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Candidates for the ground state of the anisotropic t-J, model at low hole doping are studied within
two related lattices: the Cayley tree and the square lattice. The Cayley tree allows for the evaluation of
the single hole as well as the hole-pair ground states to arbitrary precision. Threshold values for the for-
mation of bound hole pairs appear to be similar for both lattices. We show that the main contributions
to the binding of a hole pair on the Cayley tree comes from the excess number of frustrated bonds (“spi-
nons”). Considering systems with a larger number of holes, we establish high stability of configurations
with holes forming straight domain walls between nonequivalent antiferromagnetic domains. In particu-
lar, for the Cayley tree we find that domain-wall-like configurations have lower energy than separate
hole pairs. For the square lattice, however, there exists at low but finite doping a parameter interval
0.18 <J/t <0.56 where, in the ground state, holes are paired.

I. INTRODUCTION

The phase diagrams of several models for strongly
correlated electrons have been studied very extensively in
past years in connection with the search for the micro-
scopic mechanism of superconductivity at high tempera-
tures. Both prototype models, the Hubbard model and
the ¢-J model,! remain a challenge in this respect. In
particular, the question still remains open whether there
exists a phase with paired electrons in the physically
relevant regime of parameters and at low concentration
of holes doped into the reference antiferromagnet (AFM).

The phase diagram of the ¢-J model is best understood
in one dimension, where the strong superconducting (SC)
pairing fluctuations are restricted to the vicinity of the
phase separated region at J >>t.2 Recently it has been
shown that an external staggered field £ >0 introduces
into one dimension several characteristic features of
D >2 systems.> It can induce the existence of bound hole
pairs and dominant SC pairing fluctuations at J <t far
from the phase separation. This one-dimensional (1D)
model offers a simple qualitative as well as quantitative
explanation for the origin and the threshold for hole-pair
formation, observed before at J % 0.2t in the (zero-field)
model on a square lattice via the exact diagonalization
study of 4X4 system,* recently confirmed for systems
with N =26 sites,>® as well as by the Monte Carlo tech-
nique.” Extending these findings to systems with a larger
number of holes or at finite hole concentration, there still
remains a controversy whether a bound hole pair is a pre-
cursor of (a) a phase with paired holes (electrons),® (b) the
(physically less appealing) cluster formation, related to
the phase separation into the hole-rich and spin-rich
phases,’ ! or (c) the striped (charge-density wave) phase
with holes forming domain walls (DW’s) in an AFM. %13
The evidence for the stability of the latter phase has been
found in a recent numerical study of the ¢-J model on the
square lattice with N =26 sites,> where the lower thresh-
old for the inhomogeneous phase with DW formation ap-
pears at J ~ 1.4t much below the usual phase separation,
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i.e., the cluster instability at J R 2.5¢.
In this paper we investigate the ¢-J, model with the an-
isotropic (Ising-like) spin exchange, defined by

H=—t 3 (cfe,+H.c)+J 3 (SISi—imm), (1)
(ij)s (ij)

where ciI(cis) are projected fermionic operators, taking
into account that double occupancy of sites is not al-
lowed. n; and S; are the corresponding local fermion
number and spin operators, respectively.

In comparison with the isotropic ¢-J model, the t-J,
model represents a substantial simplification near half
filling. Namely, in the system with half-filled band
without added holes the ground state is a trivial Néel
state (for J > 0), while in the isotropic model spin fluctua-
tions destroy the long-range order in one dimension and
substantially decrease the staggered magnetization in two
dimensions.'* In a macroscopic system a finite number
of holes cannot destroy the AFM order in the ¢-J, model,
while effects in the ¢-J model are more subtle due to
long-wavelength AFM magnons. Nevertheless, there are
several important similarities between results in both
models. In particular, the mechanism that leads to the
bound state of two holes, first clearly established in the
isotropic model on the 2D square lattice,* seems to be
qualitatively the same for the anisotropic model. The
latter fact has been confirmed by variational calcula-
tions, !° the perturbation expansion, !® and most transpar-
ently in the 1D model with an external staggered field.*

The t-J, model offers a possibility to study numerically
in more detail systems with more holes, N, >2, which are
essential for the understanding of the possible phases at
finite hole doping. Although in general the complete
basis set to describe the system ground state is not re-
duced relative to the isotropic ¢-J model, there are several
controlled approximations allowing for reliable quantita-
tive results. In particular, the calculations are simple on
the Cayley tree, where one can obtain numerically accu-
rate results for the ground-state energies for N, =1 as
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well as for N, =2 (this paper). Although results for
N, >2 and the hole DW’s cannot be obtained to the same
precision, still they are relatively more accurate than for
the square lattice.

The organization of the paper is as follows. In Sec. II
we address the problem of two holes on a Cayley tree. In
Sec. III we consider holes forming a domain wall both on
the Cayley tree and on the square lattice. We conclude
the paper (Sec. IV) by summarizing our results and com-
menting briefly on their implications.

II. HOLE PAIRS ON CAYLEY TREE

We are interested in the ground state of few holes in
the AFM ordered spin background. On the Cayley tree
(of coordination number z +1) it is easy to achieve the
AFM-Néel order (coordination) in the reference system
without holes by imposing on the final Nth level (see Fig.
1) the boundary condition with all spins aligned. Few
holes added to such system cannot destroy the long-range
AFM order. In addition, we assume that boundaries re-
pel holes and therefore consider only ground states with
holes confined to the bulk of the tree.

In the t-J, model (1) the reference system without
holes has a simple Néel order. The ground state of a single
hole N, =1 introduced into the bulk of the AFM, can be
treated analytically since the hole can perform only re-
traceable paths. The ground-state energy ¢, =E;—E,
has been first obtained by Brinkman and Rice!” with the
result €,=V'z(z+1)t for J=0. General J >0 requires
the solution of a system of linear equations

(e,— Volag=Vz+l1ta, ,

(e,—V))a,=Vz+ltay+Vzta,, )
(e,—Vya,=Vzta, +Vzta, ., n>1,

with the stringlike potential'®
V. =[z+2+(z—1)n -5,,]%. (3)

The calculation of the ground state for two holes N, =2
is much more involved due to the importance of the fer-
mionic signs and due to a number of possible candidates
for the hole-pair wave functions having different sym-
metries. We will investigate here only a particular pair
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FIG. 1. Cayley tree with branching z =3. Dots represent the

spins in the AFM (Néel) ordered state. Crosses denote over-
turned spins relative to the Néel state, while the wavy line
denotes the spin-string between holes.

P. PRELOVSEK AND I. SEGA 49

eigenstate, which can evolve from a hole pair introduced
into the AFM background at the tree root, i.e., with the
two holes initially on levels O and 1, respectively. Start-
ing with such initial condition only wave functions can
develop which are symmetric in single-hole positions
within the same tree level.

It is convenient to introduce normalized basis func-
tions, characterized in general with three levels r <m <n,
m,n denoting levels of both holes, while 7 is the highest
common root for both holes. An example is shown in
Fig. 1. Single-hole hopping in an AFM background
leaves behind a string of overturned spins and the second
hole following the first one can erase the string. It is easy
to verify that the length of the spin string, and conse-
quently the potential energy, is determined solely by the
level of the root r and both hole levels m,n. Basis func-
tions can be written as

1

- + o+t
Irmn ) = Vi 1y ir%“mu“nvfuvm) ;
O<r<m<n, (4a)
[rrn )ﬁ Satfa,,m,00), r<n. (4b)
z irv r r

Here, spinless fermionic operators a,; . represent the hole

creation at position p within the level m, acting on the
reference Néel state |0). T;V is a bosonic operator creat-
ing a spin string between positions mu and nv with the
common root at ri,. In (4a) the sum runs over all the po-
sitions p(r),v(r) within respective levels m,n, which can
be reached from the highest common root at i,.

From the construction (4) of basis states, representing
the complete set only for the chosen initial condition, it is
evident that both holes cannot enter the same level, i.e.,
m <n. Hole-pair states (4) and Hamiltonian matrix ele-
ments have also the translation symmetry with respect to
levels r =1,N of the Cayley tree. So it is natural to as-
sume that the ground state will be for N — oo character-
ized with the wave vector ¢ =0, the eigenfunction |¥,)
being of the form

|\P0)=717r§ﬂam|r,r+ﬁz,r+ﬁ) . (5)

Within this reduced set of basis functions it is now
straightforward to find the matrix elements using the
Hamiltonian (1),

z—1

; 1
HM=Eo+(z +1J + 5 =(m+r—1DJ=J8,

HA M =—(1+VZ)t, HI"'=—V7z1, m>0,
Hi'=—VZz—1t,a>1, HF"I=—V7t, a>m+1.
(6)

Within the diagonal term H" the third term is the spin-
string contribution. The last term leads to an additional
contact attraction between holes on NN sites and is due
to the known fact that two close holes break one ex-
change bond less than two separate holes.



It is easy to diagonalize the Hamiltonian matrix (6) for
particular z,J and find numerically hole-pair energies €,
to high precision. Here we will consider only the tree
with z =3 which simulates the branching in the square
lattice. In this case larger N, e.g., N >20, are needed
only for J <0.1¢, still we can show that on approaching
J—0 €,=2¢€,. Results for the pair binding energy
€, —€,—2€, at general J >0 are presented in Fig. 2. It
follows that hole pairs are bound for J >J,~0.28:. We
note that this threshold J, is very close to the one ob-
tained for the z-J, model (see Sec. III and Refs. 19 and
20) as well as for the isotropic ¢-J model on the square
lattice. >®

Due to differences between the square lattice and the
Cayley tree the symmetry of such hole-pair state cannot
be directly related to 2D states, still the closest
correspondence is with the ¢ =0 and the mixture of p and
d rotational states on the square lattice. [Note, that un-
like for the isotropic model, the ground state (g.s.) of the
t-J, model on square lattice for two holes is p-wave-like?
in the parameter region here considered.] At present, we
cannot prove that there are no other bulk hole-pair solu-
tions (ignoring possible surface states) with lower e,.
These other candidates correspond to different initial
conditions and are less symmetric, hence also more
difficult to study. We have tested some candidates, how-
ever no indication for a more stable solution was found.

To conclude this section let us comment again on the
origin of binding. As has been already pointed out by the
present authors® in the case of the one-dimensional t-J,
model in a staggered field 4, the state of paired holes be-
comes energetically favorable relative to two separate
holes for some J >J,(h), due to the energy cost J, which
arises from two additional spinons for separate holes.
Below we show that this same effect lies at the origin of
binding of holes on the Cayley tree as well, where the
staggered field is provided by the AFM background.
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0.0 0.5 1.0 1.5 2.0

Jit

FIG. 2. Hole-pair binding energy ¢, (full line) vs J /¢ for the
Cayley tree. Contributions to €, [see Eq. (9)] are also plotted:
8(T) (dashed line), 5{¥,) (dot-dashed line), the spinon contri-
bution €, (long-dashed line), and the broken-bond contribution
€yp (dotted line). Here and in subsequent figures the energies are
measured in units of z.
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First note that by diagonalizing the Hamiltonian ma-
trices, defined by Egs. (2), (3), and (6), for one and two
holes, respectively, one obtains also the ground-state (g.s.)
amplitudes {a,} and {a,,]}. Then the g.s. energy can be
calculated as a sum of contributions from different pieces
of the Hamiltonian. In the two-hole case one has

62=—%a(2,’1+(T2)+(VS), ™
where the first term represents the contribution from the
broken bond, the second term is the kinetic energy con-
tribution, and the last term is the g.s. expectation value of
the string potential V(/)=I(z—1)J/2,l=m+A—120.
Similarly, for the single hole

el=§(1—a%)+<T1)+(Vs), (®)

where the second and third contribution are of the same
origin as for two holes. The first term, however, results
from the extra frustrated bond (analog of a spinon in one
dimension) generated at the origin of the string as soon as
the hole hops away from it. Then, the overall contribu-
tion to the binding energy is

€,=8(T)+8(V,)+e,+e )

sp ?
J
ebbz - Ea(z)’l, Esp= _J( 1 _a(Z)) .

There are several important features to be noted. First,
the contribution from broken bond €., is seen to be
relevant only for J/tX 1.5, whereas for the physically
relevant region J/t $0.5 it is completely dominated by
the spinon contribution €y, Indeed, for J/t<0.5 (see
Fig. 2) the holes are well separated from each other and
the contact interaction induced via the broken bond be-
comes irrelevant. The kinetic energy contribution §(T')
is always positive and almost constant, except for very
small J /t (for very long strings), where the 2-power law
becomes manifest. This is because hopping of two holes
tied by a string is suppressed, due to interference effects,
as compared to a single hole, and consequently
(T,)>2(T,). Finally, the string contribution is also
positive and comparable in magnitude to 8(T) for
J /t St, but negligible otherwise. The explanation for this
lies in the fact that there are more states in the paired-
hole case with a given string length than for the isolated
hole, thus resulting in a larger (V).

III. HOLES FORMING DOMAIN WALLS

When a finite concentration of holes is introduced into
the system, there are several possibilities how pair forma-
tion for N, =2 would affect the situation with N, >>1.
One possible scenario is that holes would form a domain
wall separating two different AFM domains. An indica-
tion for the latter has been found recently in the numeri-
cal investigation of the 7-J model with more (N, =4)
holes.®> This scenario represents also a natural extension
of the 1D ¢-J model, where the ground state for a single
hole (holon) represents a DW in AFM correlated back-
ground spins.
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A. Cayley tree

Due to the presence of many mobile holes, the quan-
tum problem of a dynamical DW formed by holes is a
difficult one, even on a Cayley tree. We are not able to
solve it exactly, but still to a high degree of accuracy (not
for very small J /t <<1). By appropriate boundary condi-
tions for spins it is easy to simulate the basic
configuration on the Cayley tree (see Fig. 3), where holes
form a DW between two different AFM domains. Our
aim is to find the energy of such many-body states, after
we allow also for all quantum fluctuations, i.e., all possi-
ble hole excursions with the ¢-J, model.

Let us first consider a simplified problem, where in a
DW only a single (tagged) hole is allowed to hop (see Fig.
3), while the others stay fixed within the DW. This prob-
lem can be as well considered as a mean-field-like approx-
imation (MFA) to the many-body DW dynamics. The
search for the ground state is equivalent to the problem
of a single particle (hole) hopping in the potential

17,,=[z+(z—1)|n|]% , (10)

where n denotes the hole position with respect to the
DW, while z should be odd and z = 3 for the meaningful
definition of DW. In the spirit of MFA we have attribut-
ed to a single hole only a part of the potential energy
V,=zJ of the basic DW configuration.

Further on we will discuss only the z =3 case. Note
that ¥, is smaller than V, for all n for a single hole in a
homogeneous AFM, Eq. (3). On the other hand, a hole in
the DW is restricted in hopping due to neighboring holes,
e.g., Hy=—V2t (for symmetrized basis with n >0) in
contrast to H)=—2t, Eq. (2), for an isolated hole in an
AFM. Numerical results for the energy epw of the
tagged hole in a DW, representing also the MFA energy
(per hole) for the many-hole DW, are presented in Fig. 4.
They can be compared to €, as introduced in Sec. II. We
notice that for J > 0.2t one gets epy < €;, being already a
strong indication for the high stability of DW
configurations.

€pw represents a reasonable approximation to the true
DW energy €pw (per hole). Since the exact evaluation of
€pw would require essentially the complete many-body
basis of the ¢-J, model, we perform only the diagonaliza-
tion within the restricted basis of hole and spin
configurations. In particular, we use the following restric-
tions: (a) we consider the DW of finite length L (see Fig.

i
A

FIG. 3. Domain-wall configuration on a Cayley tree.
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FIG. 4. Energies of the single mobile hole on a Cayley tree:

(a) epw, in the domain wall (@), i.e., MFA DW energy per hole,
and (b) €, in a homogeneous AFM (0O).

3), but extended by periodic boundary conditions, (b) the
hole can perform only a single lateral hop (left or right)
along the DW direction, and (c) in the vertical direction
(on Fig. 3) holes can hop at most the distance M (up or
down). We notice that the ground-state energy is much
more sensitive to changes in M than to those of L, so we
perform the calculation on the systems up to L =4 and
M =4. This yields already ~ 30 000 basis states, requiring
the use of the Lanczos diagonalization procedure. Re-
sults of such variational method seem to converge well
for J > 0.3¢, while for smaller J deviations become more
pronounced.

In Fig. 5 we present results for the DW condensation
energy (per hole) A=€pyw —€,/2, calculated with respect
to separate hole pairs. A rather striking conclusion is,
that in the whole regime J >J, separate hole pairs are
unstable against the formation of a hole DW. Some sim-
ple arguments can be given to interpret this result: (a)
holes in a DW profit from a reduced string potential, Eq.
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FIG. 5. Domain-wall condensation energy A (®) vs J/t for
the Cayley tree. The hole-pair binding energy €, (O) is replot-
ted for comparison.
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FIG. 6. Domain-wall configuration on a square lattice.

(10), the effect pronounced to its extremum in a 1D chain
(z=1), and (b) a separate bound hole pair gains only a
part of the coherent kinetic energy, while a hole in the
DW also keeps at least the 1D kinetic energy contribu-
tion.

B. Square lattice

We approach the analysis of a hole-DW on a square
lattice, separating two different AFM domains, in the
same way as above. We first consider the DW where a
single (tagged) hole is mobile, as presented in Fig. 6. The
evaluation of the ground-state energy for this system is
more involved (due to the absence of translational invari-
ance in one direction) than finding accurately the states of
a single hole. In order to simplify the problem somewhat,
we neglect all hole excursions containing loops or cross-
ings. Then it is easy to devise a numerical method to
evaluate successively energies of configurations with
different hole paths. Approximately they are proportion-
al to the spin-string length n, and qualitatively similar to
¥V, in Eq. (10).

Again, we choose the potential energy of the hole in
the reference DW configuration as in Eq. (10), so that the
calculated epy can be interpreted as the DW energy per
hole within MFA. In Fig. 7 we compare results for epw
with the energy €, of a single hole in a homogeneous
AFM, as calculated from the diagonalization of the
N =26 system.

Results for the square lattice, Fig. 7, and for the Cayley
tree, Fig. 5, have common features, but also essential

Square lattice

40 L " " 1
0.0 0.2 0.4 0.6 0.8 1.0

Jit

FIG. 7. Energies of the single mobile hole on a square lattice:
(a) epw, in the domain wall (@), i.e., MFA DW energy per hole,
and (b) €;, in a homogeneous AFM (0O ).
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FIG. 8. Single-hole paths on a square lattice taken into ac-
count in the variational calculation.

differences. At larger J/t holes in a DW are clearly more
stable than separate holes. However, on a square lattice
critical value J~0.5¢ appears substantially higher than
on the Cayley tree. Moreover, €pw does not approach
the same value as €, for J—0. This seems to result from
different connectivity of the Cayley tree with respect to
the square lattice, on which the hole moving in the vicini-
ty of the DW is restricted in motion (to half-plane) also
for longer paths, while on the Cayley tree this is not the
case.

The analysis of the complete many-body DW problem
is much more involved. Namely in comparison with the
DW on a Cayley tree where holes following different
neighboring vertical branches do not interact, there is a
number of restrictions on the motion of holes in the
square lattice. We approach the problem by constructing
the variational wave functions using the following pro-
cedure and simplifications: (a) we consider a system with
the length up to L =4 with periodic conditions, (b) we al-
low for each hole up to M, =35 different paths, half of
them presented in Fig. 8, (c) considering interfering paths
of different holes we omit all configurations which are not
reachable in a unique way, i.e., have possible exchange of
holes, involve path crossings, etc., (d) diagonal energies
for allowed configurations are calculated exactly, and (e)
due to the large basis, i.e., up to LM" states, the Lanczos
diagonalization is used to find the ground state.

Results obtained in this way seem to be reliable in the
regime J >0.3¢, and are shown in Fig. 9, together with €,
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FIG. 9. Domain-wall condensation energy A (®) vs J/t for
the square lattice. The hole-pair binding energy €, (O) is plot-
ted for comparison.
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as obtained in Refs. 19 and 20. Although the hole DW
appears stable well below J =¢, the critical value being
.7c ~0.56¢, still there exists a clear window of stable
separate hole pairs J, ~0.18¢ <J <J_. This is consistent
with the MFA result in Fig. 7, albeit there remains only
the quantitative agreement between the MFA result and
the many-body DW analysis.

IV. CONCLUSIONS

In this paper we analyzed the phase diagram of the an-
isotropic ¢-J, model in the limit of low hole doping. Both
lattices considered, the Cayley tree and the square lattice,
show common features. In particular, ground-state prop-
erties of the single hole and of the hole pair introduced
into the reference AFM agree even quantitatively for
both lattices, at least outside the Nagaoka regime, i.e.,
J R 0.1t. The hole motion is governed by the spin-string
effects. While the single hole motion is (approximately)
incoherent, the hole pair retains a part of coherent propa-
gation (e.g., for the p state along one direction only?°).

On the Cayley tree the origin of low hole-binding
threshold J, ~0.28¢ is seen to result from essentially two
contributions, the hole-pair kinetic energy due to
coherent propagation, favoring separate holes, and the
spinon (string-end contribution), favoring the bound hole
pair. From the discussion presented at the end of Sec. II,
it is clear that within the same, i.e., retraceable path ap-
proximation, the above picture should equally well apply
to a hole pair on a square lattice. Taking into account
loops, which can form on a square lattice, is expected to
play no significant role since cancellation in contributions
from kinetic energy and string potential V; to €, will
again occur. Moreover, the relative weight of such
configurations in the g.s. becomes negligible for long(er)
strings. Likewise, inclusion of spin fluctuations should
not alter the above picture in any essential way, as results
also from numerical calculations.>® Namely, close to the
pairing instability hopping of holes occurs on a scale
much faster than that of spin fluctuations, i.e., holes hop
against a quasistatic spin background, and except for ex-
tra spinons and the excess kinetic energy, cancellation of
contributions to €, should occur.

At low but finite hole doping we have to compare
different competing states, corresponding to different
phases. It appears that configurations with holes forming
DW between (two) nonequivalent AFM domains are
surprisingly stable, both in the Cayley tree and in the
square lattice. The origin of the low energy of such states
can be explained by the fact that holes in a DW profit
from the reduced number of broken exchange bonds
while they still keep low kinetic energy due to weakly
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perturbed (predominantly 1D) motion perpendicular to
the DW. Such configurations can be as well regarded as
a coupled system of chains with a single holon (hole in a
AFM DW) within each chain. Due to the AFM back-
ground displacements of holes on different chains become
coupled, however the total energy remains quite competi-
tive with the system with separate hole pairs. In this
respect both lattices seem to differ. While on the Cayley
tree hole DW appear to be more stable than separate hole
pairs, the square lattice allows for an intermediate phase
with a gas of bound hole pairs. The origin of this
discrepancy seems to be in different connectivity of both
lattices. High stability of DW solutions at finite doping is
not unexpected, since similar conclusions were reached
(solutions representing charge-density waves and spin-
density waves with regular DW arrangements) within the
Hargele;-Fock analysis of the Hubbard model at low dop-
ing.'®

We did not consider in this paper the instability to-
wards formation of larger hole droplets (consisting of
more than two holes), which would represent at finite
doping the instability to the usual phase separation into
the hole-rich and spin-rich phase.’”!' From our previ-
ous results on the 1D ¢-J-h model® as well as on the 2D
t-J model,’ it follows that clustering wins only at larger
J, typically J >2t, and the relevant driving mechanism
seems to be simply due to reduced number of bonds in a
cluster. This phenomenon appears outside the relevant
regime J <t with competing phases of paired holes and
hole-DW configurations, respectively. Most other analyt-
ical and numerical approaches to the problem of the
phase separation in the 2D ¢-J model do not clearly dis-
tinguish between clustering and possible DW formation,
so their results should be interpreted with care.

We expect great similarity between the phase diagrams
of the ¢-J, model and the isotropic ¢-J model. The
thresholds for hole binding on the 2D square lattice have
been recently found to be quite close numerically. > %1%
Also the onset of hole droplets should only depend on the
interplay between the strength of exchange bond and the
kinetic energy. The question is how would spin fluctua-
tions in the ¢-J model influence the relative stability of
the hole pairs and hole-DW configurations. It has been
found by the present authors by means of the perturba-
tion expansion in ¢ /J that spin fluctuations increase sub-
stantially the binding energy of the hole pair.'® On the
other hand, we do not expect any substantial influence of
quantum fluctuations and reduced AFM ordering on the
hole motion and its potential energy within the DW.
Hence, we would claim an enhanced regime of hole pair-
ing in the 2D isotropic ¢-J model, consistent with numeri-
cal evidence in Ref. 5.

IFor a review see, e.g., T. M. Rice, in High Temperature Super-
conductivity, Proceedings of the 39th Scottish Universities
Summer School in Physics, edited by D. P. Turnstall and W.
Barford (Hilger, London, 1991), p. 317.

2M. Ogata, M. Luchini, S. Sorella, and F. F. Assaad, Phys. Rev.
Lett. 66, 2388 (1991).

37. Bonéa, P. Prelovsek, 1. Sega, H. Q. Lin, and D. K. Campbell,
Phys. Rev. Lett. 69, 526 (1992); P. Prelovsek, 1. Sega, J.
Bonéa, H. Q. Lin, and D. K. Campbell, Phys. Rev. 47, 12224
(1993).

4. Boné&a, P. Prelovik, and 1. Sega, Phys. Rev. B 39, 7074
(1989); Y. Hasegawa and D. Poilblanc, ibid. 40, 9035 (1989).



49 t-J, MODEL ON THE CAYLEY TREE AND THE SQUARE LATTICE

5P. Preloviek and X. Zotos, Phys. Rev. B 47, 5984 (1993).

6D. Poilblanc, Phys. Rev. 48, 3368 (1993). Note that contrary to
the previous reference, results for N, <2 on a cluster of 26
sites on a square lattice were obtained within the unrestricted
basis.

M. Boninsegni and E. Manousakis, Phys. Rev. B 47, 11897
(1993).

8E. Dagotto and J. Riera, Phys. Rev. Lett. 70, 682 (1993).

9V. J. Emery, S. A. Kivelson, and H. Q. Lin, Phys. Rev. Lett.
64, 475 (1990); S. A. Kivelson, V. J. Emery, and H. Q. Lin,
Phys. Rev. B 42, 6523 (1990).

10w, O. Putikka, M. U. Luchini, and T. M. Rice, Phys. Rev.
Lett. 68, 538 (1992).

1R, Valenti and C. Gros, Phys. Rev. Lett. 68, 2402 (1992).

15247

12H J. Schulz, Phys. Rev. Lett. 64, 1445 (1990).

13D, Poilblanc and T. M. Rice, Phys. Rev. B 39, 9749 (1989).

14E, Manousakis, Rev. Mod. Phys. 63, 1 (1991).

I5B. I. Shraiman and E. D. Siggia, Phys. Rev. Lett. 60, 740
(1988); R. Eder, Phys. Rev. B 45, 319 (1992).

16p. Prelovsek, I. Sega, and J. Bonéa, Phys. Rev. B 42, 10706
(1990).

17W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 1324 (1970).

18], N. Bulaevskii, E. L. Nagaev, and D. L. Khomskii, Zh.
Eksp. Teor. Fiz. 54, 1562 (1968) [Sov. Phys. JETP 27, 836
(1968)]; S. A. Trugman, Phys. Rev. B 37, 1597 (1988).

193, Riera and E. Dagotto, Phys. Rev. B 47, 15 346 (1993).

20p. Prelovsek and I. Sega (unpublished).



