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Correlation function of finite two-dimensional superconductors
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The superconducting correlation function of finite two-dimensional systems is calculated within
the framework of the Ginzburg-Landau theory in the Gaussian approximation. A crossover is found
from zero-dimensional behavior at low temperatures to two-dimensional behavior at higher temper-
atures. The relation between this approach and the Kosterlitz-Thouless theory is brie8y discussed.

I. INTRODUCTION

The discovery of the cuprate superconductors has
renewed the interest in two-dimensional superconduc-
tivity since the highly anisotropic cuprates consist of
weakly coupled superconducting planes. It was shown

by Hohenberg that true long range order of the super-
conducting order parameter does not exist in two dimen-
sions. On the other hand, superconductivity was found
experimentally in very thin 6lms of both conventional
and cuprate superconductors.

There are two major approaches to overcome this ap-
parent paradox. The first one is based on the realization
that superconductivity does not require long range order,
but that quasi-long-range order sufBces, characterized by
a rational decay of the correlation function of the or-
der parameter. Quasi-long-range order is brought about
by vortex fluctuations, as described by the Kosterlitz-
Thouless (KT) theory. 2

The other approach is based on 6nite size effects. The
basic idea is that in suKciently small superconducting
systems the order parameter varies only weakly over the
whole system. The superconductor is then thought of
as an effectively zero-dimensional system, which is ex-
hibiting "long range order. " Along this line of thought
Bandte and Appel ' investigate two superconducting
planes with josephson coupling, using the method of
Hassing and Wilkins. They consider fluctuations in the
modulus of the order parameter up to fourth order in a
self-consistent manner, taking also the Coulomb interac-
tion, i.e., charging effect, into account. They ignore phase
fluctuations in the planes. For increasing temperatures a
crossover &om zero-dimensional to two-dimensional be-
havior is found. It is shown that the results depend only
weakly on Coulomb efFects.

In this paper we discuss the size effects in the Gaussian
approximation.

II. CALCULATION
OF THE CORRELATION FUNCTION

Q2
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where 4 is the superconducting order parameter, n, P,
and p are the Ginzburg-Landau parameters, d is the
film thickness, Po is the flux quantum, A is the vec-
tor potential, and B is the magnetic field. The range
of integration is over the square L/2 ( r—i ( L/2 and
—L/2 ( r2 ( L/2. We assume that there is no externally
applied magnetic field. The fields A and B are thus en-

tirely due to fluctuations. The typical length scale of
spatial variations of these 6elds is the magnetic penetra-
tion depth A, whereas the order parameter varies on the
scale of the Ginzburg-Landau coherence length (. Since
we are especially interested in thin 6lms of cuprate su-

perconductors, where A )) (, magnetic field fluctuations
are ignored. Hence we replace the magnetic field by its
average (B) = 0. We choose the gauge in such a way
that (A) also vanishes.

The free-energy functional then becomes

12r o, @2+ @4+~V@2p

The parameter a is negative below the Ginzburg-Landau
critical temperature T,o and becomes zero at T,o. Below
the critical temperature minimization of T with respect
to 4 yields the equilibrium value 4o ———n/P. From
hereon, we will only consider the case T ( T,o.

To investigate the fluctuations of the order parameter
about 40 we use methods similar to those of Rice. We
define the fluctuations of the modulus Q(r) and of the
phase y(r) by the equation

Introducing this expression into Eq. (2) we obtain up to
second order in the fluctiiatlons

d'rl oC,'+ —4,'—2o1b'+ ~(Wg)'+ piI', (Vp)'
l

We consider a two-dimensional square superconductor
with linear dimensions L. The Ginzburg-Landau func-
tional of the kee energy is

= const+ d r —2n +p V +p@0 Vp
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We omit the third and fourth order terms, thereby re-
stricting ourselves to Gaussian fluctuations.

We now proceed to calculate the correlation function

G(R) = (@'(R)@(0))

where we omit all factors which are independent of R,
since one could easily normalize G(R) afterwards by re-
quiring G(0) = 1.

Keeping this in mind, we have
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where

and
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where the primed product is only over the k = (ki, k2)
with ki & 0 or k = (0, k2) with k2 & 0. The integration
over the mode k = 0 is neglected since it only contributes
a constant factor. For every mode the integration is over
the entire complex plane.

After carrying out the integration in the exponential,
the off-diagonal terms in the double sum over k and k'
are found to vanish and we obtain

*.k.a.d'pk lexp ) l
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Thus the correlation function factorizes into a phase part
and a modulus part. These two factors are treated sepa-
rately.

To derive the phase correlator G~, the phase is written
in terms of its Fourier components yk.

p(r) = ).eke (9)
k

where the sum is over all two-dimensional vectors k with
k = (2am/L, 2mn/L) (with integers m and n) and lkl &

vr/$0 The d.iscreteness of k is due to the finite system
size. The cutoff at large values of the wave vector is
introduced, because fluctuations on length scales smaller
than the coherence length at zero temperature, (0, are
not treated within the Ginzburg-Landau theory.

Since the phase y(r) is a real function, its Fourier com-
ponents yk and p k do not describe independent modes,
but ful611 the equation y k ——pk. We may integrate over
independent modes only and, therefore, the phase corre-
lator is given by

I

This integral factorizes:

G~ oc d pk exp a 1 —e'" yk
k
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Decomposition of the phase &pk into its real and imagi-
nary parts and subsequent integration yields
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where R = lRl. Substitution into Eq. (13) gives the
phase correlator

where the primed sum is over the same k as in the prod-
uct in Eq. (10).

We assume that the system is large compared to the co-
herence length at zero temperature, i.e., L )) (0. There-
fore, the sum in Eq. (13) contains many terms. We first
consider the case R )) (p. In this case we may approxi-
mate the sum by an integral over a semicircle,

) .~1 —cosk. R ' d k 1 —cosk R
Q2 4m2 k2

k L,2
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dk

4m 0 k

Utilizing the fact that R &) (0 we approximate this inte-
gral by

Q2
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This expression is in agreement with the result of Rice.
We now consider the phase correlator at small values

of R. For sufficiently small R the sum of Eq. (13) can be
expanded and gives, to lowest order in R,

.I1 —cosk R 1 & ~(k. R)2
k2 2 ~ k2

k k

displays two-dimensional behavior. Hence we expect a
dimensional crossover for linear dimensions L of the or-
der of R'.

The crossover length R* depends on the temperature
through the terms p@0 and k~T. Utilizing well-known
equations &om Ginzburg-Landau theory, we may ex-
press R* in terms of measurable quantities,

Since we are only interested in the dependence of G~ on
the modulus of R, but not on the angle, we average over
the angle to obtain

1 —cosk R 1 . R (& +&„) R2&.
4 ~-'
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where H, is the (bulk) thermodynamic critical field, ( is
the temperature-dependent Ginzburg-Landau coherence
length, and d is the thickness of the 61m. At temperatures
not too far below T,o, the temperature dependence of
these quantities is given by

and

T R2
G~ ocexp —
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where t = T/T, p. Substitution into Eq. (24) yields

(25)

(26)

where the typical length scale is given by
R* = 2(pH, (0)

d 1 —t
I"BT p (1 —t)t

(27)
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The phase correlator shows Gaussian behavior, Eq.
(19), at small distances and a rational decay to zero, Eq.
(16), for larger distances. Using straightforward algebra
and utilizing the inequality (p (( L, we obtain

k

xL2
1 —

28(p
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and, with Eq. (20),

2R* =4 (p.
+kgb T (22)

Before this result is discussed, we briefly turn to the
modulus correlation function Gy, Eq. (8). Using similar
techniques to those applied above, we obtain

kgT &.I cosk R
Gg oc 4o+

k
(23)

We omit the derivation of Eq. (23), because the modulus
part of the correlator does not fall to zero for large dis-
tances and thus does not destroy the long range order.
The dimensional crossover discussed here is entirely due
to the phase part, G~.

What is the physical meaning of the characteristic
length R*? If a given system is much smaller than R*,
the correlation function will vary only weakly over the
whole system, and, therefore, the system is essentially
zero dimensional. On the other hand, if the sample is
much larger than R', the rational decay of the correla-
tion function is evident from Eq. (16) and the system
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FIG. 1. "Phase diagram" for a 6nite, two-dimensional
superconductor. The dashed line denotes the dimensional
crossover region.

In Fig. 1 a crossover diagram is given for parame-
ters suitable for a one-unit-cell-thick YBa2Cu307 61m.
The dashed line denotes the crossover region at L R'.
This line does of cause not separate two thermodynamic
phases. The very concept of phase transitions is mean-
ingful only for infinite systems. Also, this line is based
upon Ginzburg-Landau theory and, therefore, it is du-
bious at low temperatures. We would like to point out
that Bandte found a crossover in the same region of lin-

ear dimensions L 102—10s A.
Up to this point only Gaussian fluctuations were con-

sidered. It is well known that vortex fluctuations also
play an important role in two-dimensional superconduc-
tors. This type of fluctuation is described by the KT
theory. ' Below the KT temperature TK~ all vortices and
antivortices are bound in pairs, whereas above TKy both
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bound pairs and free (anti)vortices exist and the quasi-
long-range order is destroyed. The bound pairs at lower
temperatures lead to a renormalization of the thermody-
namic properties, such as the exponent of the rational
decay, Eq. (16). This renormalization is small, except
very close to the phase transition. The KT temperature
for most materials, probably including YBa2Cu307 films,
is lower than T,o only by a few percent. Thus we do not
expect the previous results to be changed qualitatively by
Huctuating vortices, except for very small samples. For
very small systems, however, the KT theory becomes in-
creasingly inaccurate, because fewer and fewer vortices
are present.

In summary, we calculate the superconducting corre-

lation function of a finite, two-dimensional system. It is
found to have a Gaussian form at small distances and to
decay rationally at large distances. A crossover from ef-
fectively zero-dimensional behavior at low temperatures
to two-dimensional behavior is obtained. At even higher
temperatures, but below the bulk transition temperature,
a smeared out Kosterlitz- Thouless transition destroys the
rational decay of the correlation function and leads to
short range order.
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