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A critical analysis of the meaning of universality at shock pressures is presented, and a careful com-
parison is made of previous work by the present authors and other approaches to universality. To illus-

trate some relevant points in the discussion we shall consider in particular an interesting approach re-

cently proposed to obtain universal relationships describing the high-pressure behavior of matter. The
approximations made, the basic equations, the different kinds of scaled variables, and the various types
of plots currently used are some of the points thoroughly discussed and compared in different ap-
proaches to universality.

I. INTRODUCTION II. CORRESPONDING STATES AND UNIVERSALITY

Shock waves in solids, liquids, and gases have been
widely studied, during the last four decades from both
the experimental and the theoretical points of view. The
primary data obtained in shock experiments are in gen-
eral shock and particle velocities. These are converted,
using the Rankine-Hugoniot conservation equations, into
thermodynamic (pressure-volume) data. Regardless of
the type of representation used, the data for different ma-
terials seem to be completely unrelated. A principle of
order was introduced with the so-called linear relation-
ship between shock and particle velocities. This relation-
ship, firmly based on experimental grounds, seems to be
valid for all sorts of materials: pure elements, com-
pounds, mixtures, solids, liquids, and gases, and is now
widely accepted and used in the field of high-pressure

physics.
We have taken advantage of this linear relationship to

formulate a system-independent thermodynamics of high
pressures. The obtaining of an analytical expression for
the temperature along the shock-compression Hugoniot
curve led us to establish a high-pressure equation of
state. ' Furthermore, by the use of a law of correspond-
ing states for materials at shock pressure, we succeeded
in obtaining system-independent equations for the
Hugoniot temperature, for the linear relationship be-
tween shock and particle velocities, and for an equation
of state at high pressures. ' So, what seemed to be com-
pletely unrelated data can be described and represented
by universal equations and curves, valid for all materi-
als. 4

It is the purpose of the present paper to make a critical
analysis of universality at shock pressures, and to make a
careful comparison of our work with other approaches to
universality. We shall consider in particular, as an
example to illustrate some relevant points of the discus-
sion, the interesting approach recently proposed by
Shively, Stein, and Robertson.

In dealing with shock compression, one must be care-
ful in defining the various concepts, which are sometimes
misunderstood. The Hugoniot is the curve representing
states of shock compression of a given material. The
direct experimental data on the Hugoniot are in general
measured values of shock and particle velocities. These
can be transformed, through the use of the Rankine-
Hugoniot conservation equations of mass and momen-
tum, into pressure-volume or pressure-particle velocity
data. It should be clearly understood that the Hugoniot
does not represent equation-of-state data, because states
of shock compression are not states of thermodynamic
equilibrium. It is also commonplace to speak of
pressure-volume data or of pressure-particle velocity data
as "equation-of-state data. " In general this is not true be-
cause the dependence on a thermal variable, temperature
or energy, is lacking.

We have already mentioned the linear relationship be-
tween shock and particle velocities

U, = A+SU

where U, stands for the shock velocity, U for the parti-
cle velocity, and A and 8 are two parameters characteris-
tic of each material. This relationship is strongly sup-
ported by the experimental data on all sorts of materials;
some attempts have also been made to explain this linear
behavior as a consequence of the existence of a limiting
volume V~ under shock compression.

Another pertinent comment refers to the van der
Waals equation in reduced variables. Sometimes the "law
of corresponding states" used by van der Waals to obtain
the scaling parameters that make it possible to represent
his equation of state in universal form is referred to as the
law of corresponding states. It is to be noted that, within
the context of thermodynamics, it is possible in principle
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to find not only one law, but several different laws of cor-
responding states associated with different phenomena.
For a thorough discussion of this point see for example
the works of Ellis' in general, and the one of Prieto con-
cerning a high-pressure law of corresponding-states for-
mulation.

To avoid mistakes and misunderstandings, it is neces-

sary to examine carefully the definition and meaning of
the term "corresponding states. " Therefore, the follow-

ing points ought to be considered:
(1) The states always refer to two different materials

and they are always associated with a given phenomenon,
for example shock compression.

(2) The states are always related to a given equation or
set of equations involving two or more of the variables
used to describe the behavior of matter in relation to the
phenomenon under consideration and they concern its
representation rather than the behavior of the two ma-
terials in relation to this phenomenon.

(3) If 1,2, 3, . . . , N different variables are involved in
the description of the phenomenon under consideration
by a given equation, then a set of E different parameters
Q, , Q2, . . . , QN can be defined as the ratio of the values
of each one of the variables for the two different materi-
als.

(4) The two equations describing the phenomena of the
two different materials are then considered, and in one of
them the set of N equations defining the Q s is intro-
duced. One obtains then two different equations describ-
ing the phenomenon for the same material. Since the two
equations ought to be identical, this imposes conditions
on the values of the set of N parameters Q, . Thus, a set
of N equations involving these parameters is obtained.

(5) If this set of simultaneous equations has a solution,
then the set of ratios for the N different variables defines
"corresponding states" of the two materials in relation to
the phenomenon under consideration and to the equation
describing this phenomenon.

(6) But if this is the case, then a set of N scaled or re-
duced variables describing this phenomenon can be
defined as the ratio of each one of the variables to the Q,.

related to the variable considered.
(7) As a consequence of this definition, for each one of

the variables involved, the scaled values are the same for
the two materials. That is, in any numerical or graphical
representation of the phenomenon the two materials are
represented by one and the same point.

(8) It is then said that the two materials are in corre-
sponding states.

(9) A law of corresponding states can then be formulat-
ed, and a system-independent or universal equation
describing the phenomenon under consideration can be
obtained. It is in this context that expressions such as
"universal Hugoniot" or "universal isotherm at high
pressures" should be understood.

It becomes then quite clear that the behavior of matter
in relation to a given phenomenon does not depend on
whether corresponding states for two different materials
can be defined. The behavior is determined by the ma-
terial itself and cannot be changed by the use of any given
representation for the phenomenon under consideration.

III. TWO APPROACHES TO UNIVERSALITY

Following the procedure just outlined, Prieto succeed-
ed in expressing the equation for the Hugoniot in univer-
sal form, either in the pressure-volume or in the
pressure-particle velocity representations. Let po be the
initial density and p the density at pressure P. The scaled
variables used within this formalism are then defined by

p =P(pQA /B)

for pressure,

x =B[1—(po/p)]

(2)

(3)

for the relative compression,

u, =U, /A (4)

This equation, being system independent, fits the
thousands of experimental points accumulated up to now
for hundreds of materials of many different kinds: pure
elements, compounds, mixtures, solids, liquids, and gases.
%ith this criterion, the universal equations for the
Hugoniot

p=x(1 —x)

or

p=u„(1+u )

fit the same experimental data in the pressure-volume and
in the pressure-particle velocity representations, respec-
tively.

It is to be clearly understood that the proof of the va-
lidity of an equation expressed in universal form depends
completely on the fact that a law of corresponding states
can be formulated for the phenomenon under considera-
tion, or, alternatively, on the fact that the set of sirnul-
taneous equations for the Q s has a solution. Concerning
the goodness of fit'" of the equation or of its associated
graphical representation, once a criterion such as the
measure of "total square error" given by Mallows' is
chosen, its measure might be different depending on
whether physical or reduced variables are used, but this
apparent discrepancy is irrelevant. Thus, an equation
such as the one for the Hugoniot can be and is sometimes
expressed using different sca1ing parameters, but the
goodness of fit is exactly the same as that of the original
equation once the variables are converted from the re-
duced set to the physical set of variables. The same re-
mark can be made in relation to the values of the parame-
ters used to scale the different variables. These values
may of course be most important to determine how good
or bad is the original equation in fitting the experimental

for shock velocity, and

u =
U~ /( A /B )

for particle velocity.
In terms of these scaled variables, the linear relation-

ship takes the universal form
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data. But if those values are somehow used in scaling the
variables, the goodness of fit does not change.

We have already insisted on the fact that an equation
for the Hugoniot is not an equation of state by itself.
However, it is possible to consider equilibrium states in
the neighborhood of shock states and use the thermo-
dynamics of equilibrium to correlate the variables
describing these states. This is the procedure we followed
first to formulate and solve the thermodynamic
difFerential equation for the Hugoniot temperature, and,
from this, to obtain a complete equation of state at high
pressures. ' The equation for the Hugoniot temperature
can also be expressed in reduced variables, and it agrees
reasonably well with the available experimental data on
shock temperatures already reported by several authors,
as well as with computed values obtained by numerical
integration of the differential equation for the Hugoniot
temperature. ' '

In a recent paper Shively, Stein, and Robertson pro-
pose a difFerent procedure to obtain a universal Hugoni-
ot. They also use scaled variables for pressure, for shock
velocity, and for particle velocity. Many references are
made to the system-independent formalism for the ther-
modynamics of high pressures developed by the present
authors, but rather they follow what we have called the
dimensional analysis approach, without the support of a
law of corresponding states. ' Since the slope B of the
linear relationship between velocities cannot be eliminat-
ed from the equation by this kind of scaling, they do not
get a universal equation for the Hugoniot. They claim
nevertheless that universality is achieved if one assumes
that the slope B is a universal constant and consequently
has the same value for all materials. This is an interest-
ing conjecture that certainly deserves closer analysis.

Shively and collaborators use pod to scale pressure,
and A to scale both velocities. This kind of scaling has
been used sometimes by several authors, ' ' and we
have already shown' that it is equivalent to the scaling
we use in our formalism i.e., p0A /B for pressure, A for
the shock velocity, and A /B for particle velocity, if the
values of the parameter B are about the same for the ma-
terials under comparison.

What makes their approach most puzzling is that
among the materials they use to support their conjecture
the values of the parameter B go from 0.95 for silicon
carbide to 1.85 for HzO and yet they get seemingly ac-
ceptable goodness of fit to the experimental data for
about 20 materials. We thirik that this is mainly due to
the following: (a) they use an approximation valid only at
low compression, and (b) they are using a pressure-
particle velocity representation in a log-log plot. In the
following we will examine closely these facts and their
consequences.

The basic equation used by Shively and collaborators
for their comparison with the experimental data and with
our approach is the one obtained for the Hugoniot by the
use of the Rankine-Hugoniot conservation equations
complemented by the linear relationship between shock
and particle velocities. This equation reads

p =p0U~( A +BU ) .

In their approach they use the scaled variables

p* =p/(p, A ')

for pressure, and

u,*=U,/3, u*=U /A

for shock and particle velocities, respectively. So, the
equation for the shock Hugoniot becomes

p'=u'(1+Bu'), (12)

whereas for the linear relationship between velocities one
gets

u,*=1+Bu' . (13)

u, =u,*, u =Bu' . (15)

If small pressures are considered, and this is the approxi-
mation used by Shively, Stein, and Robertson, the term in
U in the three equations (8), (9), and (12) becomes negli-
gible so that one gets linear equations in the particle ve-
locity, with slope 1.0 in both approaches. Because of
Eqs. (14) and (15), the difference between their represen-
tation and ours then amounts to a mere change of scale
by a factor B for both the pressure and the particle-
velocity axes.

Concerning the graphical representation in the U, -U
plane, and the comparison between both formalisrns
within this approximation, because of Eq. (13) the slopes
of the straight lines are different for each material in
Shively, Stein, and Robertson's formalism, whereas in
ours the plot of Eq. (8) is one and the same straight line
for all materials. In the pressure-particle velocity repre-
sentation, and with the log-log plot they use, it is clear
from Eqs. (14) and (15) that Eq. (8) becomes

log10P +logl0 —loglOQp +loglP (16)

So, if both formalisms are compared using this plot,
the representation is the same in both cases, a straight
line with slope 1.0, but the data for a given material in
our formalism are displaced with respect to the data for
the same material in their formalism by an amount log, 0B
on both axes. Of course, as already mentioned, and
within this approximation, the goodness of fit is the same
in both cases, and is as good as the fit of the linear rela-
tionship to the experimental data on velocities.

We are now in the position to understand the remark-
able agreement between the so-called master curve of
Shively, Stein, and Robertson and the experimental data
on shock compression for various materials having values
of the slope B very different from the va1ue 1.335 they
proposed for this parameter. We shall first comment that

These equations are to be compared with Eqs. (8) and (6)
obtained within our formalism for pressure and for the
linear relationship, respectively.

In making this comparison it is important to note that
the variables used in the two formalism are related by the
following equations:

(14)
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the relationship between the normalized pressure defined

by Eq. (10}and the normalized particle velocity defined in

Eq. (1}should be linear, not because it seems to be so in
the log-log plot, but because the quadratic term is being
neglected. Consequently, the pressure vs particle velocity
relationship becomes linear with slope exactly equal to
1.0. A second comment is that the correlation obtained
by Shively, Stein, and Robertson is not fortuitous or due
to the fact that the slope B of the linear relationship be-
tween velocities is the same for all materials. What hap-
pens is that the difference in the values of the slope 8 is
masked by the log-log plot. In this representation, the
data for a given material in their formalism become indis-
tinguishable from the data for the same material in our
universal formalism, since the net effect of differences in
the value of 8 is a shift in the representation of the data
along the same straight line. But this is only true at low
compressions and as long as a log-log plot is used. In a
different kind of plot, as we sha11 see later, the differences
due to the different values of B become stronger.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

ments and 10 compounds, one of these in the liquid
phase. The range of values of the slope B, as determined
by fitting the shock data by straight lines, goes from
0.950 for silicon carbide to 1.850 for water. To make the
comparison between the two formalisms, we have select-
ed only five of these materials such that they cover the
whole range of values of B. Special consideration is given
to this parameter because the main difference between the
two formalisms lies here.

In our formalism 8 is included in the scaling factors
used to reduce some of the variables. In their formalism
it is concluded that B has the same value for all materials,
and consequently that it cannot play a significant role in
the formalism.

Table I shows the pertinent data for the five materials
we selected to make the comparison. For each material
the so-called shock parameters are first given: initial den-
sity po, and intercept A and slope 8 of the linear relation-
ship between velocities, as defined by Eq. (1). The basic
experimental data are given in the form of shock velocity
U, =U,", particle velocity U„(expt}, and Hugoniot pres-
sure P(expt). These quantities are not independent, but
related by the equation

In their approach to universality at shock pressures,
Shively, Stein, and Robertson considered 12 pure ele- I'=poU, U (17)

TABLE I. For each of the materials listed in the first column, po is the initial density, and A and B
are the coeScients of the linear relationship between velocities, Eq. (1). PI, (expt) expressed in kbar and

U~(expt) expressed in km/s are the experimental values of the Hugoniot pressure and the particle veloc-

ity, as reported in Ref. 22. p is the universal Hugoniot pressure, as defined by Eq. (8). p is the normal-
ized pressure as defined by Eq. (12). u„u~, u,", and u~ are the universal and normalized shock and
particle velocities as defined by Eqs. (4), (5), and (11),respectively.

Material

Copper
p0=8. 930 g/cm
A =3.940 km/s
B=1.489

P(expt)

164
320
652

1018
1318
1581

0.176
0.344
0.700
1.093
1.416
1.698

0.118
0.231
0.470
0.784
0.951
1.140

U~(expt)

0.41
0.73
1.25
1.74
2.10
2.37

0.155
0.276
0.472
0.658
0.794
0.896

QP

0.104
0.185
0.317
0.442
0.533
0.602

1.13
1.25
1.48
1.66
1.78
1.89

Lead
pa=11.34 g/cm
A =2.028 km/s
B=1.517

838
1388
1383

2.725
4.515
4.498

1.796
2.976
2.965

1.64
2.25
2.25

1.227
1.683
1.683

0.809
1.109
1.109

2.21
2.68
2.68

Water
pa=1.00 g/cm'
A =1.51 km/s
B=1.85

38.5
61

103.5
119
138

3.124
4.949
8.398
9.655

11.197

1.689
2.675
4.539
5.219
6.052

1.110
1.465
1.980
2.180
2.365

1.360
1.795
2.426
2.672
2.898

0.735
0.970
1.312
1.444
1.567

2.30
2.75
3.46
3.61
3.86

Graphite
pa=1.628 g/cm
A =1.162 km/s
B=1~ 822

81
120
139
200.5
210.0

6.714
9.946

11.521
16.618
17.406

3.685
5.459
6.325
9.121
9.553

1.350
1.739
1.829
2.331
2.442

2.116
2.726
2.867
3.654
3.828

1.161
1.496
1.573
2.005
2.101

3.17
3.65
4.02
4.55
4.56

Silicon carbide
p=3. 124 g/cm
A =8.000 km/s
B=0.950

155
422
677
999

1170

0.074
0.201
0.322
0.475
0.556

0.078
0.211
0.339
0.500
0.585

0.46
1.3?
2.16
3.00
3.56

0.055
0.163
0.257
0.356
0.423

0.058
0.171
0.270
0.375
0.445

1.34
1.23
1.25
1.33
1.31
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These basic experimental data are transformed to the
values used in our formalism (p, u„u ) through Eqs. (2),
(4), and (5). The values used in Shively, Stein, and
Robertson's formalism (p *,u,*,u ') were obtained
through Eqs. (10) and (11).

Figure 1 shows a pressure vs particle velocity (p *,u *)
plot of the Hugoniot compression curves for B=1~ 00,
1.50, and 1.85. These were obtained using Eq. (12). The
experimental data for copper, lead, water, graphite, and
silicon carbide listed in Table I are also included in this
figure. In all cases the source of the experimental data is
Van Thiel's compendium. Regarding this figure it is
very important to point out the following.

(a) It is a log-log plot, not a Cartesian representation.
(b) Because of Eqs. (8) and (12), a plot of the Hugoniot

for B=1.00 coincides with the plot of the universal
Hugoniot in our formalism.

(c) For low values of compression, let us say for u~* less
than 0.05, the quadratic term in Eqs. (8) and (12) is negli-
gible, and all the Hugoniot curves in this log-log plot col-
lapse into one and the same straight line of slope 1.00,

loglpp
*

=log&pQ&* (18)

(d) The black and white blocks shown in the low-
compression linear section of these plots illustrate the
shift previously discussed in relation to Eq. (16). Suppose
that shock data for a given material fall within the black
area when expressed in Shively, Stein, and Robertson's
variables (p*,u'). Because of Eq. (17) the same data
would then fall in the white area when expressed in our
variables (p, u ). Within this approximation the same
would happen for any other material with a different
value of B. We shall now understand the apparent

universality of the plots in Shively, Stein, and
Robertson's work.

(e) If only the experimental data were shown in this
figure, without any of the computed Hugoniot curves for
different values of the parameter B, it would seem that all
the experimental data can be fitted, to a very good ap-
proximation, by one single curve. This is how Shively,
Stein, and Robertson reached the conclusion that one sin-
gle Hugoniot, that of Eq. (12) with 8=1.335, suffices to
fit the experimental data on shock compression for all
materials. They therefore conclude that B ought be con-
sidered a universal constant.

Before going farther in the analysis of the log-log rep-
resentation, let us consider two different representations
of the same Hugoniot curves. Figure 2 shows plots of the
same Hugoniots and of the same experimental data
shown in Fig. 1, the difference being that the representa-
tion is now made in Cartesian coordinates. Here the
effect of the differences in the value of the parameter B
becomes evident. For a given value of u* the difference
in p* between the values for B=0.9S and 1.85 is about
30% or higher. If the value B= 1.335 proposed in Ref. 5

is accepted, the differences in p' would be smaller, but
since they fall within the range 20—25% anyhow, this is
obviously unacceptable because the experimental error
for these kinds of data is less than 1%.

The same comments can be made in relation to a
Cartesian plot of the Hugoniots using shock and particle
velocities as variables. Such a plot is shown in Fig. 3.
Here again the same Hugoniots and experimental data of

P/Po@
2

a b c d

P/p~A
10

)
ob c

01

0.01
001 0.1

FICx. 1. Log-log plot of pressure vs particle velocity Hugoni-
ots for different values of the parameter B: curve a, 1.85, curve
b, 1.50, and curve c, 1.00. The last one coincides with our
universal Hugoniot. The experimental data are those reported
in Van Thiel's compendium (Ref. 22) normalized using Eqs. (10)
and (11) for the materials: ~, Cu (1.489); 0, Pb (1.517); H, H&O

(1.850); +, graphite (1.822), and +, silicon carbide (0.950).

FIG. 2. Cartesian plot of pressure vs particle velocity
Hugoniots for different values of the parameter B: curve a,
(1.85), curve b, 1.50„and curve c, 1.335, as proposed by Shively,
Stein, and Robertson (Ref. 5), and curve d, 1.00, which coin-
cides with the universal Hugoniot. The experimental data are
shown in both Shively, Stein, and Robertson's approach and in

our universal approach, for the same materials of Fig. 1: ~, Cu
(1.489); C), Pb (1.517); H, H20 (1.850); +, graphite (1.822), and

+, silicon carbide (0.950).
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P/'1', poA 1g)
~0

0,1

10
u, ra

C,01
00.1 0.1 Up/(0/B}

FIG. 3. Cartesian plot of the linear relationship between
shock and particle velocities for different values of the slope 8:
curve a, 1.85, curve b, 1.50, and curve c, 1.335 as proposed by
Shively, Stein, and Robertson (Ref. 5), and curve d, 1.00), which
coincides with the universal linear relationship. The experimen-
tal data are shown in both Shively, Stein, and Robertson's for-
malism and in our universal formalism, for the same materials
of Fig. 1: 5, Cu (1.489); 0, Pb (1.517);H, H20 (1.850); +, graph-
ite (1.822), and +, silicon carbide (0.950).

FIG. 4. Log-log plot of our universal Hugoniot, as computed
using Eq. (8). Experimental data are shown for the same materi-
als of Fig. 1: ~, Cu (1.489); 0, Pb (1.517); H, H20 (1.850); +,
graphite (1.822), and +, silicon carbide (0.950).

V. FINAL REMARKS

Figs. 1 and 2 are reproduced. It becomes evident that
differences between experimental values and values corn-
puted for any mean value of the slope, such as 8 =1.335,
are too high, by about 20—25 %, and consequently unac-
ceptable, since the experimental errors in these kinds of
measurements are less than 1%. This figure shows also a
straight line of slope 1.0. This is identical to a plot of the
universal Hugoniot of Eq. (6) in our approach. It shows
also the experimental data for the same materials used in
this comparison, but transformed to the variables u, and
u we use. The agreement is as good as the linear ap-
proximation in fitting the experimental data on velocities.

Figure 4 shows finally a plot of the universal Hugoniot
in our formalism, but using the log-log representation
proposed by Shively, Stein, and Robertson. The variables
used here are p and u . The solid curve is the universal
Hugoniot computed using Eq. (8). The experimental data
shown are also the same as in the previous figures. The
agreement is excellent. This is of course a consequence of
the validity of the law of corresponding states in general,
independently of the material or of the kind of represen-
tation used.

We are thus inclined to think that the excellent agree-
ment found by Shively, Stein, and Robertson in fitting the
experimental data on shock compression with one single
value of the slope B is circumstantial. It is a consequence
of the use of a log-log plot for the (p', u~") Hugoniots. In
the best of the cases it can be considered as an acceptable
approximation to the Hugoniot of other materials, but
limited to this kind of representation, and it cannot be ex-
tended to the phenomenon of shock compression in gen-
eral. It seems then that universality cannot be reached by
numerical analysis. This situation contrasts strongly
with universality at shock pressures as proposed in our
approach as a consequence of the formulation of a law of
corresponding states. This is valid in general, it is not an
approximation, and it does not depend on the type of plot
used to represent the phenomena under consideration.
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