NMR study of spin dynamics at planar oxygen and copper sites in $YBa₂Cu₄O₈$

Izumi Tomeno,* Takato Machi, Keishi Tai, and Naoki Koshizuka

Superconductivity Research Laboratory, International Superconductivity Technology Center, Shinonome, Koto-ku, Tokyo 135, Japan

Shinsaku Karnbe, Akihiko Hayashi, Yutaka Ueda, and Hiroshi Yasuoka

Institute for Solid State Physics, University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan

(Received 24 January 1994)

The planar-oxygen Knight shift ¹⁷K and nuclear spin-lattice relaxation rate $({}^{17}T_1)^{-1}$ have been deter mined in the superconductor $YBa_2Cu_4O_8$. The present oxygen results have been analyzed in connection with the planar-copper relaxation rate $(^{63}T_1)^{-1}$ data. In the normal state, both ^{17}K and $(^{17}T_1T)^{-1}$ decrease as the temperature is lowered towards $T_c = 81$ K, while $(^{63}T_1T)^{-1}$ shows a maximum around 160 K. Comparison with $YBa₂Cu₃O_{6+x}$ data strongly suggests that both the q and the temperature depen dences of the magnetic fluctuations in $YBa₂Cu₄O₈$ present a similarity to those for the 60-K phase of $YBa_2Cu_3O_{6+x}$ in the normal state above 110 K. In the superconducting state, $(^{63}T_1T)^{-1}$ decrease significantly with decreasing temperature, while the slope for $({}^{17}T_1T)^{-1}$ shows a slight change near T_c . The considerable decrease in ${}^{17}T_1/{}^{63}T_1$ below T_c suggests that the loss of antiferromagnetic fluctuation is dominant in the superconducting state.

I. INTRODUCTION

Nuclear-magnetic-resonance (NMR) and nuclearquadrupole-resonance (NQR) studies have focused on $YBa₂Cu₃O_{6+x}$ (Y-1:2:3) in order to investigate the relationship between superconductivity and antiferromagnetic fluctuations in the CuO₂ plane of high- T_c materials.¹ The distinct temperature dependence of the spin-lattice relaxation rates at planar Cu and 0 sites has established ^a picture that the dynamical spin susceptibility in the normal state of Y-1:2:3 is enhanced around the $q = (\pi, \pi)$ position.² The T_c value for Y-1:2:3 is sensitive to the oxygen population at the CuO chain site. Both NMR and NQR studies have revealed that the oxygen content in superconducting Y-1:2:3 considerably changes both the temperature and the q dependences of the spin suscepti bility in the $CuO₂$ plane.^{3,4} Rossat-Mignod and coworkers⁵ observed a loss of low-energy spin excitations in oxygen-deficient Y-1:2:3 at temperatures higher than T_c using the neutron inelastic-scattering technique. This observation seems to correspond to a spin-gap behavior proposed from a peak of $({}^{63}T_1T)^{-1}$ at the planar Cu site as a function of temperature.

The 81-K superconductor $YBa₂Cu₄O₈$ (Y-1:2:4) also belongs to the Y-Ba-Cu-0 family. A high-quality Y-1:2:4 material has been synthesized under a high-oxygenpressure atmosphere.⁷ Y-1:2:4 has a crystal structure parallel to Y-1:2:3 with the exception of double CuO chain sites.⁸ Both crystals have $CuO₂$ square planes and an apical oxygen related with the square in common. A characteristic feature of $Y-1:2:4$ is that the removal of oxygen in the double CuO chains is prevented in the range up to 800'C. The oxygen content is fixed for highpressure synthesized Y-1:2:4. This stability has raised the hope that we can derive the intrinsic nature of the $CuO₂$ plane in high- T_c superconductors from NMR and NQR studies on the stoichiometric compound Y-1:2:4. The oxygen spin-lattice relaxation rates $({}^{17}T_1)^{-1}$ for Y-1:2:4 with $T_c = 74$ K have been reported by Zheng et al.⁹ For Y-1:2:4 $({}^{17}T_1T)^{-1}$ are found to be considerably lower than those for the 60 K phase of Y-1:2:3 above 120 K, although the similarity of $({}^{17}T_1T)^{-1}$ between these materials are noticeable at lower temperatures. Thus their $\left({}^{17}T_1\right)^{-1}$ data suggest that the spin fluctuations in Y-1:2:4 fill a unique position in the Y-Ba-Cu-0 family. They also found that the planar-oxygen Knight-shift in the normal state of $Y-1:2:4$ is higher than that for the 60-K phase of Y-1:2:3. On the other hand, Mangelschots et al .¹⁰ showed that the planar-oxygen Knight shift for $Y-1:2:4$ is similar in behavior to that for oxygen-deficient Y-1:2:3. The point in controversy should be settled by further NMR experiments on Y-1:2:4 with $T_c = 81$ K.

MR experiments on Y-1:2:4 with $T_c = 81$ K.
Previously Machi *et al*.¹¹ reported the Cu spin-lattic relaxation rates $({}^{63}T_1)^{-1}$ up to 680 K in this material using the NQR technique. They showed that $({}^{63}T_1)^{-1}$ in the normal state are divided into $q = (0,0)$ and $q = (\pi, \pi)$ contributions. Their data were consistent with those for Zimmermann et al .¹² except for the range above 500 K. The present NMR measurements extend to the planaroxygen Knight-shift and spin-lattice relaxation rate in Y-1:2:4 with $T_c = 81$ K. Comparison with Y-1:2:3 NMR $data³$ reveals that the normal-state spin fluctuations at planar Cu and O sites for $Y-1:2:4$ are similar in behavior to those for the $60-K$ phase of Y-1:2:3 at temperature above 110 K. Below T_c the ratio $^{17}T_1/^{63}T_1$ for Y-1:2:4 suggests the suppression of antiferromagnetic fluctuations with decreasing temperature. Magnetic fluctuations observed at both sites in Y-1:2:4are discussed in conjunction with neutron and NMR experiments on the Y-1:2:3 system.

II. EXPERIMENTAL PROCEDURE 3.5

The Y-1:2:4 materials were synthesized by a highoxygen-pressure technique. Appropriate mixtures of Y_3O_3 , BaCO₃, and CuO were fired at 920 °C in flowing O₂ at one atmosphere for a week. The powders were pressed into pellets and fired at 940'C for two weeks with intermediate grinding. These ceramics were then reacted in a mixed gas of O_2 (20%) and Ar (80%) at 100 MPa and 1060'C for 12 h using a hot isostatic press apparatus. Powder x-ray diffraction for the present samples indicated a single phase of Y-1:2:4. An exchange for 17 O was made by annealing the powdered sample at 500'C for 80 h in a 17 O-enriched gas. A mixture of Y-1:2:4 powder with epoxy (Stycast 1266) was fixed in an 8-T magnetic field at room temperature to obtain a c-axis aligned sample.

Magnetization measurements were carried out using a superconducting quantum interference device magnetometer. The susceptibility γ for the powder sample used for this work was taken under field-cooled (FC) and zerofield-cooled (ZFC) conditions at 10 Oe. As shown in Fig. 1, the present $Y-1:2:4$ sample indicates a sharp superconducting transition at $T_c = 81$ K and the 60% Meissner volume at 5 K without any demagnetization correction. Figure 2 shows the normal-state susceptibility at ¹ T. The bulk susceptibility γ in the normal state decreases gradually with decreasing temperature. This is similar in behavior to χ for the oxygen-deficient Y-1:2:3 with $T_c = 60 \text{ K.}^{13}$

In this paper we use the following notation for each copper and oxygen site. The double $Cu(1)-O(1)$ chains are parallel with the b axis. The $Cu(2)-O(2)-Cu(2)$ bond axis in the $CuO₂$ plane is parallel with the b axis, and the other $Cu(2)-O(3)-Cu(2)$ bond axis is along the *a* axis. The apical oxygen $O(4)$ connects Cu(1) and Cu(2) along the c axis.

The NMR spectra were taken with a standard pulsed NMR apparatus. The spin-echo intensity vs the magnetic field was obtained using a boxcar integrator. Knight

FIG. 1. Temperature dependence of zero-field-cooled (ZFC) and field-cooled (FC) susceptibilities for $YBa₂Cu₄O₈$ used for the present study. The data were taken at a 10-Oe field.

FIG. 2. Normal-state susceptibility for $YBa₂Cu₄O₈$ sample measured at ¹ T.

shifts were determined by using a set of first and second satellite lines at 65.¹ MHz. The spin-lattice relaxation rates ${}^{17}T_1^{-1}$ for O(2) at 33 MHz in a 5.71-T field parallel to the c axis were determined by measuring the spin echo to the c axis were determined by measuring the spin echometric from the first higher-field satellite $(\frac{3}{2} \leftrightarrow \frac{1}{2})$ transition. Furthermore, we measured the planar Cu(2) NQR relaxation rate on the same sample up to 300 K and found that the present data are in good agreement with the results re-
ported previously.¹¹ ported previously.¹¹

III. OXYGEN NMR SPECTRA AND ELECTRIC-FIELD GRADIENT

Figure 3 shows the 17 O NMR spectrum of Y-1:2:4 at 100 K and 65.1 MHz for the applied field along the c axis $(H||c)$. The quadrupole interaction with the nuclear spin $I=\frac{5}{2}$ should give a set of five resonance lines for each oxygen site. In Fig. 3, four pairs of slightly split satellite lines from $O(2,3)$ indicate a little difference in the electric-field gradient (EFG) between the O(2) and O(3) sites. A similar situation has been found for the planar oxygen in Y-1:2:3 (Ref. 14). We assumed that the absolute value of quadrupole frequency v_c for the O(2) site is larger than for the $O(3)$ site, in view of the Y-1:2:3 re-

FIG. 3. ¹⁷O NMR spectrum taken at 65.1 MHz and 100 K of aligned YBa₂Cu₄O₈ sample with c axis parallel to applied field.

FIG. 4. ¹⁷O NMR spectrum taken at 65.1 MHz and 100 K of aligned $YBa₂Cu₄O₈$ sample with c axis perpendicular to applied field.

sult.¹⁴ Figure 4 shows the ¹⁷O spectrum of Y-1:2:4 at 100 K and 65.1 MHz with the field perpendicular to the c axis $(H \bot c)$. A two-dimensional powder spectrum should exhibit two sets of five singularities for each oxygen site, corresponding to the condition that the external field H is parallel or perpendicular to the Cu-0-Cu bond axis. In Fig. 4, the O(2) resonance lines for $H || b$ overlap with the O(1) lines for $H||b$, indicating that the quadrupole frequency v_b for the O(2) site is nearly equal to that for the O(1) site. A detail analysis of this spectrum will be published elsewhere.¹⁵

We derive the quadrupole frequencies v_a from the first We derive the quadrupole frequencies v_{α} from the first $(\frac{1}{2} \leftrightarrow \frac{3}{2})$ and the second $(\frac{3}{2} \leftrightarrow \frac{5}{2})$ satellite lines. Here v_{α} is expressed as $v_{\alpha} = \frac{3}{20} |eQ| V_{\alpha\alpha}$, where Q is the nuclear electric quadrupole moment, and $V_{\alpha\alpha}$ is the EFG with respect to the α direction. The v_{α} values in Table I are obtained using the relation $v_a + v_b + v_c = 0$. The present data in Table I are in good agreement with the results of Mangelschots et al.¹⁰ The v_c values at the O(2,3) and the $O(4)$ sites for Y-1:2:4 are comparable to those for Y-1:2:3 (Refs. 4 and 14). The structural difference at the chain site has a slight influence on EFG at the other oxygen positions.

The present v_a data for Y-1:2:4 are consistent with the EFG calculation made by Ambrosch-Draxl, Blaha, and Schwarz.¹⁶ The EFG at the O site of high- T_c materials is mainly dominated by an asymmetric internal charge distribution around the nucleus. The EFG calculation

TABLE I. Quadrupole frequency components (in MHz) at oxygen sites for $YBa_2Cu_4O_8$ and $YBa_2Cu_3O_7$. The $YBa_2Cu_3O_7$ data were taken from Takigawa et al. (Ref. 14).

$YBa_2Cu_4O_8$				$YBa_2Cu_3O_7$		
Position	${\boldsymbol{\nu}}_a$	v_h	\mathcal{V}_c	v_a	v_h	v_c
O(1)	0.845		$0.905 - 0.0641$	-0.484		$1.629 - 1.145$
O(2,3)	0.909		$-0.558 - 0.349$		$0.986 - 0.598 - 0.387$	
			-0.365	0.966		-0.369
O(4)		$-0.366 - 0.612$	0.978		$-0.375 -0.721$	1.096

shows that the axis for the maximum EFG component at each O site is parallel to the Cu-O $dp-\sigma$ bonding axis.^{16,17}

IV. OXYGEN KNIGHT SHIFT

Figure 5 shows the temperature dependence of the oxygen Knight shifts for $H \| c$, $^{17}K_{i,c}$, where i denotes the oxygen site. Here we derived the ${}^{k,17}K_{i,c}$ value from a set of resonance lines except for the central line. In the normal state, ${}^{17}K_{2,c}$ for the planar O(2) site decreases gradually with decreasing temperature. Note that ${}^{17}K_{2,c}$ is slightly higher than ${}^{17}K_{3,c}$ below 175 K. The existence of double CuO chains along the b axis appears to induce the Knight-shift difference between the two planar-oxygen sites. The ${}^{17}K_{2,c}$ value at 100 K is in agreement with the value reported by Mangelschots et al .¹⁰ The present data, however, are different from those reported by Zheng et al ⁹ in a wide temperature range. This discrepancy may be related to the fact that their Y-1:2:4 sample has a lower superconducting temperature ($T_c = 74$) K).

The $O(2,3)$ hyperfine interaction between the ^{17}O nuclear spin I and the Cu electron spin S is expressed as

$$
H_{\rm O} = \sum_{\alpha,j} C_{\alpha} I_{\alpha} S_{\alpha,j} \tag{1}
$$

where C_a is the transferred hyperfine coupling. The Knight shift ${}^{17}K_{2,c}$ consists of the spin and orbital parts,

$$
{}^{17}K_{2,c} = {}^{17}K_{2,c}^{\text{spin}} + {}^{17}K_{2,c}^{\text{orb}} \,, \tag{2}
$$

where ${}^{17}K_{2,c}^{orb}$ is temperature independent. The spin part is related to the spin susceptibility χ^{spin} by

$$
{}^{17}K_{2,c}^{\text{spin}} = C_c \chi^{\text{spin}} / \mu_B N \tag{3}
$$

where μ_B is the Bohr magneton, and N is the Avogadro's number. The Knight shift ${}^{17}K_{2,c}$ is plotted in Fig. 6 as a function of bulk susceptibility χ . The temperature-

FIG. 5. Temperature dependence of ${}^{17}K_{i,c}$ for O(i) site in $YBa₂Cu₄O₈$. The superconducting-state data are plotted without any diamagnetic field correction.

0.12— $17_{K_{2,c}(96)}$ 0.10— 0.08— 0.06— $0.04\frac{1}{2.2}$ 2.4 ^s I i ^s ⁱ I ^s ^s ⁱ I i i i I i ⁱ i Susceptibility (10⁻⁴ emu/mol)

FIG. 6. Knight shift ${}^{17}K_{2,c}$ vs bulk susceptibility χ in $YBa₂Cu₄O₈$. The line is a linear fit.

dependent part of the bulk susceptibility χ originates from the spin susceptibility χ_{spin} . In Y-1:2:4 the spin susceptibility is given by $\chi^{\text{spin}} = 2\chi_1^{\text{spin}} + 2\chi_2^{\text{spin}}$, where χ_i^{spin} stands for the $Cu(i)$ site spin susceptibility. In the normal state $^{63}K_{1,c}$ has a slight decrease with decreasing temperature, while $^{63}K_{2,ab}$ shows a marked decrease.¹⁸ Roomtemperature value for $^{63}K_{1,c}$ is two-thirds of that for $^{63}K_{2,ab}$. We evaluate $C_c = 140$ kOe/ μ_B from the slope $dK_{2,c}/d\chi$ in Fig. 6, on the following assumptions. (1) The orbital Knight-shift components are the same as in Y-1:2:3 (Ref. 19). (2) In the normal state χ_1^{spin} is proportional to χ_2^{spin} and the ratio $\chi_1^{\text{spin}}/\chi_2^{\text{spin}}$ is equal to $K_{1,c}^{\text{spin}}/^{63}K_{2,ab}^{\text{spin}}$. Here we estimate $^{63}K_{1,c}^{\text{spin}}=0.10\%$ and $^{63}K_{2,ab}^{\text{spin}}=0.24\%$ at room temperature from the Y-1:2:4 data.¹⁸ On the other hand, Yoshinari et $al.$ ⁴ obtained that the C_c value for Y-1:2:3 is of the order of 100 kOe/ μ_B . They made two assumptions; (1) χ_1^{spin} at the fourfold Cu(1) site is equal to χ_2^{spin} and (2) χ_1^{spin} at the twoor threefold Cu(1) site is zero. Although all the Cu(1) sites in Y-1:2:4 are surrounded by four neighbor O(1) sites, the assumption that χ_1^{spin} is equal to χ_2^{spin} is not applicable to the case of Y-1:2:4. The role of the Cu(1) spin should be clarified to compare the C_c value for Y-1:2:4 with that for the 60-K phase of Y-1:2:3.

V. RELAXATION RATES AT THE PLANAR-OXYGEN AND COPPER SITES

A. Relaxation rates above T_c

Figure 7 shows the temperature dependence of $({}^{17}T_1T)^{-1}$ for the O(2) sites and $({}^{63}T_1T)^{-1}$ for the Cu(2) sites in Y-1:2:4. For O(2), $({}^{17}T_1T)^{-1}$ decreases with decreasing temperature, changes the slope at temperatures just below T_c , and then decreases gradually below 50 K. Our $({}^{17}T_1T)^{-1}$ data above 160 K are considerably higher than the values measured by Zheng et al .⁹

For Cu(2), $({}^{63}T_1T)^{-1}$ increases with decreasing tem-

FIG. 7. Temperature dependence of $({}^{17}T_1T)^{-1}$ for O(2) sites and $({}^{63}T_1T)^{-1}$ for Cu(2) sites in YBa₂Cu₄O₈.

50 100 150 200 Temperature (K)

Cu(2)

0

~ e ~

250

 $\pmb{\cdot}$

O(2,3)

0 0

r r ر
م \Box

 $T_C = 81 K$

FIG. 8. Comparison of present $({}^{\alpha}T_1T)^{-1}$ data for $YBa₂Cu₄O₈$ (triangles) with those for $YBa₂Cu₃O_{6+x}$. The data for the 90-K phase (circles) and the 60-K phase (squares) of $YBa₂Cu₃O_{6+x}$ were taken from Hammel et al. (Ref. 2) and Takigawa et al. (Ref. 3), respectively. (a) $({}^{17}T_1T)^{-1}$ at the $O(2,3)$ site. (b) $(^{63}T_1T)^{-1}$ at the Cu(2) site.

— 6

4 CO O $~\bar{~}$ 2 — 1

 $\frac{1}{300}$

 0.14

perature, exhibits a broad peak near 160 K and then decreases drastically in the vicinity of T_c . The present $({}^{\alpha}T_1T)^{-1}$ data for Y-1:2:4 are compared with the Y-1:2:3 data of Hammel et al .² and Takigawa et al .³ in Fig. 8. Note that the normal state $({}^{17}T_1T)^{-1}$ for Y-1:2:4 is nearly equal to that for the oxygen-deficient $Y-1:2:3$ in a wide temperature range above 110 K. A similar situation is found for $({}^{63}T_1T)^{-1}$ in the same range between the two materials.

In general, $({}^{\alpha}T_{1}T)^{-1}$ for the nucleus α is expressed in terms of the imaginary part of the spin susceptibility $\text{Im}\gamma(q,\omega)$

$$
({}^{\alpha}T_1T)^{-1} = \frac{{}^{\alpha}\gamma^2k_B}{2\mu_B^2} \sum_q |^{\alpha} A(q)|^2 \frac{\text{Im}\chi(q,\omega)}{\omega} . \tag{4}
$$

Here, ω is the nuclear Larmor frequency and $\alpha \gamma$ is the nuclear gyromagnetic ratio. The form factor ${}^{\alpha}A(q)$ represents the Fourier transform of the hyperfine coupling. Under the present experimental condition, these are given by

$$
^{17}A(q)=2C\cos(q_{x}/2), \qquad (5)
$$

$$
^{63}A(q) = A_{ab} - 2B(\cos q_x + \cos q_y), \qquad (6)
$$

where A_{ab} is the direct hyperfine coupling of the ⁶³Cu nuclei, and B is the transferred hyperfine coupling to the nearest-neighbor Cu spins.²⁰ The O(2) nuclei have the form factor $^{17}A(q)$ that filters antiferromagnetic fluctuations in the neighboring Cu sites. Thus the O(2) relaxation rate is dominated by spin fluctuations in a broad q space around $q = (0,0)$. On the other hand, the form factor $^{63}A(q)$ has double peaks at $q = (0,0)$ and $q=(\pi,\pi)\equiv Q.$

First, we consider the Cu(2) relaxation behavior in the normal state. We have found that $(^{63}T_1T)^{-1}$ above 250 K are well described by a Curie-Weiss form

$$
({}^{63}T_1T)^{-1} = a + \frac{b}{(T+\theta)} \t{,} \t(7)
$$

where the first term is the contribution around $q = (0,0)$, and the second term is the contribution from antiferromagnetic spin fluctuations. The solid line in Fig. 9 is the fit to the data with $a = 0.28(\sec^{-1} K^{-1})$, $b = 1454 \sec^{-1}$ and θ =29 K. The agreement is quite good. This means that the normal-state Cu(2) relaxation rate is dominated by antiferromagnetic fluctuation near Q.

The normal-state $(^{63}T_1T)^{-1}$ in Y-1:2:4 deviates from the Curie-Weiss law at lower temperatures, as shown in Fig. 9. The gradual decrease behavior of $($ ⁶³ T_1T $)^{-1}$ is also recognized for oxygen-deficient Y-1:2:3 in a broader range between 160 K and $T_c = 60$ K. This anomaly has been discussed in connection with the existence of a spin gap above T_c . Here we argue that the spin gap opens at the temperature T^* where $({}^{63}T_1T)^{-1}$ reaches the maximum in the normal state. Rossat-Mignod et al ⁵ pointed out that the Im $\chi(q,\omega)$ vs ω relationship deduced from neutron scattering for the oxygen-deficient $Y-1:2:3$ is consistent with the temperature dependence of $({}^{63}T, T)^{-1}$ determined from NMR experiments. The deviation from the Curie-Weiss law implies that the low-energy spectral

FIG. 9. Temperature dependence of $({}^{63}T_1T)^{-1}$ for Cu(2) sites in $YBa₂Cu₄O₈$ up to 680 K. The data above 250 K are taken from Machi et al. (Ref. 11). The line is a fit to the data above 250 K with Eq. (7).

weight in $\gamma(Q,\omega)$ shifts to the high-energy part with decreasing temperature. For Y-1:2:4 with $T_c = 81$ K and the 60-K phase of Y-1:2:3, $(5^{3}T_{1}T)^{-1}$ has a broad peak at $T^* \approx 160$ K. On the other hand, $({}^{63}T_1T)^{-1}$ for the 90-K phase of Y-1:2:3 has not a clear peak above T_c . These results imply that T^* for the development of a spin gap has little correlation with T_c .

Second, we discuss the $({}^{17}T_1T)^{-1}$ data in the normal state. For noninteracting conduction electrons, both K^{spin} and $({}^{\alpha}T_{1}T)^{-1}$ obey the Korringa relation

$$
[{}^{\alpha}T {}_{1}T({}^{\alpha}K {}^{\text{spin}}){}^{2}]^{-1} = \frac{{}^{\alpha}\gamma^{2}4\pi k_{B}}{{}^{\gamma}{}_{e}^{2}\hslash} \equiv S , \qquad (8)
$$

where γ_e is the electronic gyromagnetic ratio. The Korringa value S is estimated to be 6.98×10^4 sec⁻¹ K⁻¹ for an oxygen nucleus. In Fig. 10 we plot $(^{17}T_1T^{17}K_{2,c}^{\text{spin}})^{-1}$ and $\left[{}^{17}T_1 T^{17}(K_{2,c}^{\text{spin}})^2 \right]^{-1}$ for the O(2) site in Y-1:2:4 as a function of temperature. Here we use $^{17}K_{2,c}^{orb} = -0.014\%$ for Y-1:2:4, assuming that ${}^{17}K_{2,c}^{\text{orb}}$ is the same as in Y-1:2:3 (Ref. 3). The quantity $[{}^{17}T_1T^{15}(K_{2,c}^{\text{spin}})^2]^{-1}$ is practicall constant in the range above 150 K. However, deviation from the Korringa relation $T_1 T K^2 = \text{const}$ is found in the vicinity of T_c . This is similar in behavior to the result for the $60-K$ phase of Y-1:2:3 (Ref. 3). A shown in Fig. 10, $\left[\frac{^{17}T_1 T^{17} K_{2,c}^{\text{spin}}}{^{17}T_2} \right]^{-1}$ is weakly temperature dependent near T_c . Comparison with the data for the oxygen-efficient Y-1:2:3 (Ref. 3) suggests that $({}^{17}T_1T)^{-1}$ is roughly proportional to ¹⁷K^{spin} in the vicinity of T_c in the two materials.

As shown in Fig. 8(a), the normal-state $(^{17}T_1T)^{-1}$ values for Y-1:2:4 and the $60-K$ phase of Y-1:2:3 are considerably lower than for the 90 K phase of Y-1:2:3.

FIG. 10. Plots of $({}^{17}T_1T^{17}K_{2,c}^{\text{spin}})^{-1}$ and $[{}^{17}T_1T^{17}(K_{2,c}^{\text{spin}})^2]$ for $O(2,3)$ sites in $YBa₂Cu₄O₈$ as a function of temperature. The line indicates the Korringa value S for an oxygen nucleus.

Moreover, $({}^{17}T_1T)^{-1}$ for Y-1:2:4 exhibits a steady decline as the temperature is lowered toward T_c . The temperature dependent $({}^{17}T_1T)^{-1}$ remains an unsolved problem of cuprate superconductors. Based on Eq. (4), the $({}^{17}T_1T)^{-1}$ data indicate the decrease in Im $\chi(q,\omega)$ around $q = (0,0)$ with decreasing temperature.

One possibility is that the appearance of a spin gap at $q = Q$ disturbs the Im $\chi(q, \omega)$ spectrum around $q = (0,0)$. For Y-1:2:4 and the oxygen-deficient Y-1:2:3, the gap is created at $T^* = 160$ K. Figure 7 illustrates that $({}^{17}T_1T)^{-1}$ starts to decrease at a high-temperature region where the spin gap disappears. Tanamoto, Kuboki, and Fukuyama²¹ calculated the dynamical spin susceptibilit $\chi(q,\omega)$ based on the t-J model. According to this model, the maximum of $({}^{63}T_1T)^{-1}$ is due to the spin gap near 0.1 J. The calculated $\chi(q,\omega)/\omega$ shows that the suppres- $\chi(q, w)/w$ shows that the suppression of the peak at $q = Q$ gives rise to an anomaly along the diagonal line joining $q = (0,0)$ and $q = Q$. The temperature-independent $({}^{17}T_1T)^{-1}$ is predicted in a highly doped region. Their calculation, however, shows that $({}^{17}T_1T)^{-1}$ in a lightly doped region increases gradually with decreasing temperature, in contrast to the observed behavior. Subsequently Tanamoto, Kohno, and Fukuyama²² proposed the concept that singlet resonating-valence-bond (RVB) pairing is responsible for the decrease in $\chi(q)$ at $q=0$ and $q=Q$ for the lightly doped region. Bucher et al^{23} found that the CuO₂ plane resistivity along the a axis in Y-1:2:4 exhibits a strong correlation with the spin dynamics. The normal-state resistivity deviates from the linear temperature dependence below T^* . Furthermore, the Hall coefficient R_H in Y-1:2:4 varies inversely as the temperature above T^* and increases considerably in the range between T_c and T^{*} . ^{23,24} Thus the opening of the spin gap appears to have an influence on these transport properties of Y-1:2:4. The transport behavior connected with the spin gap seems consistent with the theoretical prediction.²² From the experimental point of view, it is still open to question whether an RVB state exists in high- T_c superconductors or not.

Millis and Monien²⁵ calculated $({}^{\alpha}T_{1}T)^{-1}$ based on the spin Hamiltonian including a large exchange interaction within the CuO₂ planes, J_1 , and a small exchange interaction between nearest-neighbor $CuO₂$ planes, $J₂$. According to their model, the decrease in $({}^{17}T_1T)^{-1}$ is governed by J_2 , and the $({}^{63}T_1T)^{-1}$ peak is determined by the interplay between J_1 and J_2 . For the 90-K phase of Y-1:2:3, $({}^{17}T_1T)^{-1}$ is temperature independent. Above 110 K the $({}^{17}T_1^{\dagger}T)^{-1}$ data for Y-1:2:4 are nearly equal to those for the 60-K phase of Y-1:2:3. In view of these results, the model should satisfy the following two conditions. (1) J_2 is sensitive to the hole population in the $CuO₂$ plane, and (2) the hole population in the $CuO₂$ plane of Y-1:2:4 is comparable to that for the 60-K phase of Y-1:2:3.

The Hall coefficient R_H for Y-1:2:4 is about 15% of that for Y-1:2:3 at room temperature.^{26,27} The large difference in R_H appears to be unfavorable for the picture that $\chi(q,\omega)$ for the Y-Ba-Cu-O family is determined by the average hole concentration. To be consistent with the picture we interpret that the excess holes in the double CuO chain of Y-1:2:4 contribute to R_H . The anisotropic resistivity data in the ab plane suggest that some part of the mobile holes is distributed at the CuO chain sites. $23,27$

Third, we consider the ratio of the relaxation rate at the Cu(2) site to that at the O(2,3) site, $^{17}T_1/^{63}T_1$, in the normal state. In Fig. 11, the present ${}^{17}T_1/{}^{63}T_1$ data for $Y-1:2:4$ are compared with those for the $Y-1:2:3$ system obtained by Yoshinari, Yasuoka, and Ueda.²⁸ For Y-1:2:4, ${}^{17}T_1$ /⁶³ T_1 increases with decreasing temperatur reaches a peak just above T_c . A similar behavior has been found for the 60-K phase of Y-1:2:3 in the range above 100 K. The maximum ${}^{17}T_1/{}^{63}T_1$ value for Y-1:2:4 is considerably higher than that for the 90-K phase of Y-1:2:3.

Based on the antiferromagnetic Fermi-liquid model proposed by Millis, Monien, and Pines (Ref. 29)
 ${}^{17}T_1/{}^{63}T_1$ is approximately proportional to $(1+\xi^2)$ where ξ is the antiferromagnetic correlation length. Thus the Y-1:2:4 data in Fig. 11 suggest that the normal-state ξ

FIG. 11. Temperature dependence of ratio ${}^{17}T_1/{}^{63}T_1$ for $YBa₂Cu₄O₈$ and $YBa₂Cu₃O_{6.96}$. The $YBa₂Cu₃O_{6.96}$ data with $T_c = 87$ K are taken from Yoshinari, Yasuoka, and Ueda (Ref. 28).

increases gradually with decreasing temperature. In addition, the opening of the spin gap near $T^* = 160$ K appears to have no effect on the gradual increase in ξ . Neutron-scattering studies on the Y-1:2:3 system, however, have suggested that ξ derived from $\gamma(q,\omega)$ is essentially independent of temperature in a wide temperature range.^{5,30} Millis and Monien³¹ pointed out the possibility that the half-width of the peak in $\text{Im}\chi(q,\omega)$ is independent of ξ at high ω even if ξ is temperature dependent Tranquada et al ³⁰ have shown that the q dependence of $\text{Im}\chi(q,\omega)$ around Q is anisotropic in the ab plane of Y-1:2:3. Furthermore, the q width of the $\text{Im}\chi(q,\omega)$ peak is ω dependent. This complicated situation presents difficulty in comparing ξ deduced from the $^{17}T_1/^{63}T_1$ data with ξ determined by neutron experiments.

Note that the normal-state ratio ${}^{17}T_1/{}^{63}T_1$ saturates in the vicinity of T_c where $(^{63}T_1T)^{-1}$ decreases rapidly. A saturation behavior was also observed for the ratio for the 90-K phase of Y-1:2:3 (Ref. 3). The $^{17}T_1/^{63}T_1$ peak means that the temperature derivative d $\text{Im}\chi(q,\omega)/dT$ is essentially q independent near T_c .

B. Relaxation rates below T_c

Here we discuss the $Cu(2)$ and the $O(2)$ relaxation behaviors in the superconducting state. Note in Fig. 8(b) that the superconducting-state $({}^{63}T_1T)^{-1}$ in Y-1:2:4 is almost the same as that for the 90-K phase of Y-1:2:3. The similarity below 80 K is in marked contrast to the distinct temperature dependences of the normal state $({}^{63}T_1T)^{-1}$. Therefore the appearance of superconductivity makes essentially no difference in magnetic fluctuations near $q = Q$ between Y-1:2:4 and the 90-K phase of Y-1:2:3. As shown in Fig. 8(a), there is a large difference in the superconducting state $({}^{17}T_1T)^{-1}$ between these
materials. The slope of $({}^{17}T_1T)^{-1}$ just below T_c for Y-1:2:4 is smaller than that for the 90-K phase of Y-1:2:3. The decrease in $({}^{17}T_1T)^{-1}$ in the normal state of Y-1:2:4 appears to reduce the superconducting effect on magnetic fluctuations around $q = (0,0)$.

Figure 12 shows $({}^{\tilde{a}}T_{1})^{-1}$ normalized to the value at T_{c} as a function of reduced temperature T/T_c in Y-1:2:4. Both $({}^{63}T_1)^{-1}$ and $({}^{17}T_1)^{-1}$ change their slopes near T_c . In the superconducting phase, there is a difference in the slope between the $Cu(2)$ and $O(2)$ sites. Figure 11 indicates that the superconducting state ${}^{17}T_1/{}^{63}T_1$ shows a marked decrease with decreasing temperature. These results suggest that antiferromagnetic fluctuations are suppressed considerably compared with the spin fluctuations around $q = (0,0)$. The decrease in ${}^{17}T_1/{}^{63}T_1$ has also been observed for the $90-K$ phase of Y-1:2:3 reported by Yoshinari, Yasuoka, and Ueda²⁸ and Martindale et $al.^{32}$ On the other hand, Hammel et $al.^{2}$ found that the ratio ${}^{17}T_1/{}^{63}T_1$ is temperature independent in the superconducting state of Y-1:2:3. The reason for this discrepancy in the Y-1:2:3 materials is unexplained.

The pairing symmetry in cuprate superconductors is still in controversy. Bulut and Scalapino 33 pointed out that an s-wave pairing has a difficulty in explaining the absence of the Hebel-Slichter peak just below T_c . They interpreted the temperature-independent ${}^{17}T_1/{}^{63}T_1$

FIG. 12. $({}^{\alpha}T_1T)^{-1}$ normalized to the value at T_c as a function of reduced temperature T/T_c in YBa₂Cu₄O₈.

below T_c as the evidence for a d-wave pairing state. Thelen, Pines, and Lu^{34} showed that a d-wave pairing state is in favor of the decrease in ${}^{17}T_1/{}^{63}T_1$ below T_c for the 90-K phase of Y-1:2:3. The pronounced decrease in ${}^{17}T_1/{}^{63}T_1$ is found for Y-1:2:4. In view of the similarity in $({}^{63}T_1T)^{-1}$ between Y-1:2:4 and Y-1:2:3, the difference in the slope of ${}^{17}T_1/{}^{63}T_1$ implies that the temperature dependence of magnetic fluctuations around $q = (0,0)$ is sensitive to the hole concentration even below T_c .

VI. CONCLUSION

The planar-oxygen Knight shift in Y-1:2:4 shows the decrease as the temperature is lowered toward T_c . In the normal state $({}^{17}T_1T)^{-1}$ at the O(2,3) site is roughly proportional to ${}^{17}K_{2,c}$ near T_c . On the other hand $($ ⁶³ T_1 T)⁻¹ at the Cu(2) site shows a maximum around T^* =160 K. Comparison with the Y-1:2:3 data strongly suggests that both the q and the temperature dependence of magnetic fluctuations in Y-1:2:4 present an almost complete similarity to those for the 60-K phase of Y-1:2:3 in the normal state above 110K. In the normal state, the ratio ${}^{17}T_1/{}^{63}T_1$ increases with decreasing temperatur and reaches a broad peak near T_c . The absence of anomaly in ${}^{17}T_1/{}^{63}T_1$ around 160 K suggests that the appearance of the spin gap has no influence on the antiferromagnetic correlation length.

In the superconducting state, $(^{63}T_1T)^{-1}$ decrease dramatically with decreasing temperature. Below T_c there is a striking similarity in $(^{63}T_1T)^{-1}$ between Y-1:2:4 and the 90-K phase of Y-1:2:3. The antiferromagnetic fluctuations in the superconducting phase of $Y-1:2:4$ appear to be unaffected by the development of the spin gap observed at temperatures up to $T^* = 160$ K. The slope for $({}^{17}T_1T)^{-1}$ shows a slight change in the vicinity of T_c . Magnetic fluctuations around $q = (0,0)$ in the superconducting state of Y-1:2:4 are smaller than those for the

90-K phase of Y-1:2:3. The significant decrease in $T_{1/1}$, $\sqrt{5}T_1$ suggests that the loss of antiferromagnetic fluctuations are dominant in the superconducting state of Y-1:2:4.

ACKNOWLEDGMENTS

We wish to thank Y. Ito, T. Miyatake, and J. O. Willis for their stimulating discussions.

- Present address: Advanced Research Laboratory, Toshiba Research and Development Center, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210, Japan.
- 'For a review of NMR, see C. P. Penningston and C. P. Slichter, in Physical Properties of High-Temperature Superconductors II, edited by D. M. Ginsberg (World Scientific, Singapore, 1990); R. E. Walstedt and W. W. Warren, Jr., Science 248, 1082 (1990).
- ²P. C. Hammel, M. Takigawa, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. Lett. 63, 1992 (1989).
- ³M. Takigawa, A. P. Reyes, P. C. Hammel, J. D. Thompson, R. H. Heffner, Z. Fisk, and K. C. Ott, Phys. Rev. B 43, 247 (1991).
- 4Y. Yoshinari, H. Yasuoka, Y. Ueda, K. Koga, and K. Kosuge, J. Phys. Soc. Jpn. 59, 3698 (1990).
- ⁵J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Burlet, J. Y. Henry, and G. Lapertot, Physica B 169, 58 (1991); J. Rossat-Mignod, L. P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J. Y. Henry, and G. Lapertot, ibid. C 185-189, 86 (1991).
- ⁶H. Yasuoka, T. Imai, and T. Shimizu, in Strong Correlation and Superconductivity, edited by H. Fukuyama, S. Maekawa, and A. P. Malozemoff (Springer-Verlag, Berlin, 1989).
- ⁷J. Karpinski, E. Kaldis, E. Jilek, S. Rusiecki, and B. Bucher, Nature {London) 336, 660 (1988).
- For example, R. M. Hazen, L. W. Finger, and D. E. Morris, Appl. Phys. Lett. 54, 1057 (1989); Y. Yamada, J. D. Jorgensen, S. Pei, P. Lightfoot, Y. Kodama, T. Matsumoto, and F. Izumi, Physica C 173, 185 (1991).
- ⁹G. Zheng, Y. Kitaoka, K. Asayma, Y. Kodama, and Y. Yamada, Physica C 193, 154 (1992).
- ¹⁰I. Mangelschots, M. Mali, J. Roos, D. Brinkmann, S. Rusiecki, J. Karpisnki, and E. Kaldis, Physica C 194, 277 (1992).
- ¹¹T. Machi, I. Tomeno, T. Miyatake, N. Koshizuka, S. Tanaka, T. Imai, and H. Yasuoka, Physica C 173, 32 {1991).
- ¹²H. Zimmermann, M. Mali, D. Brinkmann, J. Karpinski, E. Kaldis, and S. Rusiecki, Physica C 159, 681 (1989).
- ¹³For example, Y. Nakazawa and M. Ishikawa, Physica C 158, 381 {1989);Y. Yamaguchi, M. Tokumoto, S. Waki, Y. Nakagawa, and Y. Kimura, J. Phys. Soc. Jpn. 58, 2256 {1989).
- ¹⁴M. Takigawa, P. C. Hammel, R. H. Heffner, Z. Fisk, K. C. Ott, and J. D. Thompson, Phys. Rev. Lett. 63, 1865 {1989). 15 T. Machi et al. (unpublished).
- ¹⁶C. Ambrosch-Draxl, P. Blaha, and K. Schwarz, Phys. Rev. B

44, 5141 (1991).

- ¹⁷K. Schwarz, C. Ambrosch-Draxl, and P. Blaha, Phys. Rev. B 42, 2051 (1990);J. Y. Yu, A. J. Feeman, R. Podloucky, P. Herzig, and P. Weinberger, ibid. 43, 532 (1991).
- ¹⁸H. Zimmermann, M. Mali, M. Bankay, and D. Brinkmann Physica C 185-189, 1145 (1991); H. Zimmermann, M. Mali, I. Mangelschots, J. Roos, L. Pauli, D. Brinkmann, J. Karpinski, S. Rusiecki, and E. Kaldis, J. Less. Common. Met. 164-165, 138 (1990).
- ¹⁹S. E. Barrett, D. J. Durand, C. H. Pennington, C. P. Slichter, T. A. Friedmann, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 41, 6283 {1990).
- 20 F. Mila and T. M. Rice, Physica C 157, 561 (1989); F. Mila and T. M. Rice, Phys. Rev. B40, 11 382 (1989).
- ²¹T. Tanamoto, K. Kuboki, and H. Fukuyama, J. Phys. Soc. Jpn. 60, 3072 (1991).
- ²²T. Tanamoto, H. Kohno, and H. Fukuyama, J. Phys. Soc. Jpn. 61, 1886 (1992); T. Tanamoto, H. Kohno, and H. Fukuyama, ibid. 62, 717 (1993).
- ²³B. Bucher, P. Steiner, J. Karpinski, E. Kaldis, and P. Wachter, Phys. Rev. Lett. 70, 2012 (1993).
- ²⁴I. Tomeno, K. Tai, M. Kosuge, T. Miyatake, T. Machi, J. O. Willis, and N. Koshizuka (unpublished).
- $25A$. J. Millis and H. Monien, Phys. Rev. Lett. 70, 2810 (1993).
- ²⁶C. Murayama, Y. Iye, T. Enomoto, A. Fukushima, N. Môri, Y. Yamada, and T. Matsumoto, Physica C 185-189, 1293 (1991); M. Affronte, M. Decroux, W. Sadowski, T. Graf, and Q. Fischer, Physica C 172, 131 (1990).
- ²⁷J. Schoenes, J. Karpinski, E. Kaldis, J. Keller, and P. de la Mora, Physica C 166, 145 (1990); B. Bucher, J. Karpinski, E. Kaldis, and P. Wachter, ibid. 167, 324 (1990).
- ²⁸Y. Yoshinari, H. Yasuoka, and Y. Ueda, J. Phys. Soc. Jpn. 61, 770 {1992).
- 29A. J. Millis, H. Monien, and D. Pines, Phys. Rev. B 42, 167 $(1990).$
- 30J. M. Tranquada, P. M. Gehring, G. Shirane, S. Shamoto, and M. Sato, Phys. Rev. B46, 5561 (1992).
- 31 A. J. Millis and H. Monien, Phys. Rev. B 45, 3059 (1992).
- ³²J. A. Martindale, S. E. Barrett, K. E. O'Hara, C. P. Slichter, W. C. Lee, and D. M. Ginsberg, Phys. Rev. B 47, 9155 (1993).
- 33 N. Bulut and D. J. Scalapino, Phys. Rev. B 45, 2371 (1992).
- 34D. Thelen, D. Pines, and J. P. Lu, Phys. Rev. B 47, 9151 $(1993).$