
PHYSICAL REVIEW B VOLUME 49, NUMBER 2 1 JANUARY 1994-II

Self-consistent wave function for magnetic polarons in the t Jmodel
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We derive a wave function for a single hole in the t-J model that is an approximate solution to the
Schrodinger equation to all orders in the number of excited spin waves in the quasiparticle, for arbitrary
values of t/J. The self-consistent Green-function equation used by Schmitt-Rink, Varma, and Rucken-
stein and Kane, Lee, and Read arises as a consistency condition for the existence of a solution to the

Schrodinger equation. The approximation provides a wave function for the strong-polaron problem due

to electron-phonon coupling as well. The wave function predicts the same dipolar variation of the aver-

age staggered spin deviation at large distances, at the band minimum, as does the semiclassical wave

function of Shraiman and Siggia, but the quasiparticle state is not orthogonal to the bare-hole state

(zk %0).

The problem of a single hole in an antiferromagnetic
background has been studied extensively within the t-J
model. Excellent agreement is found between analytic re-
sults for the Green function obtained by a lowest-order
self-consistent approximation (LSCA) introduced by
Kane, Lee, and Read, ' and Schmitt-Rink, Varma, and
Ruckenstein, and the Green function obtained by exact
diagonalization of small systems. There has been no
theory for the wave function associated with the energies
calculated through the LSCA. It is shown here that an
approximation analogous to the retraceable path approxi-
mation allows one to solve the infinite dimensional set of
equations that are the Schrodinger equation to all orders
in the number of excited spin waves in the quasiparticle.
This leads to the LSCA for the Green function as a self-
consistency requirement for the solution for the wave
function to exist. The wave function permits a detailed
calculation at long and short distances of the structure of
the magnetic polaron formed around the hole. We find
that the long-distance behavior at the band minimum is
identical to that predicted by Shraiman and Siggia (SS)
from a semiclassical treatment, although the behavior at
the band maximum is difFerent. The same method is ap-
plicable to the electron-phonon interaction. The wave
function also permits a resolution of an apparent contrad-
iction in the literature between the prediction of the
LSCA and the semiclassical wave function of Shraiman
and Siggia (SS). The spin deviations of the background
at large distances from the hole are predicted to be dipo-
lar in their theory, and as Anderson has pointed out, ' ' '

if this is true, then the quasiparticle wave function used

by SS is orthogonal to the bare hole in the antiferromag-
net. There would then be a vanishing strength for the
quasiparticle pole in the Green function, zk =0, in con-
tradiction to the result of the LSCA, where the pole at
the band minimum has a finite strength. Sorella has in-
vestigated this question numerically for the large U Hub-
bard model and gives results that tend to support the
vanishing of the strength of the pole while the work of
Song and Annett on the t-J model, also numerical, sug-
gests that it is not zero.

Malshukov and Mahan have discussed the problem of
a static vacancy in the Heisenberg model, obtaining a

finite pole strength. Their results do not bear directly on
the problem with a finite hopping, since the dipolar pat-
tern is due to the hopping, and they make no argument
that the pole strength is continuous as t~O. The ques-
tion is central to discussions of the many-particle state,
since it is difficult to see how a Fermi liquid would arise
at finite densities if the pole strength was zero for a single
particle. We show here that the apparent contradiction
between the two lines of approach can be resolved by the
present fully quantum mechanical calculation of the wave
function for the hole.

The Hamiltonian we begin with is the approximation
to the t-J Hamiltonian obtained by treating the copper
spins with a spin-wave approximation, as derived in
different fashions in Refs. 1 and 2

H .=4tN '"-X—U(k q»fk qfka'q+fkf-k qaq j-
k, q

+ +co,a~a, , (1)
where U(k, q)=p, yk q+v yk, yk= —,

' (cosk„+cosky),
co =4JS(1—yk)', and p and v are the Bogolyubov
coefficients satisfying pq+v =[(1—yk)/(1+yk)]'
pq

—vq= 1. The fk are spinless fermion operators and
the a the boson spin wave operators. Let

~%)=a (k)fk~0)+N ' ga'(k, q)fk qaq~0)
q

+N ' ga (k, q„q2)fk q q aq aq, l0

+ 0 ~ ~ (2)

where a "(k,q, , . . . , q„) are coefficients to be determined,
and the vacuum is the product of the hole vacuum and
the spin-wave vacuum.

Then the Schrodinger equation (A, —H)~%) =0 corre-
sponds to an infinite set of equations, the first two of
which are

a (k)A, ——ga'(k, q)U(k, q)=0,l
(3)

q

'(k q)(~ —~, ) ——ga'(k, q, q )U(k q, q )—
l——ga (k, q„q)U(k —q, q&)=ao(k)U(k, q) . (4)

ql
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a "(k,q„.. . , q„)=a" '(k, q), . . . , q„,)

X U(k —q, —q2. . .—q„,)

X G(k —q, —q~. . .—q„,~—~

Nv. . . Co).
2 8

(10)

Let us assume that

a (k, q~, q2)=a'(k, q&)U(k q—, ,q, }

XG(k —q, —
q~, A,

— —~ ),
where

G(k, A)=[A.—X(k, A, )] (6)

and X and G are related by the LSCA

X(k, A)=N 'QU(k, q) G(k —
q, A,

—~&} .
q

Then, neglecting the second sum appearing in Eq. (4}, we

have
a'(k, q) =ao(k)U(k, q)G(k —q, A,

—co~) (8)

and A. is determined by

a (k) [iL—X(k, A, ) ]=0 . (9)

If A, is a pole of G, then a (k), which can be chosen to be

1, a'(k, q), a (k, q„qz) will be the wave function of the

quasiparticle in this approximation. The procedure out-

lined above can be extended to all orders and we will ob-

tain the solution

The right-hand side of the equation for a "(k,q„.. . , q„)
will be a" '(k, q„.. . , q„,)U(k —q, —q2. . .—q„
q„). Of the n +1 terms that arise from annihilating one
of the n +1 magnons in the n +1st term in the wave
function, only the term corresponding to annihilation of
the n + 1st magnon, or in other words, the last one creat-
ed as we have written the wave function, is retained. It is
easy to see that (10}is then always a solution at any or-
der. The neglect of the annihilation of all but the last
spin deviation created is the essence of the Brinkman and
Rice retraceable path approximation for the Green func-
tion, and the present work extends that approximation
to the calculation of the wave function. In fact, Rice and
Brinkman' have given a derivation for the Green func-
tion for a related model that is similar in spirit to the
derivation given here for the wave function. The wave
function obtained here is evidently on the same level of
approximation as the Green function of the LSCA. It is
also obvious that the approximation is valid for any
Hamiltonian with the same structure as (1), such as the
electron-phonon interaction. Having obtained the wave
function, we can examine the spin pattern around the
hole.

The average value of the spin on the copper at site j
due to the presence of a hole at site i is
(O'In;SJIq')/('PI%'), where n; =f; f~, S* in terms of
the spin-wave creation and annihilation operators is
S*=—,'(p +v )[(at +as)k(at —a )]. Then

N(+In;S*I%) =N ' ge ' J,'(p, +v )

q

X gN
n=0 Pyq]) ~ ~ ~

[a„'+&(k,P(q„. . . , q„—q))a„(k,q&, . . . , q„}

+a„'(q&, . . . , q„)a„+&(k,P(q&, . . . , q„q))]

k[U(k, —q)G'(k+q, A,
—co )—U(k, q)G(k —q, A,

—ro )]e + ' . (12)

I

odd under q~ —q, so that only the second bracketed
term in (12) contributes. The spin deviation is entirely in
the y direction and has the value

N( +
I n, S~I'0 ~ =+N 4t gsinq. (r; —r )

1 —BX/Bco
q

We want to evaluate this for large values of (r, —r }, that
is, small q, or q. We will choose k to be at the band
minimum (n/2, n/2) an.d A, =A,k. We have then

G '(k —q, Ak
—co~)=Ak —X(k —q, Ak

—co~) —co~ (13)

Since A, z
=X(k, A,z ) is the energy at the band minimum,

ar aXk
(k, lk)= =0,

and hence

(p~ +v~ }@~[sinq„+ sinq ]X
COq

which approaches, at large distances,
iq'. (r,.—r. ) V'ZZ+e Ã

Z(1 —aX/a~)

(16)(14}

G(k —q, Ak
—co~) ~ 1 — (k, kk)

ar
q g

& k (15)

a„'+i(k, P(q)—, . . . , q„—q))a„(k,q„. . . , q„)—a„'(q„.. . , q„}a„+,(k,P(q„. . . , q q})e ~' ' (ll}
where P(ql " q.,q }is a permutation of the arguments, and all permutations are summed over. q =q —

qo, qo
—(~,~).

The leading term, setting ao =1, is

N 'ge ' '
—,'(@~+ v~ )[U(k, —q)G'(k +q, A, co& }+U(k, q)G—(k —q, A, —co~ )]

q

The Green functions are real for the values of the argu-
ments we are interested in. Since U(k+qo, q)= —U(k, q) it follows that G(k+qo, q)=G(k, q}.
Then (15) holds as well when q ~0. At k =(m. /2, m/2),
the band minimum, U(k, q }=2'pz[sinq„+sinqz], and is

qx+ qyX gsinq (r; —r,. )

q

where the + sign depends upon the sublattice the hole is
on. pq+vq ~q' for small q, and q

' for small q.
There is thus no long-range component for the magneti-
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zation, but the staggered magnetization is the Fourier
transform of (q„+q )/q, the small q limit of the term in
brackets in (16). This is the asymptotic form predicted by
SS on the basis of a variational calculation, and corre-
sponds to a dipolar pattern in real space.

At k =0, U(k, q)=pzy +v and the functional form
G(k —q, A, k

—
co&) given by (15) still holds for sufficiently

small q, since A, k is now a maximum. U(k, q) is even un-
der q~ —

q, so that only the first bracketed term in (12)
contributes.

N & eln, S,"Ie& =N-',
X gcosq(r; —rj )

(Vq+ v,

)(aqua'q+vq

)
x ' ' ' ' ' . (18)

COq

The magnetization is in the x direction and short
ranged as SS predict, but there is also a long-ranged iso-
tropic component of the staggered magnetization varying
as 1/r that they have not treated. We would not expect a
dipolar contribution at this wave vector as there is no
particle current to produce it.

When higher-order terms in (11) are considered, the
only terms that contribute to the long-distance behavior
are the permutations in Eq. (11) in which the wave vec-
tor q is the first, for these are the only terms that are
singular as q~qp. Then

n+1a (k, q, q, , . . . , q„)
= U(k, q)G(k —q, Ak

—co )U(k —
q, q, )

X G(k —
q

—q„k,i,
—co —co )

ql

The first factor of 6 is singular at q=q. The remainder
are not. When the singularity due to the first Green's
function is factored out of a"+'(k, q„.. . , q„), and the
limit q =(~,m ) is taken in the remaining sums, we see
that the integrals are identical to those that would appear
in the nth term of the normalization factor ( 4 I

4 ) ex-
cept that half of the vertices and Green's function are
evaluated at k, rather than k. The vertex
U(k, q)= —U(k, q) while G(k, ro)=G(k, co). Thus, if
('PI%') =g„"=pI„,where 2n is the number of vertices ap-
pearing in the integrals, then the right-hand side of Eqs.
(16) and (18) is simply multiplied by a factor of
g„" p(

—1)"I„when we include the higher-order terms in

Eq. (11).
The factor [1—BX/Bro] ' in Eqs. (16) and (18) is just

the quasiparticle amplitude, zk, giving the overlap of a
bare hole with the quasiparticle. zk may be defined
directly from the wave function

zk —l&0lfklq'&I'/&q'I+&=&+Iq'& ' (20)

with ap =1 in Eq. (2). The two expressions for zk are not
obviously equivalent, and in fact, are not equal if one in-
cludes all possible permutations of the boson indices in
(2) when one calculates (O'I+). However, if only those
permutations corresponding to what would be noncross-
ing diagrams for a self-energy are considered, it may be
shown that the two expressions are identical. " In this
case, the terms I„ in the expression for the normalization
factor and the form factor g„p( —I )"I„canbe obtained

by iterating the equation

aX(k, z, )
'P% = 1—

Bco

=1+QU(k, q) IG(k —q, kk —co~)l
q

x 1 — (k —q, kk —co )
ar

(21)

ss(+I+)ss'= g [cos8;/2]
iAO

If we take for 8; the dipolar form p r;/r;, or any other
form that is not square integrable, ss( 4 I%' )ss will

diverge, and zk will be 0. This is Anderson's argument,
and it is valid even if one keeps only the leading terms in-
volving a single spin deviation, which are in any case, the
dominant terms at large distances. Nothing is lost by
making a spin-wave approximation for small values of 8, ,
so we have

I%') ss
=— 1+N ' +8qa IO) ~, (24)

where the a are related to the spin-wave operator a
by a Bogolyubov transformation. In particular

+a )= |(p +v )(a +a ), S~~=i/2(
—a )=i/2(p +v )(a —a ).

The wave function (22) remains unnormalizeable, for a
dipolar pattern, for which

8 ~(q +q )/q (25)

for small q since ss ( 4
I
4 )ss

= 1+N 'X
I
8

I
. In the state

(24), assuming 8 is real and 8 = —8, as it is for the
dipolar pattern, (S~)= —i8 By contrast. , the state we

have constructed in Eqs. (2 and 10) is to lowest order,
leaving out the ferrnion,

(23)

Ie) = lo), +N 'i'+B, at IO)sw,
q

(26)

Anderson has shown, using the SS wave function, that
zk%0 if the spin deviations are dipolar at large distances.
It is clear from the numerical work on the Green func-
tion ' that zk%0, when calculated from the definition
[1—BX/Bco], within the LSCA, even though, as we have
just shown, the average spin deviations at large distances
are dipolar, when k = ( m /2, m /2 ).

The vanishing of zk is equivalent to I%') being unnor-

malizable. From the above it is evident that zk%0 when

calculated directly from the wave function we have con-
structed, since it agrees with the value obtained from the
Green function. A comparison of the semiclassical wave
function of SS with the expression we have obtained will

make clear what the difficulty is with Anderson's argu-
ment.

In order to bring out the di8'erence between the two
wave functions, we will rewrite the SS wave function in a
form similar to (2).

I+)ss=g(1+e ' '2is;"tan8;iq)l0&~,
i&0

where 0)~ is the Neel state, and the hole is at i =0.
Then zk, for this wave function is again ss('PI%')ss,
where
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where ~0) sw is the spin-wave ground state.
With the same value for (S") as calculated from (24),

Be = (pe +v~ ) '8~. For small values of q, since

Pq+vq ~
Q

B ~ (q„+q» ) /q ~ (27)

and (4'~%) =1+% 'X(8
~

is finite.
Inclusion of higher-order terms in (26) will not affect

the normalizability since the hole can only excite a finite
number of spin waves, and the series for the normaliza-
tion of

~

qt ) will effectively terminate after a finite number
of terms. (The simplest estimate for I„, where nJ»t,
would be I„o-1/n .)

The dipolar behavior of the spin pattern, as pointed
out by SS, arises from the symmetry of the terms cou-
pling the hopping of the hole to the background spins.
This is a general feature of the t-J model that is preserved
by the Hamiltonian (1) and the LSCA. The non-
normalizability arising from the use of the SS wave func-
tion as a variational ansatz is, however, an artifact of the
ansatz, and is not inherent in the dipolar long-distance
behavior of the spin deviation on the quasiparticle. As to
which wave function is a better choice, it seems clear that
the SS wave function ignores correlations that are actual-
ly present in the physical ground state, which will be
rather close to the spin-wave vacuum, ' and it is the ig-
noring of these correlations that leads to zk =0.

It might be thought that if the wave function was ob-
tained exactly, zk would be zero, and that the LSCA re-
sult is an artifact of that approximation. But for any
wave function, at sufficiently large distances, the ampli-
tude of the spin deviation would be small, and the wave
function would be describable by (26). The only effect of
solving for

~
4 ) more accurately would be to change the

coefficient in front of Bq, which would change the value
of zk but not the fact that it was nonzero. This is corro-
borated to some extent by the work of Liu and Manous-
sakis, ' in which they have included the leading vertex
correction to Eq. (7), with very small effects, suggesting
that zk would not be far from the value predicted by the
LSCA. As t ~0, the value of zk should go continuously
to that calculated by Malshukov and Mahan. It will not
do so in the present calculation because we have left out
the terms corresponding to the vacancy in the Heisenberg
part of the model. There is then no reason to doubt that

zk is finite for a single hole in the t-J model and the possi-
bility remains that the many-hole state is a Fermi liquid.

If that is the case, then for a density of holes
sufficiently low that antiferromagnetic order is not des-
troyed, the properties of the system may be treated as a
noninteracting gas of the quasiparticles we have de-
scribed. The wave function can also be used in a varia-
tional calculation of the interaction between quasiparti-
cles.

In conclusion, we have presented a completely quan-
tum mechanical solution for the wave function of a hole
in the t-J model based on an extension of the retraceable
path approximation. The lowest-order self-consistent ap-
proximation for the Green function arises as a consisten-
cy condition for the existence of a solution. The method
can be applied directly to the electron-phonon interaction
to provide a wave function in the strong polaron limit.
The long-distance behavior of the spin deviations around
the hole reproduce the form predicted by Shraiman and
Siggia from a semiclassical theory, at the band minimum,
with a prediction for the absolute amplitude of the devia-
tions. At the band maximum, there is a long-ranged iso-
tropic distortion described by the quantum wave function
not treated in the semiclassical theory. There is no
orthogonality catastrophe for the quantum solution
(zk%0), as the correlations due to the zero point motion
make it possible for the overlap between the bare hole
and the quasiparticle to be finite even though the spin
pattern is long ranged.

Ramsak and Horsch" have recently published a com-
parison of the predictions of the wave function derived
here with the results of exact diagonalizations on finite
size systems. The agreement is excellent at the physical
value of t/J, where three terms in the series for the wave
function [Eq. (2)], are sufficient for an accurate represen-
tation.
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