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Using the cluster-variation method we study the phase diagram of the Blume-Emery-Griffiths
(BEG) model on simple-cubic and face-centered cubic lattices. For the simple-cubic lattice the main
attention is paid to reentrant phenomena and ferrimagnetic phases occurring in a certain range of
coupling constants. The results are in close agreement with Monte Carlo data, available for parts of
the phase diagram. Several ferrimagnetic phases ar: -btained in the vicinity of the line in parameter
space, at which the model reduces to the antiferromagnetic three-state Potts model. Our results
imply the existence of three phase transitions in the antiferromagnetic Potts model on the simple-
cubic lattice. The phase diagrams for the BEG model on the face-centered cubic lattice are obtained
in the region of antiquadrupolar ordering. Also the several ordered phases of the antiferromagnetic

Potts model on this lattice are discussed.
I. INTRODUCTION

The Blume-Emery-Griffiths (BEG) model is a spin-1
Ising model with up-down symmetry. This model is suit-
able for describing simple classical lattice systems with
both density and symmetry-breaking degrees of freedom.
Initially introduced to describe phase separation and su-
perfluid ordering in He3-He* mixtures,’ the model was
later applied to a number of systems including multi-
component fluids, microemulsions, semiconductor alloys,
and electronic conduction models.

The Hamiltonian of the BEG model is

H:—JZsisj—K sfs?+AZsf, (1)
(23) (ig) i

where s; = 0,£1, and (¢j) indicates summation over
nearest-neighbor pairs.

The properties of the BEG model with J + K > 0,
J > 0 are well established by extensive studies by means
of mean-field approximations (MFA),!™ renormalization
group techniques,® series expansion methods,® and by
Monte Carlo (MC) methods.” ° Some exact results for
the two-dimensional honeycomb lattice have been ob-
tained for a limited subspace of the parameters J, K,
and A.11714 Some studies have been made also in the re-
gion J + K > 0 for bipartite lattices. A new staggered
quadrupolar phase (also often called the antiquadrupolar
phase) was predicted and investigated by means of MFA
(Ref. 8) and MC simulation.!® In this phase, s; = 0 on
one sublattice and s; = £1 at random on another. How-
ever different methods of investigation give a different
global phase diagram so, e.g., while the mean-field ap-
proximation predicts reentrant phenomena for both fer-
romagnetic (F) and antiquadrupolar (A) phases, and a
first-order phase transition (PT) between these two,® the
renormalization group!®!® (RG) and MC results point
out that for the square lattice the A and F phases are
always separated by the disordered phase and meet only
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at T = 0. The same result was obtained for the honey-
comb lattice by the cluster-variation method (CVM).?
Thus, the MFA results are apparently not valid for the
two-dimensional lattices and the complete phase diagram
for the BEG model on a two-dimensional bipartite lat-
tice consists of three phases: paramagnetic (P), ferro-
magnetic, and antiquadrupolar.

The very rich phase diagram obtained by MFA (Refs.
18 and 19) featuring single- and double-reentrancy re-
gions and ferrimagnetic phases for K/J < —1 could
still be correct for three-dimensional bipartite lattices.
Though the RG studies for d=3.05 did not obtain reen-
trancy and ferrimagnetic phases, it was suggested that
this was a result of the restricted flow space, and the
MFA result was assumed to be correct.?? This assump-
tion was confirmed by MC calculations showing the oc-
curence of the double-reentrant F phase for K/J > —1
and A/J > 0 (Refs. 21 and 22) and a ferrimagnetic
phase.?! A very recent RG analysis!® also confirmed the
MFA predictions for d=3. The accuracy of the MFA
increases with increasing coordination number of the lat-
tice, nevertheless a correct description of the ordering
in degenerate systems may require a treatment of the
short-range correlations which is beyond the capability of
the MFA. Recently we applied the CVM analysis to the
simple-cubic (sc) lattice and obtained some remarkable
differences from the previous MFA results, concerning
the locus K/J = —3,A/J = —12, where the BEG model
reduces to the antiferromagnetic Potts model. The com-
plicated phase diagram unexpectedly predicts a sequence
of three phase transitions for this model.?3

Furthermore, the face-centered cubic (fcc) lattice, the
lattice with the largest coordination number (z = 12), is
not described by the results!® when antiferromagnetic or
antiquadrupolar ordering is in question since this lattice
is not bipartite, i.e., cannot be divided to two interpen-
etrating sublattices with no nearest neighbors (NN) be-
longing to the same sublattice. Instead, to have no NN
belong to the same sublattice four sublattices are needed.
Thus, the fcc lattice is frustrated with respect to spin—%
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and spin-1 Ising models in the presence of antiferromag-
netic interactions. The BEG model on the fcc lattice
has not been investigated so far, though it should be in-
formative for the thermodynamics of ternary alloys and
magnetic mixtures. It also seems interesting to investi-
gate the properties of the three-state antiferromagnetic
Potts model on the fcc lattice. Due to frustration, the
ground state is also infinitely degenerate as in the sc lat-
tice (the number of states is different from the number
of sublattices) and it is reasonable to expect some odd
behavior in this case too.

Here we present the results of CVM calculations for the
BEG model on the simple-cubic lattice and show some
qualitative differences from the previous MFA results!®
which where not covered by our previous work.?3 Fur-
ther we investigate the phase diagram of the BEG model
on the fcc lattice for K/J < —1, where antiquadrupo-
lar ordering occurs. As a special case, the ordering of
the antiferromagnetic Potts model on the fcc lattice is
discussed in detail.

II. SIMPLE-CUBIC LATTICE

The two-sublattice phase of the BEG model can be
characterized by the magnetization and quadrupolar mo-
ment of sublattices a and b:

Ma = (sa), mp = (s), a = (s3), b= (s}). (2)

The values of these parameters define four phases with
different symmetry. These are (1) paramagnetic phase
(P) with mq, = mp = 0, ¢, = gs, (2) ferromagnetic phase
(F) with mq = mp # 0, ga = gp, (3) antiquadrupolar
phase (A) with m, = mp = 0, ¢, # ¢», (4) ferrimagnetic
phase (I) with mg # mp # 0, ga # Gb.

In the following consideration we put J = 1, so that
one should think of temperatures and energies as normal-
ized by |J|, where not stated otherwise. The J < 0 case
can be mapped exactly on the J > 0 by redefining the
spin direction for one sublattice of the bipartite lattice.

At T = 0 the perfectly ordered phases P, F, and A are
separated by straight lines in the space (K, A):

A =3(K+1)/2,
A=0, 3)
A=3K+1),

which are obtained by comparing the ground-state ener-
gies of the three phases.

The finite temperature phase diagram was calculated
by the CVM in the eight-point “cubic” approximation.
The details of the CVM for the BEG model are given
elsewhere,!” the only difference now being the set of clus-
ters in the free-energy expansion. For the sc lattice we
have used

F = Fy —3Fy + 3F, — Fy, (4)

where Fg, F,, F2, and F; are the free energies of the
cube, square, nearest-neighbor pair, and single-site clus-

15 191

ters, respectively. The cluster free energies F; depend on
a set of variational parameters, which are obtained by
the minimization of the total free energy under the self-
consistency constraints. The total free energy can have
several local minima, corresponding to different phases.
We obtain the first-order phase transition lines by match-
ing the free energies of the different phases, and the
second-order lines are detected from the vanishing of or-
der parameters (or the divergence of the corresponding
susceptibilities).

The main attention in our investigation was paid to
the reentrant phenomena and the occurrence of the fer-
rimagnetic phase. Here representative phase diagrams,
relevant to these phenomena, are shown in Fig. 1. The
reentrant and double-reentrant behavior is shown for
K = —0.5 in the (T, A) plot in Fig. 1(a). Double reen-
trancy occurs in the region 1.46 < A < 1.5 and single
reentrancy in the range 1.5 < A < 1.51. The second-
order phase boundary is close to the result of the Monte
Carlo renormalization group (MCRG) calculation?! ex-
cept that the range of the single reentrancy in MCRG
is much more narrow, 1.5 < A < 1.501. But it is even
qualitatively different from the MFA prediction'® and re-
cent RG results,'® showing no critical point inside the F
phase. We find that the critical line simply transforms
to a first-order line at the tricritical point. Probably for
K closer to —1 the phase diagram will transform to that
obtained by MFA at K = —0.5. In contrast to MCRG,
we have obtained the location of the first-order transi-
tion line, corresponding to the multiphase equilibrium
between the F and P phases.

The phase diagram at K = —1.5 obtained by the CVM
[Fig. 1(b)] is qualitatively similar to the MFA result, and
quantitatively close to the MCRG calculations. The ap-
pearance of a ferrimagnetic phase at low temperature
near the first-order line between the F and A phases is
shown in the inset. The phase is much more narrow than
the MFA estimates (the lower-A limit being —3.01 for
CVM and —3.3 for MFA). The MCRG predicts the value
~ —3.006.

The phase diagram for K = —3 is of particular interest,
since the line A = —12 (or, to be precise, its J < 0 coun-
terpart) corresponds to the three-state antiferromagnetic
Potts model with the Hamiltonian

H=—2J 6., (5)
(i3)

The ordered phase of this model is sixfold degenerate,
and it was suggested!® that these six phases should be
accommodated in the BEG model by the first-order line
meeting the twofold degenerate A phase and the fourfold
degenerate I phase. The I phase was readily obtained in
the MFA (Ref. 19) in the region —13 > A > —12. No
evaluation of the phase diagram at K = —3 was made by
MC calculation. Our CVM analysis gives a much more
narrow region of existence for the low-temperature ferri-
magnetic phase —12.05 > A > —12 which even cannot be
distinguished on the scale of Fig. 1(c). The enlarged part
of the phase diagram close to A = —12, presented in the
inset of Fig. 1(c), reveals quite an odd new topology—
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actually two different ferrimagnetic phases do exist: one
(Iy) corresponds to that obtained by the MFA and is a
result of instability of the ferromagnetic phase against
the two-sublattice ordering, another one (I) is caused
by the instability of the A phase against spontaneous
magnetization. Thus, in the higher-temperature region
1.574 < T < 2.535 the sixfold degeneracy is obtained
by coexistence of the twofold degenerate F phase and
the fourfold degenerate ferrimagnetic I, phase. At lower
temperature, 0 < 7" < 1.543, the phase diagram is qual-
itatively similar to the MFA result.!® The value of the
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FIG. 1. Calculated (T,A) phase diagram of the BEG
model at (a) K = —0.5, (b) K = —1.5, (c), K = —3. The
solid and dotted lines represent the second- and first-order
phase-transition lines, respectively, obtained by the CVM, the
circles — MCRG results (Ref. 21). The temperature and the
parameters K and A are normalized by |J]|.
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FIG. 2. The temperature dependence of the expectation
values for different states of the AF Potts model, correspond-
ing to K = -3 and A = —12.

Potts transition T,; = 2.535 is only 2.4% above the MC
estimate?? T, = 2.47 + 0.01.

The appearance of the two ferrimagnetic phases is a
rather unexpected result because it implies the existence
of additional phase transitions in the ordered phase of
the three-state antiferromagnetic Potts model on the sc
lattice. Two additional phase transitions of the second-
and first-order, respectively, separate regions with dif-
ferent types of ordering. These are described in detail in
our previous work.?? Here we only reproduce in Fig. 2 the
temperature dependencies of the expectation values p® of
the three Potts states ¢ = 1, 2, 3 on the two sublattices
o = a, b in order to compare later with the correspond-
ing results for the fcc lattice, results which appear to be
very different. The equations

PT = 5(9a —ma), P5 =1~ qa, p3 = E(qa+ma)

2
(6)

relate these expectation values to the magnetizations and
quadrupolar moments [Eq. (2)].

II1. fcc LATTICE

For the fcc lattice, the ordering is expected to be much
more complicated by the analogy with the antiferromag-
netic Ising model. To describe the possible ordered struc-
tures it is wise to separate the density (s?) and magnetic
(si) degrees of freedom for the site 7 on each of the four
sublattices a, b, ¢, and d. If we neglect for the moment be-
ing the magnetic part, the ordered antiquadrupolar struc-
tures, which occur at low temperature for negative K and
consist of zero and nonzero spins, are those of the Cu-Au
type binary alloys on the fcc lattice with nearest-neighbor
interactions:2® L1, (with stoichiometry A3B), L1 (AB),
L1, (ABj3), depending on the value of A. In the BEG
model A corresponds to s> = 0 and B to s2 = 1. Thus,
the concentrations ¢ = (g, +gs+g.+ga4)/4 of the stoichio-
metric phases are —}4-, %, and %, respectively. The mag-
netic coupling J then introduces additional ordering or
up-down symmetry breaking on top of these structures.
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That is, the magnetic coupling further splits these phases
(including the disordered one) into regions with different
magnetic order. There is no mapping between J > 0 and
J < 0 for the fcc lattice, and therefore these cases should
be treated separately. Below we define the phases, which
appear in phase diagrams for J > 0: (1) Paramagnetic
(P)ma:mb:mczmd:OaQaZszqczqdv
(2) ferromagnetic (F) mq = mp = me = mg # 0,
da = @ = qc = 44, (3) paramagnetic A3B (Ps31) mq =0
for a = a,b,c,d, go = @ = g < g4, (4) ferrimagnetic
AsB (I31)0<ma:mb=mc<md7 o = b = Gc < Qd,
(5) paramagnetic AB (Py;) mq = 0 for a = a,b,c,d,
da = @b > gc = 44, (6) ferrimagnetic AB (I11) mq =
mp > me.=mqg >0, ga = g > ¢ = ¢4, (7) paramagnetic
AB3 (P13) me = 0 for a = aabacadv 9a = @b = qc > 4d;
(8) ferrimagnetic AB3 (I13) mq = mp = m, > mg > 0,
Ga = Qb = qc > qq. Here we allow for permutations of the
sublattices. All the phases defined above are either uni-
form or consist of two nonequivalent sublattices. These
sublattices in turn consist of one to three of the original
sc sublattices a, b, ¢, and d.

For J < 0, the phases are not limited to the two-
sublattice ordering and the above notation is therefore
not sufficient. The antiferromagnetic coupling causes ad-
ditional ordering rather than symmetry breaking, which
increases the number of nonequivalent sublattices up to
four. In the case where the number of sublattices with
different values of g, is larger than two, we will use the
number of sublattices as notation instead of the usual
A;By formula. Thus, the additional phases appear-
ing in the phase diagram for J < 0 are (9) antiferro-
magnetic L1y (AF) mqa = mp = —m, = —mq # 0,
da = @ = qc = g4, (10) ferrimagnetic A3B (I3,) m, =
mp=m:S 0, mg 20, g, =q = ¢ < g4, (11) antifer-
romagnetic AB (AF;1) my = —myp # 0, m. = mgq = 0,
da = @b > ¢c = qd, (12) three-sublattice ferrimagnetic
(13) Mg >mp =me >mg >0, ¢a > gp = gc > g4, (13)
three-sublattice ferrimagnetic (I}) —mg > mp > m. =
mg > 0, go > gb > ¢c = qa, (14) four-sublattice anti-
ferromagnetic (AF4) —m, = mp # 0, m, = mq = 0,
da = qb > gc > 44, (15) four-sublattice ferrimagnetic (I4)
ma#mﬁa Qa#qﬁ for a # .

Again from a ground-state analysis it can be derived
that at T = 0 and J > 0 the ordered phases F, P, P3;,
I11, and I;3 are separated in cyclic order by straight lines
in the space (K, A):

A=6K+1),

A=0,

A=4(K+1), (7)
A=8K+1),

A=12(K +1),

which all meet at K = —1, A = 0.

For J < 0 the T = 0 phase diagram in the coordinates
(K, A) is more complicated and we present it in Fig. 3.
The CVM calculations of the finite temperature phase
diagram on the fcc lattice were carried out within the
tetrahedron-octahedron (TO) approximation.?® The free-
energy expansion for the uniform phase is
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FIG. 3. Ground-state phase diagram (K, A) of the BEG
model on the fcc lattice for J < 0.

F=F5+2F4—8F3+6F2—F1, (8)

where Fg, Fy, F3, F,, and F} are the free energies of the
octahedron, tetrahedron, triangle, nearest-neighbor pair,
and single-site clusters, respectively. In the general case
of four-sublattice ordering the expansion includes four
types of octahedra, triangles, and single-site clusters and
six types of nearest-neighbor pairs.

The J > 0 case should be quite well described by the
MFA results in the range K > —1, where no multisub-
lattice ordering occurs, due to the large coordination of
the fcc lattice. Instead we focus our attention on the
K < —1 region by investigating two sections of the total
phase diagram, at K = —3 and K = —9, which are quite
representative, though this by no means is a complete
account of all possible topologies of the phase diagram.

The phase diagrams are presented in Fig. 4. The fa-
miliar pattern of the phase diagram for a binary alloy
on the fcc lattice with NN repulsive coupling, consisting
of three ordered phases—A3B, AB, and AB; (Ref. 25)
is modified by the ferromagnetic ordering at higher con-
centration of non-zero spins, yielding the ferrimagnetic
phases I3y, I;;, and I;3. The maximum temperatures of
the ordered phases are reduced by the ferromagnetic or-
dering compared to those of the pure lattice gas model.
Thus, for K = —3, the values of Tihax/K are 0.407, 0.301,
and 0.313, respectively, to be compared with 0.47, 0.45,
and 0.47 for the lattice gas model (here the temperature
is normalized by K, since it is the coupling constant for
the pure lattice gas model with J = 0). Note, that for the
P3; phase the value of Thax is reduced by the ferromag-
netic coupling even if there is no ferromagnetic ordering
at that point (what one certainly should expect). Here
we also mention that for J < 0 the antiferromagnetic cou-
pling, in contrast to the case J > 0, increases Tpax for the
AB phase, while Ti,ax still decreases for the A3 B phase
and remains virtually unchanged for the AB3 phase. We
will not return to this matter further, more specifically
the question of the interplay between the magnetic and
chemical ordering of the fcc binary alloys with magnetic
components has been investigated elsewhere.2¢

The critical line between the P and F phases is in-
terrupted by a critical end point at the first-order line
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FIG. 4. Calculated (T,A) phase diagram of the BEG
model on the fcc lattice at (a) K = -3, (b) K = -9, and
J>0.

between P and P3; and then continues at lower A as the
critical line between the paramagnetic and ferrimagnetic
A3B phases (P3; and I31). The A gap on this line is obvi-
ously due to the jump of the nonzero spin concentration
at the first-order line.

In general, the ferromagnetic ordering of the BEG
model can be considered as that of a spin-% Ising model
on the dilute lattice produced by the antiquadrupolar
ordering (or disorder), keeping in mind the fact that the
ferromagnetic and antiquadrupolar interactions J and K
are not independent. The phase diagram at K = —9
[Fig. 4(b)] is a suggestive manifestation of this interpreta-
tion. The higher-A part of the diagram is dominated by
the antiquadrupolar ordering and the paramagnetic AB
phase (P;;) appears due to a reduced J/K ratio. The
critical line between the P;; and I;; phases exhibits a
plateau, which is a result of layered antiquadrupolar AB
ordering. As the ordering is nearly perfect in the mid-
dle of the AB phase for temperatures well below Ty ax,
the high-q layers actually represent the square ferromag-
netic spin—% Ising model on the square lattice with a
well defined T,. The TO approximation is equivalent
to the “square” approximation of the CVM, when only
this layer is considered with 7, = 2.426.27 At A = —48
we obtain T, = 2.435. The latter value should approach
the former one as |K/J| — oo.

The existence of a narrow ferrimagnetic A3B phase
close to the phase separation line between the A3B and
AB antiquadrupolar structures is also easily understood.
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Although the stoichiometric A3B phase at ¢ = 1/4 does
not show ferromagnetic ordering, the increase of ¢, when
A is decreased, leads to an instability against magnetic
ordering before the phase transition to the AB structure
occurs. As the critical concentration ¢. does not depend
on K at low temperature, the I3; phase will appear in
the phase diagram for any K < —1.

Further we can predict that, for even lower K, the max-
imum temperatures of the antiquadrupolar phases will in-
crease with | K|, while the temperatures of ferromagnetic
ordering remain stable. Consequently, the paramagnetic
ABj3 phase (P13) will appear, and yet another “plateau”
of the critical line between P13 and I;3 will correspond
to the ferromagnetic ordering of an Ising model on the
lattice consisting of three sc sublattices of the original fcc
lattice.

The critical line between the P and F phase always
saturates in the limit ¢ — 1 (large negative A) at T,./12 =
0.834, corresponding to the critical temperature of the
Ising model on the fcc lattice in the TO approximation.?®

We have not obtained the three-sublattice structures
inside the AB phase which were reported for the lat-
tice gas model also from the TO approximation of the
CVM.?° Instead at T/K ~ 0.15 we have found short
first-order lines going from the boundaries towards the
body of the AB phase. These lines are terminated by
critical points inside the ordered phase.

For J < 0 the superposition of the antiferromag-
netic and antiquadrupolar ordering appears to be much
more complicated and not at all straightforward. We
have made only one calculation at K = —3 and ob-
tained the phase diagram (Fig. 5), featuring a total of
12 phases. The choice was made in order to cover the
locus K = —3, A = —24 where the BEG model again
reduces to the antiferromagnetic Potts model [Eq. (5)].
In the lowest-A limit, the model is equivalent to the an-
tiferromagnetic Ising model at zero field having a first-
order phase transition to the L1y AF phase at T, = 1.809
in TO approximation.?® In the lowest-K limit the AB

P P
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Iy |
I :
0 i " | L
-32 -24 -16 -8 0
A
FIG. 5. Calculated (T,A) phase diagram of the BEG

model on the fcc lattice at K = —3, J < 0. The solid line
between phases Is and AF4 is not a second-order line, since
the second-order transition is symmetry forbidden. Instead,
there are two second-order lines with a very narrow I4 phase
in between. It cannot be distinguished in this picture.
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FIG. 6. Enlarged part of Fig. 5 in the vicinity of A = —24.
The two AF4 phases have the same symmetry but are quan-
titatively different at their coexistence line

phase is also expected to be split into paramagnetic Py
and antiferromagnetic AF;; phases by a critical line with
a plateau at T, = 2.426.

The enlarged part of the phase diagram near A = —24
is presented in Fig. 6. In contrast to what we have found
for the sc lattice, the line of the Potts model is not a
first-order phase-coexistence line from the Potts transi-
tion at T,; = 1.387 down to T.; = 0.379. The value
of the Potts transition temperature is by 8% above the
result of the MC estimate: T,; = 1.28 +0.04.3° The tem-
perature dependence of the Potts state probabilities p%,
1 =1,2,3, a = a,b,c,d are presented in Fig. 7. The
ordered phase between T,; and T, has three sublattices
mainly occupied by one of the three different states each,
while the fourth sublattice is occupied by all the states at
random with one-third probability, e.g., p§ = p§ = p$ =
Phigh > 3, P} = p§ = P} = P} = P§ = P§ = Piow < 3>
pd =pd =p¢ = % This phase is 24-fold degenerate,
what is matched by the same degeneracy of the AF,
phase. The simple extrapolation of this phase down to
T = 0 would suggest perfect ordering on three sublat-
tices with the complete disorder on the fourth with the
residual entropy s = %1113 = 0.2747 which is a lower
bound for the actual entropy. From the analogy with the
ordering on the sc lattice, one could expect saturation
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FIG. 7. The temperature dependence of the expectation
values for different states of the AF Potts model on the fcc
lattice, corresponding to J < 0, K = —3, and A = —24.
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of phigh below 1 and pjow above 0 with somewhat larger
residual entropy due to the possibility of the Potts state
being on the “wrong” lattice if it is permitted by the
nearest neighbors. In our CVM calculations, by formally
extending this phase down to T' = 0, we would obtain
Phigh = 0.9559, piow = 0.0221, and s = 0.2987.

However below T., a first-order line between the I,
and AF,4 phases appears, indicating a change of the or-
dering along the A = —24 line. Again we have found
an additional first-order phase transition inside the or-
dered phase of the antiferromagnetic Potts model. The
ordering below T, is described by the following expec-
tations of the Potts states: pg = p§ > p$ > p¢ > 1
p§ =p5 <pi =p} <p5=p5 <pj =p§ <3 There
are 72 nonequivalent permutations of the sublattices and
Potts states for the latter phase, which are realized via
the coexistence of the 48-fold degenerate I, phase and
24-fold degenerate AF, phase. The residual entropy per
site at T' = 0 is finite due to the frustration of the ground
state — we obtain s = 0.2991.

IV. SUMMARY

The phase diagram of the BEG model on the simple-
cubic lattice was calculated by means of the CVM within
the eight-point cubic cluster approximation. Although
most features of the phase diagram are qualitatively sim-
ilar to the previous MFA results, quantitatively the re-
sults are much closer to the MC data, where these are
available. Near the locus K = —3, A = —12, where
the BEG model reduces to the three-state antiferromag-
netic Potts model, we have obtained rather unexpected
results. In this region we obtained two ferrimagnetic
phases, one on either side of the A = —12 line, instead
of one predicted by the MFA, and a third ferrimagnetic
phase emerges at K < —3. This implies the existence
of additional phase transitions in the ordered phase of
the three-state antiferromagnetic Potts model. Actually
we have found two transitions of the first and second or-
der, respectively. These transitions control the changes
in the ordering regime of the three states on the two
sublattices. The phase diagrams of the BEG model on
the face-centered cubic lattice were obtained for the first
time for K < —1 and both for ferromagnetic (J > 0) and
antiferromagnetic (J < 0) coupling, featuring a number
of new phases, due to the interplay of the magnetic and
quadrupolar ordering. Another first-order phase tran-
sition is also predicted inside the ordered phase of the
antiferromagnetic Potts model on the fcc lattice. These
results are supposed to describe classical systems, where
both symmetry-breaking and density fluctuations are im-
portant, such as binary alloys with magnetic components.
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