
PHYSICAL REVIEW B VOLUME 49, NUMBER 21 1 JUNE 1994-I

Restoration of the continuous phase transition in the vortex state
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The critical behavior of type-II superconductors near the upper critical magnetic field H,2(T) is stud-

ied. The thermal fluctuations are shown to forbid a spontaneous breakdown of the U(1) symmetry in

d (4 dimensions within the 1/N expansion, where N is the complex order parameter component num-

ber. The lattice effects such as Harper's broadening and splitting of Landau levels are found to restore
the continuous phase transition in the conventional mixed state described by critical exponents which

are identical to those of the Ginzburg-Landau model with 0=0.

I. INTRODUCTION

The critical properties of type-II superconductors (SC)
near the upper critical magnetic field H, 2(T) have been
extensively studied by various methods for many
years. ' All attempts to develop a consistent approach
encountered serious difficulties. In contradiction to the
zero-field case a dimensional reduction effect takes place
in an external magnetic field. As a result, the order-
parameter fluctuations have one-dimensional (1D} char-
acter and play an important role in a vicinity of the
H, z(T) line. Apparently this means that a (continuous)
phase transition cannot occur at all in such a system be-
cause the lower critical dimension equals four. ' This in
turn implies that theoretical approaches based on the
mean-field approximation ignoring critical fluctuations
are not reliable.

The renormalization-group analysis, having been car-
ried out in Ref. 10, shows that the model under con-
sideration is described by the nonrenormalizable complex
scalar field theory 4 with an infinite set of quartic cou-
pling constants. The dimensional reduction and the non-
renormalizability of the effective Lagrangian were shown
to result from the infinite degeneracy of Landau levels
which is inherent to a charged particle in a homogeneous
magnetic field. '

Another approach was suggested by Brezin, Fujita,
and Hikami. "They calculated the specific heat in the vi-

cinity of the H, z(T) line by summing of higher-order
terms of the perturbation series with the Pade-Borel
method. No specific-heat singularity was found.

In the recent paper of Moore' effects of phase Quctua-
tions were examined in the flux-lattice state. It was
shown that these effects destroy the off-diagonal long-
range order (ODLRO) in d (4 dimensions. Thus, we
face the serious controversy between the experimentally
observed phase coherence in SC below T, and theoretical
results forbidding an existence of the mixed supercon-
ducting state in three dimensions.

A novel approach to the problem was developed by
Tesanovic and Xing. ' The essential points of this
theory are as follows: (i) the dimensional reduction in a
magnetic field is not complete due to the specific distribu-
tion of combinatoric coefficients of Feynman diagrams;
(ii) nonperturbative effects were shown to be strongly
relevant leading to the solid-liquid-like phase transition
without a phase coherence.

In this paper we shall develop the I/N expansion to
show explicitly the absence of a continuous phase transi-
tion in the framework of the conventional Ginzburg-
Landau (GL) theory with an ¹omponent complex order
parameter in an applied magnetic field B which is as-
sumed to be spatially uniform. To resolve the above-
mentioned controversy we shall suggest one possible
scenario of the phase transition restoration in the vortex
lattice based on taking into account the lattice magnetic
translational symmetry effects, in particular, Harper' s
broadening and splitting of Landau levels. In this ap-
proach we use the lattice version of the GL functional
and other equivalent (at a critical domain} models. ' We
are forced to choose such a way because of the lack of a
commonly accepted microscopic model for the high-T,
SC. The lattice model description seems also to be natu-
ral in view of the fact that the experimental coherence
length values in high-T, SC hardly exceed lattice spacing
ones. '

At first glance, in a vicinity of a continuous phase tran-
sition point when the correlation length r, diverges as T
approaches T, the system should "forget" the discrete
nature of a lattice. That is why lattice terms in a Landau
Hamiltonian are irrelevant near T, . But if one studies a
critical behavior of a SC in an applied magnetic field this
is not the case. The physics of this phenomenon is rather
transparent because lattice breaks the continuous transla-
tional magnetic symmetry reducing it to the infinite
discrete one and suppresses the dimensional reduction
effect. ' From the renormalization-group point of view
there is a strongly relevant operator constructed from lat-
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tice terms drastically changing the critical behavior of a
SC in an external magnetic field. Moreover, these terms
are known to lead to the appearance of Abrikosov's flux
lattice below T, being commensurate to the original lat-
tice. ' Thus, we may regard the above effects as one of the
presumable mechanisms which is responsible for the ex-
istence of the ODLRO in the mixed state.

Therefore the essential difference in comparison with
the Tesanovic's approach is the strong lattice pinning of
the order parameter. The Tesanovic's theory is expected
to be valid within the range of moderate magnetic-field
values when the magnetic length is large enough in com-
parison with the lattice spacing. On the other hand our
approach seems to be applicable in the limit of small
magnetic length values comparable with the lattice spac-
ing and the coherence length which is small in high-
temperature superconductors. A detailed consideration
of the crossover behavior between these two regimes is
left for future studies.

This paper is organized as follows. In Sec. II the criti-
cal behavior of the conventional GL model is studied
within the 1/N expansion. Section III is devoted to the
treatment of the continuum limit and critical properties
of lattice models of a SC. The main results are briefly
summarized in Sec. IV.

II. THE 1/N EXPANSION
FOR THE GINZBURG-LANDAU MODEL

We begin with the conventional fluctuation GL Hamil-
tonian

where

@~a
—

a~(), -r=(T —T, )/T, . (2)

Here 4= [4„.. . , 4z] is an ¹omponent complex or-
der parameter, up may be considered as a positive con-
stant near a transition temperature T, without a magnet-
ic field, A„ is a vector potential; in the symmetric gauge
we have

G(r, r') =60(r, r')

Nup RG0 r R G R R G R r ~ 4

Since GD (r, r')=G0(r, r')O'", Savor indices will be omit-
ted throughout this paper. The bare gauge-noninvariant
correlation function G (r, r') is the resolvent of the
Schrodinger operator

2

A= —,'[B,r],
where B is taken to be along the z axis, $0=bc/2e is the
magnetic flux quantum, I b d 5o &bd+&od&b
a, b, c,d =1, . . . , N; the Einstein summation convention
is used.

With the purpose to obtain an asymptotically exact
solution of (1) in the large-N-limit let us consider the
Dyson's equation for the two-point Green's function of
the order parameter

2m
+~0 GQ(r, r')=5(r —r') .e

up+ KO@a @a + Iabcd@a@b@c@d
An exact expression for GD(r, r'} can be obtained analyti-
cally in an arbitrary gauge

GD(r, r') =exp f 'dx&A& f dPmco 4m@'sinh
AG r 0

' —1/2

Xexp —xP— (z —z') — coth [(y —y') +(x —x') ]2' 4R 2
(6)

Here co =e8/rnc is the Larmor frequency, z and z' stand
for coordinates in (d —2) longitudinal directions. From
Eq. (6) it follows that G0(r, r) and, hence, G(r, r) being
gauge-invariant quantities do not depend on r. The in-
tegral in the exponent is taken along the straight line con-
necting points r and r'.

This important conclusion also results from the 1ocal
gauge invariance of the theory (1) which implies that un-
der the translation r =r+a, the normal Green's func-
tion transforms as

G(r+a, r'+a)=exp ~ [B,a](r—r') G(r, r') .ie
2'

Therefore it is clear that G (r, r) is a constant.
Thus, we may regard the Dyson's equation as a linear

integral one. However, the solution of this equation can-
not be directly obtained by means of the Fourier transfor-
mation because both Green's functions in Eq. (4} do not
depend on differences x —x' and y —y'.

One easily gets the solution of Eq. (4) by doing the
Fourier transformation with respect to longitudinal coor-
dinates and using the lowest Landau level approximation
for the x —y part of the Green's function. One believes
that near T, only this leve1 gives the dominant contribu-
tion to G(r, r). Using some algebra, we arrive at the ex-
pression
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G(x,x',y, y', k)=Cexp — dx A — [(y —y') +(x —x') ]
4& k'+M' (8)

where C is an inessential constant factor. Having been
equipped with this result we may immediately turn Eq.
(4) into the equation for a "physical" mass M (an inverse
correlation length r, '=M), familiar from the phase
transition theory'

d —2

M =K0+ —X@0
dk 1

(2m) k +M
(9)

We see that an external magnetic field inevitably leads
to the dimensional reduction which forbids a spontaneous
breakdown of the continuous U(1) symmetry in d (4 di-
mensions. This assertion can be shown to be valid in the
framework of 1/N expansion. Equation (9} is in good
agreement with Moore's results and the conjecture given
by Ruggeri and Thouless that the physical properties of
(1) for d =3, N =2 are identical to those of the 1D GL
model with 8 =0.

&=No, f (12)

Here U is the unit-cell volume and a, is the lattice spacing
in the z direction.

Provided N tends to infinity, G(r, r') satisfies Eq. (4)
where Go(r, r') is the solution of the Harper's equation'

i R—B„——A„+so Go(r, r') =5(r —r') .
e

(13)

It is helpful to consider the associated eigenvalue prob-
lem

eibid„——A„—+a~() 4„k (x)=E„k%'„k (x),
C

(14)

this function turns into the standard expression
E(k)=A' k /2m, '

III. THE CRITICAL BEHAVIOR OF LATTICE MODELS

H= —g J; n n "exp i J dx„A„
(', ') @0 i

(10)

with n being an ¹omponent complex unit vector,
n,'n, ."= 1, J;. equals J for nearest neighbors and zero oth-
erwise; the gauge-invariant sum around a plaquette
gA; =2nf, where A;i denotes the internal in the ex-

ponent Eq. (10); f =p/q is the frustration; p and q are
relatively prime integers.

The Hubbard-Stratonovich transformation was shown
to provide a systematic prescription for obtaining an
infinite set of effective GL Hamiltonians being the contin-
uum limits of Eq. (10) with different internal symmetries
corresponding to different rational values off.'

Within the other approach being somewhat artificial
but leading to the identical expressions for the effective
GL action one deals with the GL free energy density
which is different in quadratic terms from that given by
Eq. (1),'

d l . eH= d x —c —ikey ——A
2 c

Now we turn to study how lattice terms in the GL ac-
tion affect a critical behavior of a SC. There are two
completely equivalent ways to incorporate lattice transla-
tional symmetry effects into a theory. The most straight-
forward approach is to treat the lattice Hamiltonian of
the uniformly frustrated O(2N)-symmetric nonlinear cr

model from the very beginning in the spirit of the paper
of Choi and Doniach'

Ek= (k, +k )+ k, +vo
2m ) 2m2

(15)

with m& 2 being effective masses in the x-y plane and
along the z direction, respectively. Substitution of the
resolvent spectral expansion in basis functions (14)

Go(r, r') = Q E„'„' '%'„„~(r)%„'k~(r'),
n, k, a

(16)

G(r, r')= g E„k'%(r)%*(r')
n, k, a

into Eq. (4) yields

Enk —Enk +
p

Q0¹g Ezk
n, k

To obtain Eq. (18) we have used the relation

(18)

where k is a quasimomentum defined in a magnetic Bril-
louin zone, n is a magnetic band number, and
a=1, . . . , s where s =q(q/2) if q is an odd (even) in-

teger, respectively. Although the explicit expressions of
Harper's eigenfunctions and eigenvalues are not known,
its general properties are well understood.

The energy spectrum is known to be degenerated with
regard to the quantum number a labeling eigenfunctions
%„k (x) which form the basis of the s-dimensional irre-
ducible projective representation of the magnetic transla-
tional group.

Near the band's bottom the spectrum E„k can be writ-
ten in the form

+—~o4, 4;+ I,b,g@,@b@,*@g ', (l l)0 a a 8 abed a b c d

G(0)=s QE„k' .
n, k

(19)

The summation over index a gives rise to the factor s in
Eqs. (18) and (19}. Combining Eqs. (15) and (18), one ob-where E(k) is the band spectrum; without lattice effects
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tains the familiar equation for the correlation length
coinciding with Eq. (9} apart from the spatial dimension
value. Thus, due to the disappearance of the dimensional
reduction the continuous phase transition occurs in the
3D model (11) described by universal critical exponents
which are identical to that of the spherical model and do
not depend on f.

Inserting the order-parameter expansion in eigenfunc-
tions (14)

4, (x)= g u'(k;n)+„l, (x)
n, k, a

(20)

into Eq. (11) and using the effective-mass approximation
(15) one rewrites the GL functional in terms of the new
s¹omponent complex order parameter u', (k;n)

k, a, a

Qp+ g I s,~g p„„(k„k2,k3, k4)
8

a, b, c,d

a, P,p, v

Xu'(k) )u p(k2}u„"(k3)u „'(k4) . (21)

In Eq. (21) contributions of higher Landau modes
n =1,2, . . . have been neglected; a,g, p, v=1, . . . , s;
coefBcients g are defined by the relation

g,p„,(k, , k2, k3, k4 )

ponent scalar field theory 4 (Ref. 4} can be studied by
virtue of the we11-known standard approach. The
renormalization-group analysis of (24) cannot be done in
the general case due to the following reasons: (i) since

g~„„is a highly discontinuous function of the frustration

f, it's explicit expression has been found only in simple
particular cases (ii) at the present time the reliable
methods of the calculation of renormalization-group
functions in the 3D space through the perturbation
theory combined with the Fade-Borel resummation tech-
nique of asymptotic series are well developed only for
models with a few independent quartic coupling con-
stants. ' The detailed treatment having been done in Ref.
13 shows that the critical behavior of (25) is governed by
the superfiuid (Bose) fixed point for q =1,2, 3,4 and is
the same as for the usual SC with H =0.

It is tempting to assume that the critical behavior of
(24) is universal and can be actually described by the Bose
critical exponents. Although we are not able to give
rigorous proof of this point, we present some arguments
in favor of this plausible possibility: (i} the previous
analysis in the 1iN expansion and results obtained in
Refs. 12 and 13 strongly confirm this hypothesis; (ii) since
the numerical value of the specific-heat critical exponent
a is negative, the Harris criterion implies that the Bose
fixed point is stable with respect to turning on a small
perturbation produced by local operators which are given
by I

u I 1
u p ~

(N =2, aWP= 1, . . . , s). In particular,
quenched nonmagnetic impurities of a random-
temperature type do not affect critical properties of a SC.

x%'k x %'kP x %k„x %k x (22) IV. CONCLUDING REMARKS

In accordance with the conventional field-theoretical ap-
proach to phase transitions and critical phenomena we

may ignore the Ik;] dependence of g p„„(k,,kz, k3, k4)
near T, with the exception of 5-function factor

g~p„~(k„k2, k3yk4) g(gp„„5(k3+k3 k3 k4) .— (23)

Using Eqs. (15), (21), and (23), we are directly led to the
effective local GL Hamiltonian '

Q 0 a ', c» d»+ gaPpvlabcd~ a~
~ p ~ v

8
(24)

where

u'(x)= g uf exp(ikx) .
k

(25)

The Hamiltonian (24} is known to describe phase transi-
tions in anisotropic SC with d-wave pairing of charge car-
riers [which is supposed to occur in heavy-fermion SC
(Ref. 13)] for N=2, 3 as well as the superconductor-
insulator phase transitions at T =0 in Josephson-junction
arrays in an external magnetic field for N = 1.' '

The critical behavior of the renormalizable multicom-

Let us consider in brief the situation below T, . In this
case thermodynamic averages of order-parameter com-
ponents ( u ' (x ) ) are expected to take constant values.
According to Eqs. (20} and (25} the spatially uniform or-
dering in the effective theory (24) corresponds to the in-
homogeneous periodical ordering in the original model
reflecting the formation of the regular flux superlattice
which is commensurate with the original lattice for arbi-
trary rational values of the frustration f.' So, we expect
that the modified GL theory (11) gives the consistent
description and truly captures the essentials of the phase
transition in the conventional mixed state.

We have shown above that thermal fluctuations do
indeed destroy the ODLRO and the lower critical dimen-
sion of the conventional GL theory in an external mag-
netic field equals four in the 1/N expansion in accordance
with Ref. 12. The lattice effects were shown to restore
the ODLRO, at least, in the large-N limit. The continu-
ous phase transition occurs on the H, 2(T) line provided
an applied magnetic field takes values given by Eq. (12).
The critical behavior of our model is predicted to be
universal and identical to that of a superconductor with
H =0 irrespective of the value off.

As for intrinsic magnetic-field fluctuations, one
can easily check that they cannot suppress the dimen-
sional reduction effect in the conventional GL theory, at
least, in the lowest order in the 1/N expansion and do
not change the nature of a phase transition and the criti-
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cal behavior of lattice models. This conclusion is con-
sistent with the Monte Carlo simulation results. A de-
tailed investigation of the theory taking into account Auc-
tuations of A„and lattice efFects is left to future studies.
Notice that while difFerent versions of continuum theory
predict destruction of a continuous phase transition by
fluctuations (it is true within the 1/N approximation, for
instance), pinning of fluctuations by a lattice restores the
second-order phase transition in the limit of extremely
strong magnetic fields. To investigate a crossover be-
tween these two regimes and, in particular, to estimate a

critical value of the field is the extremely intriguing prob-
lem.
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