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Intrinsic resistance fluctuations in mesoscopic superconducting wires
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The puzzling appearance of a large resistance peak in the superconducting state near 7. of meso-
scopic superconducting wires is analyzed. It is shown that this resistance anomaly can be explained
in terms of thermal fluctuations producing phase slips of the superconducting order parameter in
quasi-one-dimensional wires. Good quantitative agreement with the experimental observations is
obtained within the framework of the modified Langer-Ambegaokar and McCumber-Halperin mod-

els.

A typical resistive transition into the superconducting
state, R(T), is usually described as a slow but monotonic
decrease of the resistance due to fluctuations of the su-
perconducting order parameter 1 above T, followed by
a sharp drop at the transition temperature T = T.. Re-
cent experiments on mesoscopic superconducting samples
revealed, however, a surprising R(T") behavior character-
ized by the presence of an anomalous resistance peak in
the vicinity of 7.1’ The measured resistance typically
becomes 10 to 20 % higher than the normal-state resis-
tance value R,, which is extracted from the plateau in the
R(T) curve above T.. In an attempt to understand the
origin of this phenomenon, Santhanam et al.,! as well
as Vloeberghs et al.,? suggested several physical mech-
anisms based on the ideas discussed in Refs. 3-5 which,
however, failed to ezplain quantitatively the experimental
observations.

In this paper we show that the anomalous resistance
peak in mesoscopic superconducting samples, with a
width w much smaller than the temperature-dependent
coherence length £(T) and the charge imbalance re-
laxation length A5 (T),% is related to intrinsic resistive
fluctuations which can be analyzed within the frame-
work of the Langer-Ambegaokar’ (LA) and McCumber-
Halperin® (MH) models. These models have to be modi-
fied to take into account the confinement of the supercon-
ducting current by the extremely narrow lines forming a
mesoscopic sample.

Typical experimental zero-field R(T) curves, clearly
showing a resistance peak above T, are plotted for dif-
ferent transport currents I in Fig. 1. These data were
obtained on a 1 x 1 um? square mesoscopic Al loop hav-
ing a thickness t = 25 nm and a width w = 0.15 pum
(see Fig. 1 inset). The details of the sample prepa-
ration and characterization have been described in de-
tail elsewhere.?® Different samples all have a sheet re-
sistance ranging between 1.5 and 2.0 2/0 at 4.2 K, in-
dicating a well-defined metallic character. These values
are nearly 4 orders of magnitude smaller than the typical
sheet resistance Rg ~ h/4e? ~ 6.45 kQ2/00 for which elec-
tron localization phenomena become important.'® There-
fore, the existence of the anomalous R(T') peak above T,
(Fig. 1) cannot be related to a resistance increase due to
a pronounced granularity or disorder-induced effects.'!:12
The value of the mean free path I ~ 15 nm is de-
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rived from the residual resistance (R3g0 x/R4.2 k ~ 2.1).
The latter value for ! is much smaller than the coher-
ence length £ ~ 1.6 pum for pure bulk Al, indicating
that the superconducting properties of the Al structures
have to be treated within the “dirty limit” regime with
£(0) = &(T — 0) = 0.85(&!)Y/? ~ 130 nm. This value
for £(0) is in good agreement with the value £(0) ~ 120
nm derived from the change of T, of the Al thin films in
an applied magnetic field H.

The most important experimental features of the
anomalous R(T') peak, shown in Fig. 1, can be summa-
rized as follows:

(i) A marked resistance increase [(AR/R) ~ 107!] is
observed in samples where the temperature-dependent
coherence length &(T') is of the order of or larger than
the overall size of the sample and where the width w
is much smaller than the loop size L ~ 1 pm< {(T),
i.e., in quasi-one-dimensional mesoscopic superconduct-
ing microcircuits (see also Refs. 1 and 2).

(ii) The anomalous R(T') peak is suppressed by increas-
ing the transport current I through the loop as illus-
trated in Fig. 1. For higher currents the effect is smeared
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FIG. 1. Temperature dependences of the resistance for a
mesoscopic Al loop, measured for different transport currents
in zero magnetic field. The inset shows a scheme of the square
loop with a side of 1 um and a width of 0.15 pm. The mea-
sured Al loop has a thickness ¢t = 25 nm.
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out and the superconducting transition is shifted towards
lower temperatures.

(iii) The amplitude AR of the R(T) peak becomes
smaller in larger samples,!'!3 i.e., the AR value corre-
lates with the inverse volume of the sample. The R(T)
peak is clearly related to the mesoscopic nature of the
samples, although a weak increase of R(T), related to
some kind of semiconducting or granular behavior, has
been observed in larger superconducting samples.1?:14

It is well known that in quasi-one-dimensional super-
conducting wires the product of the phase gradient dy/dz
with the square of the modulus of the order parameter
|4¥|2 [ = |¢| exp(iyp)] is a constant proportional to I:!%

Z—:I'(/)(zﬂz = const o I. (1)

A phase slip, corresponding to a substantial increase of
dp/dz in Eq. (1), should therefore be accompanied by
a proper reduction of |¢(z)|2, inducing an intrinsic resis-
tance in the superconducting state.®:1¢

In what follows we will present a model which is based
on the fact that the resistance of one-dimensional (1D)
wires in the superconducting state [at T < To, where
Teo is the mean-field Ginzburg-Landau (GL) transition
temperature] is mainly determined by the rate of phase
slip events.5:817:18

The average voltage V,, arising from the phase
slip events, is determined by the number N of these
events in the sample [N(T) ~ L/{(T)], a characteris-
tic time 7(T),”® an overlap factor (AF,/kgT)'/?, the
Boltzmann factor exp[—AF(T)/kgT|, and the factor
sinh(I,¢9/2kpT) derived from the difference AF in the
energy barrier for +27n and —2n phase jumps. For in-
termediate transport currents I, in the superconducting
state

L =kpT/¢o < I, < I, (2)
the voltage V, is determined by the following
expression:”-%18

1/2 15/4
V,=2¢0N(T) AF, 1_%
7(T) \ kT 31,
AF(T) . ¢OIQ
X exp [ T ] sinh (ZkBT . (3)

Here ¢9 = h/2e is the superconducting flux quantum,
AF is the current independent difference in free energy
between the normal and superconducting states, and I is
the mean-field critical current. The characteristic value
for I is I;[A] ~ 0.7 x 10~8T[K], ie., for T = 1 K,
I, ~ 0.01 pA. The free energy difference AFy in the
volume V = A{(T) (with A denoting the sample cross
section) is given by

AFy = §V2[A¢(T)HZ(T)/8). (4)
The critical current I. is related to AF, by

I. = (2)'2r AFo/ o. (5)
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The current-dependent energy difference AF(T) can be
calculated from the time-dependent GL equation:”:8

AF(T) = AF, + I2 ¢} /3m* AF,. (6)

The total resistance of the macroscopic superconduct-
ing system in the vicinity of T., where Cooper pairs co-
exist with normal-state quasiparticles, may be calculated
by assuming that the supercurrent I, and the normal cur-
rent I,, are running in parallel: R~! = R;'+R;1.78 This
procedure is used by Newbower, Beasley, and Tinkham?!®
to describe the R(T') curve for resistance values close to
R,.. A nonmonotonic R(T) dependence could be simu-
lated, though it was not possible, in principle, to obtain a
total resistance R higher than R,, for the currents I, and
I, running in parallel. In the calculations below we shall
consider such a temperature interval close to T, where
the Andreev reflection is negligible.

Before applying the LA and MH models”"® to the meso-
scopic superconducting wires, with the size smaller than
both the coherence length £(T) and the charge imbalance
relaxation rate A;(T'), the following important modifica-
tions have to be made:

(i) In wires, where the width is very small, w < &, the
currents I, and I, cannot run in parallel for any fixed
time t9. Indeed, the coexistence of the parallel normal
and superconducting currents leads to a tremendous in-
crease in energy due to the variation of the modulus of the
order parameter |1| on a very short length scale w < §.
The required coexistence of superconducting pairs and
normal-state quasiparticles expected in the vicinity of T,
may be achieved by the proper time averaging of the two
possible states, superconducting and normal. Basically,
we are assuming that there are two ways to provide the
coexistence of normal and superconducting carriers close
to T,: (a) via their static mixture, in case of bulk samples
or (b) via their dynamic mixture, in case of mesoscopic
samples, when the coexistence appears as a result of the
time averaging. This is one of the important assumptions
used in our calculations which produce a total resistance
R higher than R,,. Therefore we assume that in quasi-1D
superconducting wires the instantaneous currents I, (to)
and I,(to) can only flow in series and the Kirchoff law
is still valid [I,(to) = I.(to) = I and R = R, + R, with
R, =V,/I, and V, given by Eq. (3)].

(ii) The number of phase slip events N(T') ~ L/¢(T)
for the mesoscopic regime is a constant N(7T') ~ 1. Un-
der this condition, the characteristic time 7 [Eq. (3)]
has the meaning of the switching time between the su-
perconducting (7,) and normal (7;,) states, like switching
in a quantum two-level system. What we essentially use
here, is, in fact, the similarity between a mesoscopic su-
perconducting sample with the size L < £(T') and the
behavior of a quantum system with well-defined energy
levels. In the latter, the coexistence of the two allowed
levels implies a proper time dependence of their occupa-
tion numbers. In a similar way, the coexistence of the
supercurrent I, with the normal-state quasiparticle cur-
rent I, may be treated as a time-dependent switching
between the two states (“two levels”). This results in a
total resistance



RAPID COMMUNICATIONS

15414

_ Bua(7a/7,) + R,
R= (Tn/7s) + 1

where 7, is the characteristic time in the time-dependent
GL theory given by

, (7)

To = Tso (T;Z—C_T) (8)

with
Tso = (7h)/(8kpT.) 9)

and
Tn = 7T, exp {—~AF(T)/kpT}, (10)

where v ~ 7, /T50.

(iii) In mesoscopic superconducting samples where not
only the sample width is small (w <« &), but also the
overall sample dimensions (L < £), the product A¢(T)
in Eq. (4) should be substituted by the sample volume
V = AL. In this case

AFp(meso) ~ §VH3(0)(1 — T/T.)%. 11)

Here 4 is the normalized actual volume of a phase slip
center. For bulk samples the exponential dependence
in Eq. (3) is sharper since the free energy difference
AFp(bulk)x (1 — T/T.)%/2.

The calculation of the R(T') values using Eq. (7)
has been carried out with two adjustable parameters: v
[Eq. (10)] and 6 [Eq. (11)]. The parameter é corresponds
to the ratio of the actual volume of the phase slip center
to the total volume of the sample. Since in supercon-
ducting networks the order parameter at nodes is larger
than in the individual connecting stripes,? it is reason-
able to expect that phase slip centers will be formed in
the stripes between the voltage probe and the loop it-
self. It implies that we should introduce the parameter
§ < 1in Eq. (11). For the geometry of the sample used
in our experiment, we find that §.ac ~ 0.0604. As shown
in Fig. 2, excellent agreement between the experimental
data and the calculated R(T') is obtained over the whole
transition region.

To check the quality of the fit, we used the param-
eters v = 6500 and 6 = 0.0565 (to be compared with
dcale =~ 0.0604) obtained from fitting the experimental
data for the measuring current I = 0.03 pA [Fig. 2(a)]
and calculated the R(T) curve for a different current
I = 0.1 pA [Fig. 2(b)]. Again, we have obtained quite
a good correspondence between the model calculation
and the experimental data covering the whole range
0 < R < R,. Due to the limitations, imposed on the
validity of Eq. (3),”® we cannot use our model to fit
the experimental R(T) curves measured at higher cur-
rent values (I > 0.3 pA).

The second crucial test to check the validity of our
model is the reproduction of the qualitative changes
of the differential resistance dV/dI measured by San-
thanam et al! The calculated current dependence of
dV/dI, at different temperatures and using the same
parameter § = 0.0565, is shown in Fig. 3. The calcu-
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FIG. 2. (a) Temperature dependence of the 1 x 1 um? loop
resistance measured for I = 0.03 pA. The solid line shows
the fit of the resistance R with the parameters v = 6500 and
6 = 0.0565. (b) Temperature dependence of the resistance for
the Al loop, measured for I = 0.10 pA. The solid line shows
the calculated curve with the same parameters as used for (a),
for the different current I = 0.10 pA.
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FIG. 3. Qualitative calculation of the current dependence
of the differential resistance dV/dI, at fixed temperatures (a)
above the anomalous R(T) peak, (b) at the peak, and (c)
below the peak. Note that due to the limitations for the cur-
rent [Eq. (2)], the calculations cannot be expanded to higher
currents. The inset shows the dV/dI curves measured by San-
thanam et al. (Ref. 1) at the same fixed temperatures.
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lated curves clearly reproduce all anomalous features, ob-
served by Santhanam et al.,! including the suppression of
the central dV/dI peak [Fig. 3(a)] at lower temperatures
[Figs. 3(b) and 3(c)].

In conclusion, we have demonstrated that in meso-
scopic superconducting wires the anomalous R(T') peak
near the Ginzburg-Landau temperature can be related to
the appearance of intrinsic phase slips, below the critical
regime. In mesoscopic quasi-1D wires and due to the con-
finement of the current path, this dominant dissipation
mechanism may cause the appearance of resistance values
exceeding those of the normal state. In macroscopic wires
the temperature range AT, where the R(T) peak may be
observed, is extremely narrow [AT ~ (10~1°-10712)T,].
In mesoscopic wires AT substantially increases and it
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becomes possible to observe experimentally the puzzling
R(T) peak just near T..
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