
PHYSICAL REVIEW B VOLUME 49, NUMBER 21 1 JUNE 1994-I

Phase coherence in the hysteretic magnetic behavior of parallel Josephson-junction arrays
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We report on the hysteretic field-dependent critical currents of large inductance arrays with up to ten

YBa2Cu307 grain-boundary junctions in parallel. A peak in the critical current, roughly equal to its ini-

tial zero-field value, is observed after each reversal of the field sweep. This behavior indicates that the
junction phases become equal modulo 2m (self-organized phase coherence) as the system relaxes away
from the critical state. The primary features can be modeled using a Frenkel-Kontorova model general-
ized to include global interactions due to mutual inductance.

Most work reported to date on Josephson-junction (JJ)
arrays' has concentrated on arrays in which the induc-
tance can be neglected. The large inductance limit can
lead to interesting metastable phenomena which have not
been extensively studied thus far. The "magnetization"
vs field (M H) curve of-a JJ array with finite inductance
is predicted to exhibit a hysteresis loop nearly identical
to that of the Bean critical state model. A one-
dimensional (lD) array, consisting of many JJ s in paral-
lel, can be represented by the Frenkel-Kontorova (FK)
model of spring-coupled balls in a washboard potential,
provided only self-inductance terms are included. In the
"critical state" of such an array, each junction carries its
critical current, and the difference between the amount of
flux trapped in adjacent loops is roughly equal to the
product of the loop inductance and the critical current.

We recently measured the hysteretic field-dependent
critical currents of 1D parallel JJ arrays with large induc-
tance. We observed a pronounced maximum in the criti-
cal current after each reversal of the field sweep. This
behavior suggests that the phases across the junctions
spontaneously become coherent as the system relaxes
away from its critical state. We modeled the observed
behavior by generalizing the FK model to include global
interactions due to mutual inductance. Rather surpris-
ingly, we found the globally coupled FK model to exhibit
several essential aspects of the experimental behavior not
shown by identical simulations using the conventional
FK model.

The arrays consisted of up to ten Josephson junctions
in parallel, fabricated by patterning 1400-A-thick
YBa2Cu3O7 films deposited onto SrTi03 bicrystal sub-

strates with 24' misorientation angles. The width of
each junction was 5 pm and the dimensions of each loop
in the array were 10 pmX50 pm. The films were laser
deposited using a KrF pulsed excimer laser and were pat-
terned using photolithography and ion milling. Resis-
tively shunted junction (RSJ)-like behavior was observed
in the current-voltage (I V) char-acteristics. The self-
inductance of each loop L was estimated to be -40 pH,
and the self-inductance parameter PL =2LIolgo ranged
from less than 10 just belo~ the critical temperature to
over 100 at 4 K, due to the temperature dependence of
the critical current. Here L is the self-inductance of each
loop, Io is the critical current, assumed to be the same for
each junction, and Po=h/2e is the flux quantum. The
ability to substantially change device parameters simply
by changing the temperature is an important advantage
of using high-T, grain-boundary junctions for this study,
in addition to their being self shunting and easy to fabri-
cate. A dc current applied to a Helmholtz coil was used
to control the magnetic field. The measurements were
conducted in a radio frequency (rf} shielded enclosure
and the cryostat was magnetically shielded inside a dou-
ble p-metal can. A feedback circuit was utilized for most
of the critical current vs field (I, H) measurements. -The
circuit was designed to adjust the total current in order to
maintain a fixed voltage of —1 pV across the junction ar-
ray. Fraunhofer-like I,-H characteristics with no mag-
netic hysteresis, indicative of Josephson-type behavior,
were observed in single bicrystal junctions fabricated on
the same substrate.

Figure 1 shows the magnetic-field dependence of the
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FIG. 1. Critical current vs field for a ten-JJ array at 77 K
(PL -13). The field begins at zero and is slowly increased to its
maximum positive value. The sweep is then reversed and the
field is swept to its maximum negative value. Finally, the field is
slowly swept back to zero. Inset: Plot of H~„k vs H,„ for a
six-JJ array (circles) and a ten-JJ array (open triangles) at 77 K.
The dashed line corresponds to setting H~„k =H,„.

critical current for a ten-junction interferometer. The ar-
ray is cooled in zero field to the operating temperature.
As the field is increased, the critical current decreases to
a small residual value, showing small periodic oscilla-
tions. On reversing the field sweep, a pronounced "satel-
lite" peak is observed. Further reversals of the sweep
directions yield only the satellite peaks, as seen in Fig. 1,
while the central maximum originally observed in zero
field becomes suppressed until the sample is warmed up
above T, and cooled down again in zero field. This
behavior is somewhat reminiscent of the hysteresis in the
field-dependent critical currents of granular supercon-
ducting (e.g. , Nb) microbridges. The magnetic fields
were suSciently low that the observed hysteretic
behavior was primarily the result of Aux (up to -NpL /2
Aux quanta per loop) being trapped in the rather large in-
ductance loops instead of at pinning sites in the film.

After the array is initially cooled in zero field, the criti-
cal current is simply given by QI„sin8; =+I„,where I„.
is the critical current of the ith junction and the junction
phases 8;=sr/2 are all identical. In general, the phase
across each junction must be equal to m/2+2m. m, where
m is an integer, in order for the total current to be equal
to its maximum value. When a magnetic field is applied,
the phases are related by 8,. =8; &+2m/, . /$0, where P,. is
the flux through the ith loop, which includes contribu-
tions from the applied field and the circulating currents.
The fact that the critical current at the satellite peaks is
about as large as its initial zero-field value implies that
the phases have adjusted themselves such that
0; =0; &+2m.n;, where n; is an integer, and an integral
number of flux quanta are present in each loop. We call
this phenomenon self organized phase co-herence Alikely.
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FIG. 2. Critical current vs field for the ten-JJ array at 40 K.
Note the broadening of the peaks due to the increased critical
current (Pl —32).

explanation, which is borne out by our detailed model
calculations described below, is that the phases simul-
taneously relax to minima in the periodic potential as the
system relaxes away from the critical state.

The magnetic field K „k corresponding to the position
of the dominant satellite peak depends on the sweep
range, or maximum applied field H, , as shown in the
inset to Fig. 1. However, the difference
b,H* = )H,„H—„k ~

between the maximum applied
field and the position of the satellite peak is roughly in-
dependent of H,„at a fixed temperature, provided that
~H, „~ & 2bH'. The value of bH* thus appears to be re-
lated to the field required for the system to reach the crit-
ical state. If the temperature is reduced (thereby increas-
ing the maximum critical current and value of pI ) the sa-
tellite peaks become broader and AH* increases, as
shown in Fig. 2.

We suggest that the hysteretic behavior of the critical
current peak results from the effects of long-range induc-
tance of the JJ array. This assumption leads us to a sim-
ple generalization of the Frenkel-Kontorova model to in-
clude global interactions, as we show below. Let us con-
sider first an infinite "ladder" of JJ's arranged in parallel,
as illustrated in Fig. 3. P; is the Aux trapped inside the
ith loop, while 0, is the time-dependent phase across the
ith JJ. We express the current as a sum of circulating
current loops, I; being the circulating current in the ith
loop. The current flowing through the ith junction is
simply the difference between the adjacent circulating
currents (I; I;+,). In the—RSJ model, neglecting the
junction capacitance and taking the junction critical
currents I„=IO to be identical, the Josephson relations
for the ith junction give

Po d8;
I; —I;+ &

=IosinO;+
2+R dt

where R is the shunt resistance of each junction. The net
Aux P; in the ith loop is related to the phases across the
adjacent junctions by
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dO;

dt
=cop

—sin8; +QA, „(8;+„—28; +8; „)

where cop = 21TIpR /Pp.

FIG. 3. Infinite ladder of JJ's in parallel.

This is the equation of motion for an infinite set of glo-
bally coupled masses moving in a sinusoidal potential in
the highly viscous limit. %e are thus motivated to intro-
duce a corresponding model for a finite array of JJ's:

dO; = —sin8;++A, „(8,.+„—8, 2n—nh )',
'r

(8;—8;,) .
2K

(2)

P,xt
—gL;jI—~

. (3)

Here L,;J measures the flux in loop i due to the current I.
circulating in the jth loop.

Most analyses include only the self-inductances (L;; }
and ignore the mutual inductances L;1 (i' ). Then the
phase differences I 8, J satisfy the FK model, whose
mechanical analog is an array of identical masses on a
sinusoidal potential, in which the nearest neighbors are
coupled by springs. In the high-inductance limit con-
sidered here, the assumption L; =0(i&j ) is unaccept-
able, and we study the effects of relaxing this assumption.
The contributions to the flux coupled into loop i by the
circulating currents IJ (j Ai) have the opposite sign vs
that of the self-induced flux, since points in the ith loop
lie outside of loop j. Hence L;, & 0 while L,, & 0 for i Aj.
Further, L; is assumed to decay rapidly with increasing
~i

—j~, since mutual inductive couplings tend to decay
rapidly with increasing distance between the loops when
the loops all lie in a plane and do not overlap. Under
these conditions Eq. (3) can be inverted to give

i X ij('It ext 0j } P ij text X ijNj (4)

where [M;. I is a symmetric matrix with positive elements
that decays rapidly as one moves away from the diagonal.
For the infinite array of identical JJ's, M; depends only
on ~i

—j ~. Hence

I, I;+,= gM; $+—gM;—+, tt.
J J

=Ip QA, „(8;+„—28„+8; „),

where A,„Ip= (Pp/2m )[m„,—2m„+ m„+ t ],
m„=M;;+„. Substitution into Eq. (1}gives

P; can also be written as the sum of the externally applied
flux per loop tI},„t and the flux inductively coupled into
the ith loop from all of the individual current loops in the
array, i.e.,

where v.=coot is a dimensionless time variable, the sum-

mation being over all JJ phases. The mechanical analog
of this generalized FK model is a finite set of identical
particles sitting in a sinusoidal potential and moving in
the high viscosity limit. The particles are globally cou-
pled by springs, the spring constant of that joining the ith
and jth particles being A, ~; j~, while its length is ~i

—j( h,
where h =P,„t/Pp is proportional to the applied magnetic
field (8;/2n = position of the ith particle). In the FK
model, A+i =1/APL, and A,„=O when n %+1 We. do not
expect this simple model to exhibit all of the complex
properties of the JJ array. Rather, what we are attempt-
ing here is to qualitatively understand the large peaks in
critical current.

We start the system with p,„t=0 (i.e., h =0}, and all
particles in the bottom of a single potential well. %e
then increase h in steps of hh, each time evolving the sys-
tem via Eq. (7) until it reaches equilibrium. For each
value of h we compute the equilibrium phases 8;, the nor-
malized flux of each loop tI}, /tI}p, and the magnetization
m = (t}};/tI}p—h ),„, in order to generate an m vs h hys-
teresis loop. The total current g sin8, . is equal to zero
when the system is in equilibrium. Figures 4(a) and 4(c)
show m-h hysteresis loops for a ten-JJ array using param-
eters roughly corresponding to the experimental data of
Figs. 1 and 2, respectively. ' The hysteresis loops are
similar to those of the critical state model. Many flux
quanta become trapped in each loop of the array due to
the circulating currents and finite inductances, whereas
flux vortices trapped in the body of the superconductor
play a minimal role here.

Once equilibrium is established for a given field, as the
bias current is increased from zero, the flux P, in each
loop will remain unchanged, provided the system does
not undergo a transition into a new metastable state.
Such transitions into different metastable configurations
have been observed by us experimentally, in the form of
sudden "jumps" in critical current, but such jumps tend
to occur rather infrequently during a period of many
minutes, or even hours. %e therefore define the critical
current to be the maximum possible bias current for a
given metastable configuration. The effect of the bias
current is to add a transport current I„-=sinO, .—sinO, - to
the right-hand side of Eq. (7)," where 8,. represents the
junction phase in the presence of the bias current. Note
that the same basic metastable configuration is main-
tained, ' and that the modified form of Eq. (7) continues
to be satisfied, provided we take O,- =8, +58, where 68 is
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FIG. 4. (a) and (c): Magnetization vs field (m-h ) in units of
4p per loop for a ten-JJ array, using parameters roughly corre-
sponding to the data of Figs. 1 and 2, respectively. (b) and (d):
Normalized critical current vs field using the same parameters
as those used for (a) and {c),respectively.

the same for all of the junctions. The critical current is
then given by the maximum total bias current,
+I„=g sin8; —g sin8; =g sin8;.

These quasistatic calculations are not completely com-
patible with the experimental measurements, in which a
feedback circuit maintained a finite voltage of about 1 pV
across the array. However, we observed essentially the
same behavior by incrementing the magnetic field while
zero-bias current was applied and then applying short
rectangular current pulses in order to determine the criti-
cal current for each value of magnetic field. The plots of
I, vs H thus obtained looked essentially the same as those
of Figs. 1 and 2. Unfortunately, data obtained using the
pulsed technique had to be taken by hand, and, therefore,
the plots lacked the wealth of detail obtained by automat-
ed data acquisition (Figs. 1 and 2). Nevertheless, the fact
that essentially the same results were obtained by the two
methods, indicates that our experimental measurements
yielded at least a reasonable approximation of the true,
quasistatic critical current.

Figures 4(b) and 4(d) show theoretical plots of normal-
ized critical current vs field corresponding to the m-h
hysteresis loops in Figs. 4(a) and 4(c), respectively. When
the field is initially increased from zero, the critical
current reduces to a minimum value as the system
reaches the critical state. The experimentally observed
satellite peaks in the critical current, and the observed
broadening with increasing PL, are reproduced in these
theoretical plots. However, whereas the experimentally
observed satellite peaks have nearly symmetric profiles,
which are substantially offset from the maximum applied
field, the theoretical peaks are quite asymmetric and they
do not quite attain the maximum (zero-field) critical

FIG. 5. Magnetization vs field (m-h ) for a ten-JJ array using

(a) a globally coupled FK model with A,„=0.05/n, and (c) a lo-
cally coupled FK model with A, ~& =0.25 and A, „=O for ~n

~

&2.
The parameters were chosen to yield similar m-h curves. {b)
(globally coupled FK model) and (d) (locally coupled FK mod-

el): normalized critical current vs field using the same parame-
ters as those used for (a) and (c), respectively.

current. Nevertheless, the agreement is substantially
better than our attempts to model the observed behavior
using the locally coupled FK model, and suggests the in-
clusion of global coupling in finite-inductance calcula-
tions.

Figures 5(a)—5(d) show a direct comparison of theoreti-
cal m-h and I,-H plots, obtained using globally-coupled
and locally-coupled FK models. Note that the locally
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FIG. 6. Number of trapped flux quanta per loop P;/$0 vs

loop number i (1—9) for (a) the globally coupled FK model with
A,„=0.05/n, and (b) the locally coupled FK model with
A, +,=0.25. Both plots correspond to the case where m =0 on
the right-hand sides of the m-h hysteresis curves in Fig. 5. The
externally applied flux P,„,/Po is plotted at the points i =0 and
i =10.
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FIG. 7. Normalized junction phase modulo 2n, (8;/2m I, vs

junction number i for (solid line) the globally coupled FK model
with A,„=0.05/n, and (dotted line) the locally coupled FK
model with A.~& =0.25. Both plots correspond to zero magneti-
zation, as in Fig. 6.

coupled FK model predicts that the critical current peaks
are substantially less pronounced than those predicted by
the globally coupled FK model, despite the fact that the
parameters were chosen to yield similar rn &curves. -We
have found that the globally coupled FK model always
predicts much larger critical current peaks than the local-
ly coupled FK model, regardless of the specific choice of
coupling parameters. Figures 6(a) and 6(b) show profiles
of flux per loop P;/Pc vs loop number i for the globally
coupled and locally coupled FK models, respectively,
corresponding to zero magnetization (m =0) at the
right-hand sides of the m-it curves in Fig. 5. These plots
are similar to plots of fiux density vs position in the Bean
critical state model, and show that having zero net mag-
netization is not a suf6cient condition for the total critical
current to be large, since substantial Aux is still trapped

in each loop.
The reason for the diff'erent behaviors of the global vs

local models can be seen by examining the junction
phases when the magnetization is zero. Figure 7 shows
plots of the normalized junction phases modulo 2~,
t 8;/2nI, .in the absence of a bias current, for rn =0, as in

Fig. 6. Careful examination of Fig. 7 reveals that more
phases have relaxed close to the minima in the periodic
potential for the globally coupled FK model than for the
locally coupled model. This suggests that, as the system
moves away from the critical state and the "springs" re-
lax, the phases in the globally coupled model simultane-
ously relax close to the nearest minima in the sinusoidal
potential, resulting in phase coherence modulo 2m.. The
opposite critical state is attained as the field continues to
sweep in the opposite direction. The phases lose their
coherence as they move away from the metastable mini-
ma, and the total critical current again becomes small.
We have found that the qualitative predictions of the glo-
bally coupled FK model do not depend on the detailed n

dependence of the coupling constants A,„provided they
decrease with n.

In conclusion, we have observed evidence for self-
organized phase coherence in the magnetic behavior of
parallel JJ arrays, and have interpreted this phenomenon
using a generalized FK model which includes global in-
eractions. We believe that the importance of global cou-
pling extends to the behavior of other systems, such as
charge-density waves and Aux lattices in type-II super-
conductors.
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