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Variational calculations for Be impurities on %e droplets
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Variational Monte Carlo method is used to calculate ground state properties of He droplets,
containing 70, 112, 168, 240, 330, and 728 particles. The resulting particle and kinetic energy
densities are used as an input in the Feynman-Lekner theory for He impurities. The kinetic energy
density of He atoms and the energy of the He surface states are compared with the results of
previous phenomenological calculations.

I. INTRODUCTION

Helium droplets have attracted some interest in recent
years. A major motivation is the fact that they represent
a prototype of 6nite size quantum systems, behaving as
Quid of strongly interacting structureless particles. Sev-
eral theoretical schemes have been developed for pure he-
lium droplets. The comparison between theory and ex-
periments is still elusive, mainly because helium droplets
are so weakly bound objects that their experimental char-
acterization is very diKcult. An interesting approach,
from this point of view, is the use of atomic and molec-
ular impurities as probes. ' Theoretical calculations for
droplets with impurities have been recently done with
both Monte Carlo and density functional methods.
Impurities heavier than helium atoms are expected to
have small zero point motion, so that they can be treated
as classical objects in a quantum fluid. This is certainly
not true for Be and hydrogen impurities, for which a full

quantum mechanical treatment is needed. The case of
He impurities is particularly interesting from the the-

oretical viewpoint. Since Be and He atoms interact
through the same potential, the properties of their mixed
systems are determined only by quantum effects, i.e., the
different statistics and the different zero point motion.
One He atom, being lighter than He, tends to move
in regions of low He density. This is the origin of the
so-called Andreev state of He on a He liquid-vapor in-
terface at low temperature. The same behavior is
observed in He films on solid substrates, where the
layer structure of the He density produces a rich variety
of Be states. 22 Predictions on the Andreev states of
He atoms on %e droplets have been already given us-

ing a phenomenological density functional, as well as the
variational Feynman-Lekner theory. A key ingredient in

the latter approach is the He kinetic energy density, for
which a simple approximate expression was proposed in
Ref. 15.

In the present work we calculate ground state proper-
ties of pure He droplets by means of a variational Monte
Carlo (VMC) method. We follow the same procedure as
in Ref. 2, but with a different parametrization for the
variational wave function. A detailed discussion about
the results for the ground state of the droplets is given
elsewhere. Here we present the 6rst microscopic results
for the kinetic energy density, which are shown to be in
good agreement with the predictions of Ref. 15. Finally,
we use the ground state properties of %e droplets as an
input in the Feynman-Lekner theory for He impurities.
We calculate the binding energy of the Be surface states
for several He droplets. The results are extrapolated to
estimate the binding energy of He atoms on a planar
%e surface, in good agreement with the experimental
value.

The work is organized as follows. Section II contains
the short description of the VMC method and the re-
sults for the kinetic energy density of %e droplets. The
Feynman-Lekner approach is briefly introduced in Sec.
III, where the results for the Andreev states are also dis-
cussed. Section IV is devoted to conclusions.

II. PARTICLE AND KINETIC ENERGY
DENSITY OF PURE Be DROPLETS

First, we want to calculate the ground state energy,
density pro6le, and kinetic energy density for droplets of
given number of particle N. We use the VMC method.
In the variational approach a suitable form for the many-
body wave function 4„(ri, . . . , riv) is chosen, containing
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a set of parameters that are varied in order to minimize
the energy of the system. The Hamiltonian has the usual
form

Ho ——) v, +) v(r, ,),
2m4

2 i&j

where m4 is the mass of He atoms. The Aziz HFDHE2
potential is used as the pair interatomic potential
'U Y'ij

Several forms of the variational wave function of
the pure He liquid have been proposed in the
literature. ' ' ' ' They are expected to give very similar
results in the context of the present work. We use the
formalism of Ref. 23, where the wave function is taken of
the same form as in Ref. 2,

worth noticing that both Monte Carlo and den-
sity functional ' calculations predict an extrapolated
free surface thickness (distance between the points where
the density is S0% and 10% of the bulk value) of the order
of 6—8 A. , which is consistent with our results.

The kinetic energy density is shown in the lower part of
Fig. 1. It decreases smoothly from the inner value, close
to the value of the kinetic energy per particle in bulk
liquid, to the asymptotic limit p4(K), i.e. , the chemical
potential of the drop containing N He atoms. This limit
follows from the behavior of the one-body factor which
in our parametrization is

1.
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i&j&A:&N which dominates the r ~ oo limit of the wave function,
yielding

and

p(rrj = X /~rr . "rx~la„~l

x . r
~(r&) =

pr~ i2m4 j (4)

respectively.
We consider droplets with 70, 112, 168, 240, 330,

and 728 particles. The resulting density profiles and
the kinetic energy density are shown in Fig. 1. It is

but with an improved version of the correlation functions

fq, f2, and fs This c.hoice ensures a correct asymptotic
behavior of the wave function far outside the droplet,
which has an important role for the He and hydrogen
impurity states.

Once the optimal wave function is found, it is used
to calculate the one-body density and the kinetic energy
density, given by

1 (r W oo) = p4.

In Ref. 15 the approximate expression

r' p )" 5' V'~p
(pp ) 2rrt4 ~p

(7)

20

was proposed for w, where wo and po are the ground state
kinetic energy per particle and the particle density in
bulk %e at zero pressure, while n is a phenomenologi-
cal parameter. Equation (7) is an interpolation between
the expected behavior of 7 in the two opposite limits

p ~ po and p -+ 0. It has never been checked so far
with microscopic calculation. In Ref. 15 the values of 70,
and n were fixed in a phenomenological way to repro-
duce known properties of He impurities in bulk liquid
'%e, while the saturation density was taken directly from
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FIG. 1. Particle density and kinetic energy density for
droplets of 70 (squares), 112 (plus signs), 168 (circles), 240
(crosses), 330 (triangles), and 728 (diamonds) atoms.

FIG. 2. Kinetic energy density for droplets of 728 and 112
atoms. Circles: VMC; solid lines: Eq. (7) with pp

——0.362a'

wo ——14.52 K, and n = 1.77; dashed lines: the same equation
vrith pp

——0.365o, 7O ——13.34 K, and n = 1.76.
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III. LEKNER-FEYNMAN THEORY
FOR Be IMPURITIES

Once the ground state properties of pure %e droplets
are obtained, one can calculate the energy and wave func-
tion of one He impurity. Consider a droplet consisting
of (N —1) He atoms and one Be impurity atom. Since
the interatomic potential is the same for He and %e, one
can write the Hamiltonian in the form

H = Hp+H

where Hp is given in Eq. (1) and

h2

2m4 (ms
(9)

A realistic trial wave function would be

exPeriments (Tp = 13.34 K, r1 = 1.76, Pp = 0;3650'
where o = 2.556 A). The same quantities can be calcu-
lated microscopically. For instance, the kinetic energy
per particle in bulk liquid at several densities was calcu-
lated in Ref. 25 using the variational wave function (2).
From those data one extracts pp

——0.362~, ~p ——14.52
K, and n = 1.77. In Fig. 2 we compare the VMC results
for 7, for droplets with 112 and 728 atoms, with the ones
of the approximated formula (7). The solid line corre-
sponds to the variational values of 7 p, n, and pp, while the
dashed line corresponds to the phenomenological param-
eters of Ref. 15. In both cases we have used Eq. (7) with
the VMC density of the corresponding droplets, and the
high kequency statistical fluctuations have been filtered
out in the calculation of the second derivative. The fig-
ure reveals that the approximate formula (7) works very
well, especially for large droplets.

equation

h2
V'~(r) + V, (r)~(r) = e~(r),

2m3

where

(r) = f(r) gp(r)

is the impurity wave function and

(12)

Vs(r) =
l

—1
l
r(r) + + p4 (14)

t'mg 5 h2 V'Qp(r)
g ms y 2ms gp(r)

t'12 d2 ( fP I,(I, + 1))
d 2X~&+ l

Vs+
l X 1 = & iX 1 (15)

2ms dr' 2m,

is an effective potential seen by the %e atom. The chem-
ical potential p4 of the droplet of the considered size is
added for convenience, so that the eigenvalue ~ in Eq.
(12) is referred to the state in vacuum. In principle, an
additional term should appear in the effective potential
Vs(r) because the exact ground state of pure He droplet
4p is approximated by the variational wave function 4 .
This term is expected to be small due to the closeness of
these two wave functions, and is neglected in the present
treatment.

The assumption F(r1, r;) = 1 in Eq. (10) corresponds
to the Feynman-Lekner theory, already used in the past
to predict the properties of the Andreev state on the %e
free surface, ' on films, as well as on droplets. Un-
like in the previous calculations, where phenomenological

p and 7. were used, here we take them from ab initio cal-
culations.

In order to find the energy and the wave function of the
impurity on a droplet Eq. (12) is rewritten in spherical
coordinates:

@ = f(r1) F(r„r;)4'p,
~ 0 ~ I

i=2
(10)

where 4p is the ground state of the Hamiltonian Hp, and
f and F are variational functions to be determined. In
principle, the optimal f and F can be found by minimiz-
ing the total energy of the system (4'lHl@), which can
be done either by solving resulting Euler equations or by
direct Monte Carlo simulations.

A significant simplification is obtained by taking
F(r1, r;) = 1. This corresponds to the assumption that
the correlations between He impurity and %e atoms are
the same as those among He atoms. The Euler equation
for f then becomes

h2 (m4+1 [p{r1)&1f(r1)]+
l

—1
l f{rl)+(rl)p(rl)

2m3 (m3

—Af(r1)p(r1) = 0, (11)

where p and 7. are the particle and kinetic energy densities
of the pure He droplet [see Eqs. (3) and (4)]. The same
equation can be rewritten in the form of a Schrodinger

The crucial point is that the effective potential V3 has
a well on the surface of the droplet, so that the lowest
eigenstates of the Schrodinger equation are localized on
the surface. The potential well originates from a balance
between the excess kinetic energy of an He atom in the
bulk with respect to the one of hce atoms, which tends to
push the He atom out, and the He-He interaction, which
binds the %e atom to the liquid. A typical situation is
shown in Fig. 3 for a droplet of 112 atoms. Results for
the energy of the lowest (n = 0) impurity states on six
droplets are given in Fig. 4 as a function of N ~ . We
note that a suitable smoothing procedure has been ap-
plied to the VMC data in order to avoid spurious effects
of statistical fluctuations of p in the calculation of the sec-
ond derivative. This affects mainly the external tail of V3
where the density is very small. The error bars in Fig. 4
correspond to the consequent inaccuracy in the results,
estimated by choosing different smoothing methods. The
extrapolation to the case of the planar surface (N ~ oo)
can be done by a linear fit, even if the accuracy of the
fit is relatively poor. We obtain e(oo) —4.9 K, rather
close to the experimental estimate e(oo) = (—5.02+0.03)
K quoted in Ref. 14.

In Fig. 4 the results of the VMC calculation are com-
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FIG. 3. Lowest eigenstate of one He impurity on a droplet
of 112 atoms. Solid line: He wave function; squares: He
density; circles: e8'ective potential Vz.

FIG. 5. Surface pro6le for a droplet of 112 atoms. Points:
VMC results; solid line: density functional results of Ref. 3;
dashed line: density functional results of Ref. 11.
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pared with predictions of Ref. 10 (solid line) obtained us-
ing the Feynman-Lekner theory with approximation (7)
for ~ and density profiles of Ref. 3. The significant dif-
ference between the two predictions is mainly due to the
different density pro6les. The curvature of the surface
profiles in the outer region is underestimated in the den-
sity functional calculations of Ref. 3 with respect to the
VMC results (see Fig. 5). This makes the potential well
for the impurity wider, and the binding energy lower.
The density pro61es calculated with a more recent den-
sity functional ' are sharper than the ones of Ref. 3 and
the corresponding predictions for the He binding energy
are closer to the VMC results (dashed lines in Figs. 4
and 5). Part of the remaining discrepancy is due to the
use of the approxixnated expression (7) for v", we have

checked that the corresponding efFect on the He binding
energy is small (about 0.1 K).

By solving the Schrodinger equation (12) one finds,
above the lowest eigenstate, a spectrum of states with
different principal quantum number n and angular mo-
mentum l. The general features of the spectrum are the
same as in Ref. 10. In the limit of an in6nite droplet
the states with different jt coincide with those of a two-
dimensional Fermi gas.

To conclude, we stress again the idea of the Feynman-
Lekner approach and its limits. The idea is that the
two-body correlations between the He impurity and He
atoms are taken to be the same as the ones between the
He atoms. The He wave function is then expressed by

means of the factor f (r) in the many-body wave function
(10). The form of f is derived variationally, by solving
a Schrodinger-like equation. The lowest eigenvalues are
localized on the surface of the droplets, as an effect of the
diff'erent mass of He and '%e. To improve the Feynman-
Lekner theory one should account for the fact that He-
He correlations diff'er from the He- He ones; i.e. , one

should take F(ri, r;) g 1. One possibility is to choose
F = (1+ P), where P is small. Keeping the terms in
the expansion of the total energy up to the second order
in P is equivalent to taking into account the energy of
an elastic deformation of the residual droplet due to the
presence of the impurity. Such corrections have already
been studied in Refs. 28 and 20 in the case of liquid He
films. The problem of %e- He correlations, in the con-
text of variational calculations, has been also discussed
in Refs. 29 and 30 for bulk He- He mixtures. Work in
this direction is in progress.

FIG. 4. Binding energy of the lowest impurity state as a
function of N . Points with error bars: Feynman-Lekner
theory with w and p from VMC calculations; solid line: Feyn-
man-Lekner results of Ref. 10; dashed line: same theory but
with more recent density functional calculations for the den-
sity pro6les, as in Ref. 11.

IV. CONCLUSIONS

We present the variational Monte Carlo (VMC) calcu-
lation for %e droplets with and without He impurities.
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We have used the variational wave function of Ref. 2 mod-

ified as in Ref. 23. The results for the density and energy
of six droplets, &om N = 70 to N = 728, are close to the
predictions of previous calculations. We have calculated
the kinetic energy density, for which only approximate
estixnates have been given so far. Our results show that
the analytic formula given in Ref. 15 for the kinetic en-

ergy density [Eq. (7)] works very well, and can be safely
used in calculations involving the %e surface.

In the second part of the work we applied the Feynman-
Lekner approach to study He impurity states on He

droplets. The impurity wave function turns out to be
localized on the surface of the droplets, as expected. The
lowest value of the binding energy is almost linearly de-
pendent on N ~ and the value extrapolated to N ~ oo
is close to the experimental binding energy of the An-

dreev state on a planar surface. We have also compared
our results with the predictions for the He binding ener-

gies obtained using phenomenological calculations of the
density pro6les and the kinetic energy density. The gen-
eral trend of these earlier results is similar to the one of
VMC calculations.
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