ & e

~

dL &max
2= C err, ,p, t+

Ax &sat
p(r) 2irrdr (7)

where C is a normalization constant. Use of the Ruther-
ford scattering cross section leads to a complicated
expression for p(r) even when using the unjustifiable
simplification that the range of an electron is linearly
proportional to its initial energy. Application of the
MGD model to AL/Ax data for thin NE-102 plastic
scintillator does quite well but only if the C factor of
Eq. (7) is taken not as a constant but as a linearly in-

creasing function of the ion charge z. MGD suggested
that this empirical finding might be correcting for the
fact that the cross section for luminescence production o

was taken in their model to be a constant.
In previous works ' we have applied the MGD model

to L versus Ep experimental data [where L is the integral
of Eq. (7) over the complete range of the ion of incident
energy Ep] for thick inorganic CsI(Tl) scintillatorsi and
to a procedure for calibrating these detectors. Although
those results were encouraging, a nonlinear C dependence
on z was found. We suspected, as did Muga and Diksic,
that the linear dependence of the electron range on their
initial energy was too gross a simplification. Also, we can
see no inherent justification in assuming that the light
output of a region should be proportional to the number
of secondary electrons that pass through the region (i.e. ,

a constant cross section 0 for luminescence production)
and not to the energy deposition density. Further, no
account was taken of the effect of electron backscatter-
ing. Finally, the physical picture presented by the MGD
model falsely attributes the decrease in luminescence eK-
ciency at high dE/dx to saturation of luminescence cen-
ters.

Salamon and Ahlen have taken static energy depo-
sition models one step further by allowing e-6 pairs to
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migrate away from regions of high pair density and low
scintillation ef6ciency for a time equal to the e-6 pair life-
time in pure, room temperature NaI ( 10 s s). Based
on some experimental evidence, they assume nonradia-
tive quenching of the e-6 pairs to be proportional to the
square of the pair density n. Their equation for the si-
multaneous difFusion and self-annihilation of the e-h, pairs
is then

BA = DV' n —Kn,2

(10)

where V is the velocity of the incident ion and dx is a unit
path length of the ion. Considering the electric Hux 4
through an infinitely long imaginary cylinder with radius
b equal to the impact parameter between the electron
and the ion track, Gauss's theorem gives

where the constants D and K, along with a constant g
which describes the number of NaI molecules required to
accomodate one e-h pair, are parameters to the model.
Qualitative fits are obtained for the data of Newman and
Steigert and their own data obtained for Ne, Ar,
and ssFe from low to relativistic energies. However, the
model is noted as being computationaly intensive and
the fits (at least for low energies where the model can be
compared to data) are not more impressive than those
obtained with static energy deposition models.

The following section is a derivation of our electron
energy deposition model. In Sec. IV we apply the model
to the production of light in scintillating materials, and in
Sec. V we compare the results of the model with various
experimental data.

III. THE ELECTRON ENERGY DEPOSITION
MODEL

z e

where z* is the efFective ion charge (less than the nominal
charge z at low velocities because of electron pickup) as
given by Montenegro et al. ,

z*=z 1 —exp( —ap) —1/6np exp( —2ap)
1 —exp( —p) —1/6p exp( —2p)

(9)

We take an approach commonly used to derive a clas-
sical expression for the specific energy loss dE/dz (the
Bethe-Bloch equation). We make use of an "impulse ap-
proximation" by assuming that the collision between the
incident ion and the electrons of the medium lasts for
such a short time, in comparison to the inverse of the
electron natural frequency, that an impulse is given to
the electron without changing its position during the col-
lision time. The electron is therefore constrained to move
perpendicular to the trajectory of the ion.

To determine the magnitude of the perpendicular im-
pulse given to an electron we consider the strength of the
electric field at the site of the electron due to the heavy
ion,

e = S~2mbdz = 4xz'e.

Therefore, with Eqs. (10) and (ll), we find

(bpg)2 2 fz'e2)
~o=

2m, m, gbV) (13)

We treat the scattered electrons nonrelativistically since
the maximum energy transfered to them by the incident
ion is well below 100 keV for the ions of interest here.
In a classical elastic collision, the maximum possible mo-
mentum transfer to the stationary electron is practically
equal to 2m, V. This implies Rom Eq. (12) that there
exists a corresponding minimum clasical impact param-
eter

z e
v'me

(14)

We now make the assumption that the practical range
of the electron can be written as a simple power law of
its initial energy (as suggested by experiment ) of the
form

R = a~o.

Substituting for the energy f'rom Eq. (13) and solving for
the impact parameter, we obtain

z' f'2e ) a i/2~

V ~m. ) B (16)

The number of electrons with an impact parameter
between b and b+ db per unit path length of the incident
ion track is

dN(b) = 2vrNbdb, (17)

where A' is the number of electrons per unit volume of
the material,

2z*e~" =
bV

On average, the energy transfered to the electron under
this impulse approximation is thus

where o. = z 2~s, and p, = V/vi, with vi, ——2.18769 x 10
cm/s, the Bohr velocity. Equation (9) is valid for ion
energies above 0.2 MeV/amu. The impulse perpendicular
to the trajectory of the incident ion is then

with N~ the Avagadro number and where A ~ and Z g
are, respectively, the effective atomic mass and charge of
the compound inaterial, taken to be Z,~ = g n; Z;/ P n;
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and A,g = g n, A;/ Pn, with n, the fraction of atoms
by number of the element i in the compound, and L0 the
material density in g/cm .

The number of electrons that after the interaction will
have a range between R and R + dR is then

dN(R) = ""{')"'dR
db dR

2e' g,»~ z'
m n V R~+~&" (19)

In reality the scattered electron distribution is not ex-
pected to follow the form of Eq. (19) because of contri-
butions from backscattering electrons. Large angle scat-
terings occur when the electrons collide with the atomic
nuclei of the material. The reflection coefBcient for elec-
trons incident on a thick absorber is found experimentally
to be relatively independent of the electron energy but is
a monotonically increasing function of the atomic num-
ber of the absorbing material. ' Using the Rutherford
formula and assuming only a single electron scattering,
Everhart derived an expression for the number of elec-
trons of nominal range R actually arriving at a depth r
(r & R) in the material as

N(r, R) = Np(R)(1 —r/R)",

d = 0.045Z. (20)

The probability of an electron of nominal range R making
it to a distance r or more from the ion track can therefore
be written as

where Np(R) is the number of incident electrons of nom-
inal range R. Good fits of a derived reflection coeKcient
are obtained with various experimental data for electrons
of energy between 10 and 100 keV and for materials with
atomic numbers between Z = 5 and Z = 60, if the power
d is taken to be

d(d 1

dr nau~"

where a is a constant. The electron range-energy relation
is thus

dA

d(u/dr—
(24)

integrating Eq. (23) from the electron's initial energy ldp

to some intermediate energy ur{r, R) and making use of
Eq. (24) we arrive at our desired expression

u)(r, R) =
(

—
)

(1 —r/R)'~"
&o J

(25)

Assuming that the electrons' energy is of the same
order or less than the K-shell ionization energy of the
medium, given approximately by2 Ilc(eV) = 11.3(Z—
1)2, then it is found that the average ionization poten-
tial I decreases approximately linearly with decreasing
~. The logarithmic term in the Bethe equation is then a
constant and we arrive at Eq. (23) with n = 2. Equa-
tion {25) can then be rewritten in terms of the electrons
nonrelativistic velocity to give the familiar Thomson-
Whiddington law

v = vp —fgr4 4 (26)

the number of electrons that backscatter out of a region
should be equal to the number that backscatter into the
region.

The residual energy ~(r, R) of an electron at a distance
r from the ion track, is obtained by integrating the spe-
cific energy loss du/dr of the electron up to this radius.
We write for the specific energy loss of the electron

P(., R) = (1 ./R)". —

The total energy deposition density, per unit path
length of the incident ion track, for electrons of all nom-
inal ranges between r and the maximum possible range
of the electrons R~ „[where R „corresponds to b

through Eq. (16)] at a radius r from the ion's track is
then

&msLx

p(r) = — P(r, R)~(r, R)dN(R), (22)
dA

where ur(r, R) is the energy of an electron of nominal
range R at a distance r &om the ion track, and where
the differentiation is with respect to the area transverse
to the track. Equation (22) is just the rate of change
(per unit area) of the energy Aux carried by the electrons
across a cylinder of radius r, which has to be equal to
the energy deposition density as a function of r. This
equation contains the implicit assumption that the resid-
ual energy of the backscattered electron is deposited at
the radius at which it backscatters. That is, we do not
consider any backward moving component of the energy
Aux. We may justify this by stating that, to first order,

where f is a constant and g is the material density. Com-
parison of the range-energy relation, Eq (24), w. ith ex-
perimental data ' for electrons of energy less than 100
keV suggests, however, that this exponent (n = 2) is
somewhat too large, the best experimental value being
between 1.6 and 1.7.

Based on Lindhard's theory, Kanaya and Okayama
started with a semi-empirical potential for the electron
interacting with the target atom. They arrive at Eq.
(23) with n = 5/3, which gives a range-energy relation
that corresponds closely to experiment. In their case, the
constant a is

5.025 x 10

0.182gZ,~
(27)

giving a range R in cm if ~o is in eV and where Lo is
the material density in g/cm and A,~ and Z s are, re-
spectively, the effective atomic mass and charge of the
compound material.

Whatever the value chosen for the power n in the
range-energy relation, with Eqs. (19), (21), and (25) the
energy deposition density, Eq. (22), becomes
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2~4z" 1
p(r) = —zJV—

nme V2 2vrr

+max (] &/R)d+1/nX— dR. (28)

Evaluating Eq. (28), we arrive at a general expression
for the electron energy deposition density per unit path
length of the incident ion as a function of the radial dis-
tance r (b;„(r ( R „)&om the ion's track,

e4 z" 1
p(r) = Af —1—

&~e V r Rmax

- d+X//n

(29)

IV. APPLICATION TO A LUMINESCENCE
MODEL

The regional density of e-h pairs or excited molecu-
lar structures (energy carriers) created in the scintilla-
tor material is assumed to be proportional to the en-

ergy deposition density. It has, for example, been ver-
ified experimentally that the secondary electron yield
at the surface of a material is directly proportional to

where d = 0.045Z,s. From Eq. (14) and (16) we find
R a(2m, )"V2". It is interesting to note that ex-
cept for the additional term in square brackets, this ex-
pression [Eq. (29)) is equivalent to that used by Luntz4

[see Eq. (5)j which was obtained by direct comparison
with numerical calculations of Kobetich and Katz based
on Eq. (3). The importance of the portion (1—r/R „)~
of the additional term in square brackets increases as the
Z,g of the medium increases and can be attributed to the
effect of electron backscattering. Equation (29) is plot-
ted, for the ciioice n = 5/3 in Fig. 1 for the ions isO and

Ca at 100 MeV incident on organic CH and inorganic
NaI and CsI materials.

the energy deposition density at the surface. Quench-
ing effects (see Refs. 8 and 12 for a review) are included
without yet specifying their nature (certainly different for
organics than for inorganics) by considering that there is
a maximum energy deposition density pq greater than
which the energy carrier density remains at a constant
maximum value.

The quenching density pq is an inherent constant of
the scintillator material. Its value can be determined
by obtaining a best 6t of the model generated I versus
Eo (where Ee is the ion incident energy) curve with the
equivalent experimental curve, while varying pq, for only
one ion. The distance &om the incident ions track rq
at which the energy deposition density falls below the
quenching density can be calculated through an iterative
procedure (the Newton method found to be the most
appropriate) &om Eq. (29) with p(r) replaced by p~.
The specific (per unit path length of the ion) quenched
energy carrier density is then

dN, &max'=K xr p + pr 2vrrdr (30)

where K is the constant relating the energy deposited to
the number of energy carriers formed. We next assume
that the regional light output is proportional to the re-
gional energy carrier density (this point will be discussed
in more detail below) giving

dL dN,
dx dx

where C is an overall normalization constant including
the constant K, experimental gains, and a constant of
proportionality relating the energy carrier density to light
output. It might be argued that Eq. (30) is somewhat
unphysical because of the discontinuity in the contribu-

108
I

I

I

I

106

bg

104
FIG. 1. The electron energy deposition

density as a function of the radial thickness
t = rg from the ion track for 8 0 and 20Ca
at 100 MeV on organic CH and inorganic NaI
and CsI materials.
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0.0 0.2 0.4

t [mg/cm ]
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tion at the quenching radius r~. Reaching a maximum
constant value for the regional light output is perhaps
an ideahzation but it is in agreement with observed be-
havior and with the Birks formulation of Eq. (1). A
more continuous approach, in complete accord with the
Birks formulation and with experiments observing the
degradation of luminescence eKciency in organic materi-
als with high dose p-ray and electron irradiation, would
be

dL * p(r)
1+p(r)/p.

It was found, however, that this approach leads to only a
very slight improvement in the comparison of the theory
to the data, at the expense of not being able to carry out
the integration analytically. As an alternative approach,
we have also tried the assumption incorporated in the
original model of tuntz that the light output receives
a negligible contribution from a high-density region sur-
rounding the track because of competition from nonra-
diative events. However, in all cases, this gave worse fits
to the data than the assumption of a maximum constant
contribution. We therefore retain Eq. (30) as adequately
representing the quenching process.

The integral of Eq. (30) can most easily be carried
out analytically if the power d + 1/n in Eq. (29) for

p is a simple rational number. We take n = 5/3 and
find that for the scintillator CsI, Z,g

——54 giving d +
1/n = 3.03 = 3. For the scintillator NaI, Z,g = 32
giving d + 1/n = 2.04 = 2 and for the plastic scintillator
material CH, Z,s = 3.5 giving d + 1/n = 0.7575 = 3/4.
Substituting for p~ and p(r) f'rom Eq. (29) and carrying
out the integral in Eq. (30), we arrive at, for CsI,

dL

dz

6e z* 1 3 1—R' —-F2 —7Z —ln(1 —'R),
5m, V 6 2

with 'R = (1 —r~/B „),which can be interpreted as the
fraction of the total radial extent of the energy deposition
region which lies in the nonquenched region. For NaI,

dL 6e z= ~CA'- [
—Z —ln(1 —Z)],

dx 5m, V2

and for plastic CH,

(34)

6 e4 z*2
= t."N-

dx 5m, V2

—2 tan R (35)

The total light output response of a thick scintillator
induced by a stopped ion of incident energy Eo can be
obtained by summing the appropriate equation [(33)—
(35)] over small finite segments b,x of the ion's range.
The ion's energy loss in each finite segment can be ob-
tained &om the Bragg rule for the stopping power of a
composite medium

S= +ms, , (36)

where S = 1/g(dE/dz) and m, is the fraction by weight
of the atom i in the medium. The stopping power S' of
an ion of nominal charge z can be given in terms of the
stopping power of a proton S" in the same material by

S'(E) = z* Sr(E/A), (37)

where z' is the effective charge [Eq. (9)] and where A is
the mass number of the ion. For an energy per nucleon
E/A of the ion between 102 and 10 keV/amu, we have
used the parametrization of Ref. 29,

a 2

S~(E/A) = 602.204A —ln —P

—) ai+s [ln(E/A)]'
j=0

(38)

in MeV/(g/cm2) with the constants a~, as listed in the
same reference, dependent on the material.

V. RESULTS

Before comparing our results directly with experimen-
tal data, we point out a number of interesting fea-
tures which follow directly from the model. The model-
determined scintillation efficiency dL/dE versus ion ve-

locity V is plotted in Fig. 2 for those ions included in
the data set of Colonna et al. From the figure, it can
be seen that at a fixed velocity, the lower z ions are more
efBcient at producing luminescence. As the velocity in-
creases the efBciency tends to reach a constant maximum
value. This is due to the fact that with increasing veloc-
ity a greater portion of the energy lost by the ion gets
deposited outside of the quenching region and so light
production becomes more nearly proportional to the en-

ergy deposited. The inset of the figure shows the fraction
F of the energy lost by the incident ion deposited outside
of the quenching region as a function of the ion's velocity.
For a given velocity (or E/A) this fraction is a function
of the ion's charge, but not a very strong one for the
heavier ions. Figure 2 also demonstrates the well-known
and previously explained fact that lower mass isotopes
at a given energy are more eKcient at producing light
than higher mass ones. At a given energy the lower mass
isotope has a larger velocity and thus the fraction of de-
posited energy outside the quenching region is larger and
hence the luminescence e%ciency is larger. The observed
difI'erences are accurately reproduced by our model, as
will be demonstrated below.

The assumption of Meyer and Murray (see Sec. II or
Ref. 2) that the &action of energy deposited outside the
"primary column" is independent of the ion charge is
equivalent to the reduction of all individual ion curves in
the inset of Fig. 2 to a single, average curve. In view
of the excellent fits of our model to the data (demon-
strated below) this is clearly an over simplification. The
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FIG. 5. A comparison of the calculated
light output response (L versus the incident
energy Es) curves (solid lines) for various
ions with the experimental data of Colonna
et al. (Ref. 30) taken with a thick Csl(TI)
scintillator. The crosses in the inset show the
normalization constants, as a percent differ-
ence from the average value, needed to obtain
a best fit of each theoretical curve with the

corresponding data. The circles in the in-

set show the variation of the normalization
constants obtained with an extension of the
model to include the electron and hole diffu-

sion process (see text).
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of the process of the transport of energy &om the loca-
tion of charge carrier production to luminescence centers
could provide an explanation. The luminescence process
can thus be divided up into two parts, a prompt energy
quenching part depending explicitly on the shape of the
energy deposition density, to which the model has so far
been addressed, and a slower part including the thermal
diffusion of the energy carriers and competition between
their nonradiative annihilation or radiative recombina-
tion at luminescence centers.

For the inorganic alkali halide materials, prompt
quenching of the energy carrier density can be considered
as a competition between nonradiative recombination of
electrons and holes and electron capture at activator im-

purity sites which at a later time become available for

light production. In fact, such a description leads di-
rectly to Eq. (32) with p~ = 17p where 17 is a constant
and p is the activator density. s4

We now turn our attention to the energy transport part
of luminescence production giving only a brief summary
for the alkali halide CsI(Tl), more details can be found in
Refs. 32—34. The prompt quenching process mentioned
above then leads to most of the unquenched electrons be-
ing held at Tl+ traps (forming Tl ) and the unquenched
holes being self-trapped in the CsI lattice, forming molec-
ular bonds between two iodide atoms, known as VI, cen-
ters. The electrons can be thermally released from the
Tl+ traps and the Vt, centers can be thermally excited to
the conduction band. Thermal diffusion of these charge
carriers then proceeds leading to a more or less homoge-

12

10

FIG. 6. A comparison of the calculated
light output response (L versus the incident
energy Eo) curves (solid lines) for various
ions with the experimental data of Newman
and Steigert (Ref. 13) taken with a thick
NaI(T1) scintillator. A common pedestal
value of 0.2 has been subtracted from all ex-
perimental L values. The inset shows the
normalization constants, as a percent differ-
ence from the average value, needed to obtain
a best fit of each theoretical curve with the
corresponding data.
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FIG. 7. A comparison of the calculated
light output response (L versus the incident
energy Eo) curves (solid lines) for various
ions with the experimental data of Buenerd
et al. (Ref. 31) taken with the thick plas-
tic scintillator Pilot-U. The inset shows the
normalization constants, as a percent diKer-
ence from the average value, needed to obtain
a best fit of each theoretical curve with the
corresponding data.

neous distribution of electrons, Vj, centers, and Tl sites.
Next, we consider the competition between two forms of
electron-hole recombination, those occurring at Tl sites
giving rise to characteristic 565 nm wavelength observ-
able light, and electron recombination with VI, centers
producing no light or ultraviolet light of about 330 nm
wavelength. The ultraviolet light is strongly absorbed
by the Tl+ atoms in the crystalss which then reemit a
fraction in a broad spectrum centered at 565 nm. If we

now assume that the number of recombinations at Tl
sites is proportional to the density of Tl activator sites

p and that the number of recombinations at V~ cen-
ters is proportional to the density of holes remaining af-
ter prompt quenching (proportional to the energy carrier
density dN, /dz) then the total observable light (565 nm
band) emitted per unit path length of the incident ion
would be

(39)

where 8' is a constant and T is the &action of the electron-
Vg center recombinations that produced no light or ul-

traviolet light which was not reemitted in the observable
region. Because of the strong absorption of the ultravi-
olet light, the &action T should be independent of the
thickness and of the Tl concentration for typical detec-
tors. The constants D, E', and T are thus true constants
of the particular type of material, in this case CsI(T1),
independent of the amount of Tl in the crystal.

Applying Eq. (39) together with Eq. (30) [in the al-
gebraic form of Eq. (33)] to the CsI(T1) data of Colonna
et al. (Fig. 5), and varying D, 8, and'X to obtain a
best fit yields p~ = Dp = 8.9 x 10s [consistent with that
obtained solely with Eq. (31)j, Ep = 9.0 x 10 4 and
T = 0.4. The circles in the inset of Fig. 5 show the
eKect of this extension of the model. The dependence
of the normalization constant on z has been removed

and it is found (not shown) that the fits of the model-
generated curves to the data are even better than those
presented in the main figure. Assuming a nominal acti-
vator concentration for the detector of p = 0.1 mol'%%uo

gives 'D = 8.9 x 10 per mol%%uo Tl and t = 9.0 x 10 s per
mol%%uo Tl.

If one accepts this description of the light production
process in alkali halides, then it is emphasized that there
are no free parameters in the model except for an over-
all normalization constant. The constants B, E', and
P should apply equally well to any CsI(T1) detector,
and only the concentration of activator sites p must be
known. As a test of this hypothesis, we apply Eq. (39)
with the above-determined values of the constants D, f,
and P to CsI(Tl) data of Horn et al.ss (also 0.1 Iilol%%uo

Tl). The results are shown in Fig. 8. The best pz value
is indeed found to be 8.9 x 10 erg/g and there is no
dependence of C on z.

Although the above description of the energy trans-
port process was specific to CsI(T1), a very analagous
situation exists for Nal(T1). ss For plastic scintillators,
prompt quenching has been attributed to ionized or ex-
cited molecules acting as exciton traps for unimolec-
ular, bimolecular, or j-molecular deexcitation without
radiation. Energy transport from the solvent to the or-
ganic scintillator also plays a role. Fast Qourescence is
thought to arise from deexcitation of a singlet (spin-0)
excited state. A slow component to the light arises from
excitation of long-lived triplet (spin-1) states. Two such
excited triplet state molecules can interact leading to one
molecule in the ground state and the other in the normal
singlet state which quickly Houresces to the ground state.
Since light from the triplet state requires a bimolecular
interaction, the relative amount of light emitted in the
slow portion increases as the dE/dx of the ion increases.
Competition for exciton energy between the fast and slow
processes could thus explain the dependence of C on z for
the low z ions in the data of Buenerd et al. (Fig. 7) be-
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FIG. 8. A comparison of the calculated
light output response (L versus the incident
energy Es) curves (solid lines) for various
ions with the experimental data of Horn et
ol. (Ref. 35) taken with the thick Csi(TI)
scintillator. The curves were obtained with
Eq. (39) with the same constants 'D, 8, and
P used for the data of Colonna et al. (circles
in the inset of Fig. 5). The inset shows the
normalization constants, as a percent difFer-
ence from the average value, needed to obtain
a best fit of each theoretical curve with the
corresponding data. It is noted that the nor-
malization constants for the different isotopes
are practically identical.

cause the time gates on the light pulses for organic scintil-
lators are normally much shorter than the time typically
required to collect all of the slow component~2 and the
energy-to-light conversion efBciency is less for the slow
component. This process for organic scintillators is in
many ways similar to that for the alkali halides but in
some sense more complicated as the time dependence is
normally important.

VI. CONCLUSION

We have presented a model for the production of lumi-
nescence in scintillator materials based on a calculation
of the energy deposition density due to the secondary
scattered electrons around the track of an energetic in-
cident ion. By using an impulse approximation in which
the motion of the electrons is confined to the radial di-
rection, we arrive at a simple algebraic expression for the
distribution of the density of deposited energy p(r) which
includes contributions from backscattered electrons. In
the absence of quenching, the energy carrier density of a
given region of scintillating material was assumed to be
proportional to this energy deposition. In the quench-
ing region, the energy carrier density reaches a constant
maximum value. The radius of the quenching region is
determined by a critical energy deposition density pq. For
the alkali halides, pq can be related to the concentration
of activator atoms and the light output is determined by
a competition for electron-hole recombination at these
activator sites and recombination at self-trapped holes.
For the organic scintillators, pq is left as the free param-
eter of the model and the light output is determined by
the quenched exciton density. We are presently working
on an extension of our model for organics, considering

the two types of excitons (singlet and triplet states) and
their deexcitation time dependence, which possibly will
eliminate the need for the free parameter pq and also
remove the C of z dependence for the low z ions.

The fundamental variables characterizing the lumines-
cent response of the ion-medium interaction were found
to be the velocity V and effective charge z' of the incident
ion and the effective charge Z,g, mass A,@, mass density
g, and the quenching energy density pq of the medium.
For the alkali halides, pq is proportional to the activator
concentration p while the material constants 8 and P
characterizing the energy-to-light conversion process are
independent of p .

The principal improvements of the proposed model
over existing models are a simple algebraic expression for
the specific luminescence dL/dx with at most only one
free parameter pq; inclusion of electron backscattering;
and the model's "universality, " as demonstrated by the
quality of the fits to the data from both organic and inor-
ganic luminescent materials for a wide range of incident
ions and energies. The authors suggest that the simplic-
ity of the proposed model should make it a valuable tool
for the energy calibration of the light output response of
detectors based on the scintillation process.
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