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Andreev level spectrum and Josephson current in a superconducting
ballistic point contact
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Using a transfer-matrix method, we study the Josephson current in a normal, clean, one-
dimensional quantum channel in contact with two superconducting electrodes characterized by a
finite value of the ratio between the gap A and the Fermi energy p. Going beyond the "Andreev ap-
proximation, " gaps open up in the quasiparticle level spectrum, the critical current is reduced, and
the relationship between current and superconducting phase difference P becomes more Josephson-
like without any discontinuous jump at P = vr. The mechanism behind these effects'is the normal
refiection at the interfaces due to a finite value of 4/p, . The gap at g = z goes to zero only at
transmission resonances k~1 = (2n+ 1)vr/2.

In recent years there has been a growing interest
in superconducting-normal-superconducting (SNS) junc-
tions from a mesoscopic point of view. Concepts de-
veloped from investigations of electron transport in nor-
mal (nonsuperconducting) systems have been shown to
have analogs in the superconducting case. One example
is the discretization of the critical current in supercon-
ducting ballistic point contacts, which is the analog of
the quantization of conductance in normal ballistic point
contacts. Another example is the critical current fluctu-
ations in disordered SNS junctions, which is the analog
of universal sample-to-sample fIuctuations in disordered
metals. In this context one should also mention recent
work on superconductor-semiconductor-superconductor
(SSmS) junctions7 and on the transient response of the
Josephson current in an SNS junction to an applied elec-
tromagnetic field.

Superconducting transport in SNS junctions is possible
because of Andreev reflection, which is a fundamental
property of the superconducting state. SNS junctions
could therefore be useful in studying the symmetry of
the order parameter in cuprate superconductors. There
exist a few recent experiments on Y-Ba-Cu-0 (YBCO)
(Ref. 11) and Nb (Ref. 12) break junctions, where evi-
dence for current transport through Andreev reflection
is found.

In this paper we study Andreev levels and Josephson
current in a one-dimensional ballistic (clean) SNS junc-
tion by solving the Bogoliubov —de Gennes (BdG) equa-
tion both analytically and numerically using a transfer-
matrix technique. The new aspect is that we properly
take into account the scattering associated with the lo-
calization of quasiparticles in the normal (N) region. The
quasiparticles with energies in the superconducting gap
E are decaying into the superconducting (S) region over
a coherence length (o (1/ky)p/4, where k~ is the
Fermi wave vector and p, is the Fermi energy. In most
investigations of electron transport in SNS junctions the
"Andreev approximation" is used. This means, crudely
speaking, that only the wave functions, not the deriva-
tives, are matched at the two SN interfaces. Using this
approximation one leaves out efFects of scattering and

mismatch associated with a finite value of 6/p, . In our
formulation of the problem, the transfer matrix contains
the matching of both wave functions and derivatives. In
addition to numerical calculations, to explicitly show how

6/p corrections appear we also specialize to a highly ide-
alized situation of a clean and short normal region and
solve this problem analytically.

Our approach is equivalent to that of Ref. 7 for the
SSmS junction in the sense that the BdG equation is
solved without approximations. Technically, the dif-
ference is that we develop a transfer-matrix approach
and present an analytic solution for the short junc-
tion. The difference in scope is that, in the present
paper, we consider a ballistic junction and focus at-
tention on wave vector mismatch and reflectivity that
arise when going from the normal-normal-normal (NNN)
to the superconducting-normal-superconducting (SNS)
state. Related to the SNS junction is the problem of
current transport in normal films sandwiched between
superconducting sheaths. A detailed three-dimensional
analysis beyond the Andreev aproximation of such a sys-
tem was given in Ref. 14.

In a short SNS junction the main part of the current is
carried by superconducting bound states associated with
the normal region. The process that makes transport
possible is Andreev reflection:s ~s a right-going electron
in the normal region, with energy in the superconduct-
ing gap, hits the SN interface and transforms into a left-
going hole. The hole itself transforms into a right-going
electron at the opposite interface, and so on. These pro-
cesses will then constitute a state responsible for current
transport in one direction, say positive direction. There
is also a state responsible for current transport in the
negative direction, namely, the time-reversed state made
out of a left-going electron and a right-going hole. The
essential point in the picture above is that the two states
are degenerate (and uncoupled).

However, there is also a probability amplitude for the
right-going electron being normally reflected into a left-

going electron. The amplitude for normal reflection is
of the order A/p, . This reflection couples the two states
(different current directions). The effect of this coupling
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becomes noticeable when the the energy of the Andreev
levels approaches zero, which happens for phase differ-
ence P = +m. We will show that this gives rise to en-

ergy gaps of magnitude 4 /p in the Andreev level spec-
trum. As a result, the current-phase relationship will be
continuous and the critical current diminished: even if
the normal junction is ballistic (NNN), there is a resid-
ual, intrinsic reflectivity in the superconducting SNS case
and one cannot reach the ballistic limit (except in special
cases of transmission resonance). The behavior is there-
fore analogous, in principle, to the usual SNS case with
finite reflectivity due to, e.g. , barriers, different Fermi
velocities or impurities.

An equivalent view of the SNS junction is to con-
sider both the positive and negative Andreev levels for
a given phase difference (semiconductor picture). These
levels become degenerate in a curve crossing at P = vr.

However, introduction of normal reflectivity induces level
splitting, the energy-phase curves become noncrossing,
and a gap appears at P = x.

The pair potential of the SNS-system, shown in Fig. 1,
is assumed to take the form b, q s ——6 exp(if' s) in the
superconducting regions 1 and 3. In the normal region
2, 4 = 0 by definition. This model of the pair po-
tential does not take into account proximity effects oc-
curring at the SN interfaces, but is often used in the
literature. The cross-section area of the junction is as-
sumed to be less than the penetration depth, so that
the vector potential can be neglected. The wave func-
tions are found Rom the time-independent Bogoliubov-
de Gennes equation

exp(kiq, z), q, = k~/1 + E/IJ, ,

0
exp(+iqgz), qg = kF /I —E/p,, 1,

where kg = /2m@/h.
In the superconducting region 1 the unnormalized

eigenfunctions of Eq. (1) are

@+l,e

'
ue'&& '

v
exp(ik, z),

- l/2
k, = k~ 1 + i b /1 —(E/b, )

2 (4)

The sum in Eq. (2) is over the discrete energy levels de-
termined from Eq. (1). In addition to Eq. (2) there is
also a contribution to the current from the continuous
part (E ) 6) of the excitation spectrum, which we do
not investigate here. The contribution from the continu-
ous spectrum has been shown to be of minor importance
in the case of short junctions.

To produce wave functions 4 of the whole SNS struc-
ture, we proceed in a way similar to Refs. 2, 3, 13, and
15. We differ by including the continuity condition for
the derivative. Below we sketch the procedure.

In the normal region 2 the unnormalized eigenfunctions
of Eq. (1) are

'Ro A(z) '
0 =E4,

'
ve'&& '

exp( —ik1,z), kh = (k.)",

where @(z) is a two-component wave function and 'Ro ——

p2/2m —p is the one-electron Hamiltonian. The positive
eigenvalues E of Eq. (1), measured relative to the Fermi
energy p, determine the excitation spectrum of the sys-
tem. In this paper we focus on the discrete part of the
excitation spectrum, which means E & A. The excita-
tion spectrum E depends on the superconducting phase
difference P = Ps —Pq. From this dependence one calcu-
lates the current:

I = ——) tanh (E„/2k' T)
28

n

where

and b = 6/p. In the superconducting region 3 the eigen-
functions 4l, and 4z & are found by replacing 1 by 3
and z by —z in Eq. (4). The form of the functions 4q
and 4s guarantees a decaying behavior when ~z~ ~ oo.
Now we make the ansatz
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FIG. 1. Layout of the SNS system. A
Cooper pair is incident from the left con-
tact and transforms at the left SN interface
to a right-going electron and a left-going hole
(solid arrows). At the right interface the elec-
tron and the hole recombine to a Cooper pair.
In addition, the electron/hole is normally re-
Iiected into an electron/hole (dashed arrows)
at the interfaces, if b./p is not low.
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@(~2:~ ( L/2) = a2@2, +b24', „+c,@,, +d, @,+„,
7

C (z & L—/2) = c,4,+, + d, 4, „, (5)

4(x & L/2) = n, 4, .+ b, C s+„.

The next step is to match both the ansatz and the
derivative at the SN interfaces ~z~ = L/2. Eliminating a2Imzna ing a2,
b2, c2, and d2, one ends up with the following equations
for the coeKcients c~, d~, a3, and b3..

with

A33 —cos (q, L) —i 2 —+ —sin (q, L)
k, q,

A44 ——cos (qqL) + i 2 —+ —sin (qh L),qh ~h

kh qh

kh
As4 —2 1 ——cos (q L)

k,
(9)
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k,
k,
kQ

sin (q,L),
qe

cos (qgL)

M33 M44 M34 M43 —0 ~ (7)

Equation (7) determines the excitation spectrum for the
bound Andreev levels of the SNS structure. The matrix
elements of Eq. (7) are given below:

44

33

Ms4 —e'"' (u —v ) uv e '~As4 —A4s

M43 —e ' " (u —v ) uv A —e '~A'—ikgL
43 34

(8)

M = M(E) is the 4 x 4 transfer matrix associated with
the clean SNS structure. Besides Eq. (6) there is also
a normalization condition for the wave function, which
in this work is of no interest. We do not need all the
components M,~, since the condition for having nonzero
solutions cq, dq, a3, and b3 is

qh k,+i2 ———sin (qh, L) .
q~

In the following we study Eq. (7) together with Eq. (2).
First we note that the Andreev approximation means

that k„kh, q„and qh, in the prefactors multiplying the
trigonometric functions in Eq. (9) are all put to k~.
We then get Ass ——exp (—iq, L), A44 ——exp (iqgL), and

A34 —A43 —0 We substitute these A coefBcients into
Eq. (8) and obtain the result of Kulik:is

2 arccos (E/6) —(q, —qg) L + P = n2~, (10)

where n = 0, +1,k2, . . . . In the limit L ~ 0 one gets
the simple result E = 6 cos (P/2).

How is Eq. (10) affected if the Andreev approximation
is not used? To answer this question we first solve Eq.
(7) for L = 0. In this case the solutions can be written
down analytically, and we choose the solution that fulfills
0&E &2:

X/2

E(P) = —3+ cosP+ 2b 1 —gl+ b'2 (1 —cosP)

The limit L = 0 is somewhat unphysical, since it means
that L is smaller than the smallest length scale of the
problem k& . However, we find Eq. (11) useful as a
starting point for discussing the implications of a finite
h. Taking the limit b -+ 0 of Eq. (11),E = 4 cos (P/2) is
reproduced. The dispersion relation of Eq. (11) exhibits
a minigap feature at P = m, see Fig. 2. Evaluating Eq.
(ll) for small 8 at P = vr, we have directly for the minigap

1.0

0.8

0.6

Q2
Es ——E (7r) =

2p
(12)

0.4

0.2
This minigap is absent in treatments based on the An-
dreev approximation. It is interesting to compare with
the bound quasiparticle states of vortices in type-II
superconductivity. Also in that case there is a mini-

gap, which is of the same order of magnitude as in Eq.
(12).

In the case of nonzero L, more Andreev levels are grad-
ually trapped in the normal region with increasing L,
see Fig. 2. The minigap oscillates on the scale of kF ~

0.0
0.0

I

1.0
I

2.0 3.0

FIG. 2. The dispersion relation E (p) is shown for L = 0

and I = 5k~ . Also, E(P = 0) and E(P = s) as functions of
L are shown as insets. For all curves we assume b = 1/5 and
zero temperature.
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Es
~

cos (k~L) ~, as shown in the lower inset in Fig. 2.
The amplitude of the oscillation decreases with length.
However, considering the derivative of E (P), the rela-
tion dE/dP = 0 at P = m is always valid. Finally, at
P = 0 there is a gap, which closes at k~L = nm (see the
upper inset in Fig. 2).

Using Eq. (2) we calculate the current for zero tern-
perature. The result is shown in Fig. 3. The dot-dashed
curve gives the current-phase relationship for the case
b -+ 0, I = (eA/5) sin(P/2). In the case b g 0, three
things can be pointed out for the current: first, the crit-
ical current I, is reached for P ( x; second, the value
of the critical current is reduced from the value eA/5;
third, the discontinuity at P = s is absent.

It is possible to show how much I, is reduced by ex-
panding Eq. (11) in small b and substitute into Eq. (2).
The result of this algebra is

1.0

0.8

0.6

0.2

0.0
0.0 1.0 2.0 3.0

2y)

correct to first order in b.
Since dE/dP = 0 at g = 7r, the critical current is

reached before P = z' for all L. The critical current cal-
culated from the discrete energy spectrum decreases with
length (see the inset in Fig. 3); however, at larger lengths,
the continuous spectrum is known to contribute. The
I,(L) dependence tends to an oscillating behavior. These
oscillations are not as large as in Ref. 19, where the au-
thors studied a much stronger scattering mechanism due
to large mismatch of the Fermi energies.

Our results, illustrated by Eqs. (12) and (13), are sim-

ilar to the results of Bagwell in Ref. 3. In his treat-
ment of an SNS system, Bagwell puts one impurity in
the normal region. This impurity introduces normal re-
flection, which gives rise to energy gaps and suppression
of the critical current. In our treatment these effects are
present not because of impurity scattering but because
of normal reflection at the SN interfaces due to a finite
value of b, /p.

Finally, we speculate on a possible connection between
our results and recent resistance measurements on short
Al wires, where the resistance was found to increase
above the normal state value close to the critical tem-
perature. Because of the appearance of superconducting
fluctuations above the mean-field critical temperature, or
inhomogeneities in the material, there will be a temper-
ature region where superconducting regions coexist with
normal regions. Then the scattering caused by the mis-
match at the SN interfaces might explain why the resis-
tance increases, making it unnecessary to introduce a bar-
rier at the SN interfaces (as was done in Ref. 20). More-
over, since the scattering depends on 6, the resistance

FIG. 3. The current-phase relationship is shown for differ-

ent values of b. As an inset, we show how the critical current
I, depends on L for 6 = 1/5. Zero temperature is assumed.

will depend both on temperature and magnetic field. In
order not to spoil the effect by other stronger scatter-
ing mechanisms, low-resistance samples and contact ar-
rangements should be used, in agreement with Ref. 20.
The scattering &om one single SN interface would cer-
tainly be small, especially close to T,. However, in the
case of many interfaces, the scattering is not necessar-
ily small. During the preparation of this manuscript we
became aware of very recent work along these lines,
where a mesoscopic system with many superconducting
inclusions was studied.

In conclusion, we have studied the Josephson current
in a clean (ballistic) SNS contact, where the superco-
ducting electrodes are characterized by a finite value of
b, /p. We have demonstrated the presence of energy gaps
in the quasiparticle spectrum, the absence of kinks in
the current-phase relationship and the reduction of the
critical current. For high-T, superconductors typically
b, /p, 0.1 (see, e.g. , Refs. 22 and 23) and this effect of
short coherence length might be important. Even though
s-wave BCS theory may not be directly applicable to
the anisotropic high-T, cuprate superconductors, accu-
rate solutions of the BdG equation for large values of
6/p 0.1—0.2 should be of considerable interest.
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