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Phase transitions in the fully frustrated X Y model studied with use of the
microcanonical Monte Carlo technique

Sooyeul Lee and Koo-Chul Lee
Department of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-7)2, Korea

(Received 20 December 1993)

We investigate the phase transitions of the frustrated XY model in the square lattice with frus-
tration parameter f = —. The system has doubly degenerate ground states in addition to those
associated with U(1) symmetry. We study the system via a high-precision Monte Carlo technique.
It is found that the system has two separate transitions. At the lower temperature 0.440(2) J/ks, we

6nd a Kosterlitz-Thouless transition with a larger-than-universal jump in the helicity modulus. The
critical index rt(TKT) of the spin-spin correlation function is 0.220(2), less than the universal value

of 4. At higher temperature 0.454(2) J/kn, we find a second-order vortex-lattice melting transition
with critical indices n = 0.363(10), P = 0.089(8), p = 1.448(24), and v = 0.813(5).

I. INTRODUCTION

Over the past ten years, two dimensional (2D) fully
frustrated XY (FFXY) models have been the sub-
ject of intense investigation, both numerically and
analytically. For the square lattice, the FFXY model
has a continuous U(1) symmetry, corresponding to global
rotation of the spins, and a discrete Z2 symmetry, corre-
sponding to long-range order of the ground state vortex
lattice. In the ground state, the vortices, which show up
as charges 6 2 on the sites of the dual lattice, are ordered
in a checkerboard pattern. The ground state, besides
global rotations, has twofold degeneracy, corresponding
to the degeneracy of the antiferromagnetic Ising (AFI)
model. Due to these continuous and discrete symmetries
of the ground states of the model, two kinds of phase
transitions are possible. Associated with U(1) symme-
try, vortex excitations may appear as a mechanism of
the Kosterlitz- Thouless (KT) transition. s In this case the
helicity modulus, which measures quasi-long-range order
related to the continuous U(1) symmetry, has a discon-
tinuous jump at the KT transition temperature: In the
frustrated XY model the jump size can be larger than the
universal value of the usual XY model. In view of the
Z2 symmetry of the ground states, domain-wall excita-
tions between the two different antiferromagnetic phases
appear as a mechanism of the continuous vortex-lattice
melting transition. The fluctuation of domain walls di-

verges at the vortex melting transition point and thus the
specific heat peak, a sign of long-range order of the chi-
rality associated with the discrete symmetry, diverges at
the same point. Though there are some similarities be-
tween the AFI model and the FFXY model, the critical
behaviors of the vortex melting transition can be different
from those of the true Ising transition because the simi-
larities are based only on symmetry of the ground state
configurations and interaction between different domains
is highly complex, unlike in the Ising model.

There are two possible scenarios of phase transitions in

the FFXY model. One is simultaneous occurrence of KT
and vortex melting transitions. The other is separate oc-
currence of the two, in a decoupled fashion of domain-wall
and vortex excitations. There have been several analyti-
cal and numerical studies on the FFXY model in the
square lattice since the work of Teitel and Jayaprakash.
But it is still unsettled whether the FFXY model has
a single transition or double transitions. Monte Carlo
(MC) simulations of the FFXY model show a single tran-
sition. Nicolaides has studied Ising and XY correlation
functions in the FFXY model and found simultaneous oc-
currence of Ising and KT transitions. Lee et al. have also
studied the FFXY model and asserted a single transition
with non-Ising critical behaviors, based on an analysis
of Ising-like order parameter only. Recently, Ramirez-
Santiago and Jose have investigated the FFXY model
using analyses of U(1) and Z2 gauge-invariant correlation
functions. They found a KT transition with nonuniver-
sal KT jump and a vortex melting transition with non-

Ising critical behaviors at the same temperature as the
KT transition. On the other hand, some MC results of
the Coulomb gas (CG) with half integer charges, which
is believed to be in the same universality class as the
FFXY model, show two separate transitions. Grest
has found two separate Ising and KT transitions, with
a nonuniversal KT jump. Recently, Lee has also found
two separate transitions: The lower is the KT transition
with a larger-than-universal KT jump and the upper is
the vortex melting transition with non-Ising critical be-
haviors.

From the MC results of the CG with half integer
charges, we know that the separation of possible dou-
ble transitions is very small. As a necessity, it needs
a high-precision Monte Carlo technique to investigate
phase transition(s) of the FFXY model. We thus adopt a
technique found by Lee, which is powerful in a system
with discrete energy like the Ising model. We modify the
technique suitably for the continuous FFXY model.

In order to determine whether the model has a single
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or double transition, we measure thermodynamic quanti-
ties related to KT and vortex melting transition indepen-
dently. For the KT transition, the helicity modulus and
XY susceptibility are measured; for the vortex melting
transition, specific heat, staggered magnetization of vor-
tex charges, and susceptibility of the staggered magneti-
zation are measured. We then adopt several finite-size-
scaling analyses to estimate transition temperatures and
determine critical behaviors. As a result we find double
transitions. At lower temperature 0.440(2) J/kxx, we find
a KT transition with a larger-than-universal juxnp in the
helicity modulus. At higher temperature 0.454(2) J/kxx,
we find a second-order vortex-lattice melting transition,
whose scaling behavior is diferent &om that of the 2D
Ising model.

In the following section, we will give a brief explanation
of our Monte Carlo technique and discuss several finite-
size-scaling methods used for data analysis. In Sec. III,
we will show the data of the MC simulations and give
those scaling results.

II. METHODS OF ANALY'SIS

In the ground states of the FFXY model on a square
lattice, vortex charges are ordered in a checkerboard pat-
tern. In view of the similarity between the ground states
of the FFXY model and the AFI model, we introduce a
staggered magnetization, which we consider as an Ising-
like order parameter, as follows

M = —) 2m(r;)( —1) '+"'1
L2

where m(r;) is a vortex charge on the sites of the dual
lattice and L is the linear size of the system. The m(r;)
is calculated using local chirality as follows

1
m(r) = —) (8; —8, —A;, ), (4)

where ~8, —8~ —A,~ ~

( s' and the sum is a directed one
around a unit plaquette. From the MC simulation it is
found that the m(r;) has only kz values near the tran-
sition temperature or below. According to the scaling
hypothesis, xs the free energy density f = —~ ln 2 con-
sists of the analytic part f and the singular part f„i.e.,

f = f + f, The si.ngular part behaves as

Uniformly &ustrated XY models are defined by a
nearest-neighbor Hamiltonian

H = —) Jcos(8; —8~ —A;~)
(i,j)

In the above equation t = & and h are scaling fields
C

and yi = 1/v and ys = d —P/v are the corresponding
critical exponents. The scaling law of magnetization is
given by

with
M = L ~~"f„' (tL"' 0) (6)

where 8; is the phase of the spin at the ith site, 40 =
hc/2e is the magnetic fiux quantum, A is the vector po-
tential due to the external transverse magnetic field B,
and J is the coupling strength between neighboring spins.
In the case of the FFXY model the directed sum around
a unit plaquette PA;~ = ir.

In order to apply our MC technique to the FFXY
model with continuous energy spectrum, we divide the
continuous energy into many uniform intervals. We re-
place the intervals with their mean values and thus make
the energy of the system discrete. The canonical average
(A) of any thermodynaxnic quantity A is defined by

P& O(E)A(E) exp( —PE)
g& O(E) exp( —PE) (2)

where E is the mean energy of a given interval, O(E)
is the number of states in the interval, and A(E) is the
microcanonical average of A in the interval. As all the
O(E)'s are infinite we measure their relative ratios in
the MC simulation. In the simulation, A(E) and the
relative ratio of neighboring O(E)'s are measured. The
inverse temperature P is a continuous parameter used
for calculation of the canonical average. With the aid of
the above method we calculate several thermodynamic
quantities as a continuous function of P.

where f&
l is the field derivative of f, The magn. etic sus-

ceptibility y (L) =
& & ((M2) —(M) 2) has the following

scaling equation at the point of its extremum:

max LP/v (7)

T (L) —T, = xpL

where the exponent 1/v is the value obtained via the scal-

In order to determine critical behaviors and the tran-
sition temperature corresponding to the vortex melt-
ing transition, we do finite-size-scaling analyses of mag-
netic susceptibility, magnetization, and specific heat. We
determine 7/v by fitting maximum values of suscepti-
bility to Eq. (7). As the transition temperature is
yet unknown, it is necessary to obtain a profile of P/v
with respect to assumed transition temperatures by least
squares fit of our magnetization data to Eq. (6). At the
vortex melting transition temperature T, the hyperscal-
ing relation between critical exponents, i.e. , dv = p+ 2P,
is satisfied. In this way, T, and P/v are estimated.
To determine the critical exponent 1/v, we use the de-
pendence of the specific heat peak on the system size,
C~,~ L ~", and the hyperscaling relation, a = 2 —dv.
For another method to estimate T, we use following scal-
ing relation. The difference between T (L), at which
the specific heat of the lattice size L has a maximum
value, and T is given by
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ing of the specific heat peak. As the transition tempera-
ture T, is unknown, 1/v is calculated at several assumed
T, 's by fitting the MC data of T „(L) to Eq. (8). We
regard the temperature where the exponent 1/v is consis-
tent with the value obtained via the scaling of the specific
heat peak as the transition temperature T, . Equation (8)
is also applied to the susceptibility. As a direct method
to estimate T„we use an interesting quantity Pr, (T, M),
the probability distribution of magnetization, which was
introduced by Binder. i4 Here the function PI, (T, M) is

normalized such that f+ PI.(T, M)dM = 1. We obtain
PL, (T, M = 0) in several lattice sizes. Below the transi-
tion temperature T„ the system tends to go to one of the
two antiferromagnetic phases and thus Pl, (T) decreases
to zero as system size L increases. Above T„however,
Pr, (T) increases as system size L increases because the
system tends to go to the disordered phase. Therefore,
a common crossing point of PL, (T) curves for different
lattice sizes will appear. The common crossing point is
the transition temperature according to the above argu-
ments.

To determine critical behaviors and the transition tern-
perature of the KT transition, we measure the helicity
modulus and the XY susceptibility. The helicity modu-
lus for the frustrated XY model is defined by

(
T = ——{u) — ) sin(8; —8, —A;, )x;,

(9)

where z,~
= x; —z~ and (u) is the mean energy per

spin. The XY susceptibility is defined as a sum of four
sublattice susceptibilities in view of the ground state con-
figurations of the FFXY model,

(10)

where y(') is the XY susceptibility of the ith sublattice.
In the case of an unfrustrated XY model, the helicity
modulus T has a discontinuous jump to zero at the KT
transition temperature TKT. The jump size T(TKT)/TKT
has the universal value of — according to Nelson and
Kosterlitz's arguments. In the FFXY model, the jump
size is suggested to be larger than the universal value.
Thus the crossing point between the universal jump line
—T and the helicity modulus of a lattice size L gives
an upper bound for TKT. In the limit of large L, we
can extrapolate a minimal upper bound, which gives a
KT bound for TKT. For a different method to estimate
another KT bound, we follow Minnhagen's argument.
He finds that the exponent g of the spin-spin correla-
tion function has a nonuniversal value less than 4 in the
case of the &ustrated XY model with a nonuniversal KT
jump. Below the KT transition temperature, the spin-
spin correlation function decays algebraically and thus
the susceptibility diverges with the size of the system as

~(TKT L) = —TKT I
1+ -I Lvr I, 21nI +c) ' (12)

where TKT and c are free parameters. TKY, related to
the jump size, is equal to TKT in the case of the usual
XY model. We do a y fit of the MC data at various
temperatures to Eq. (12). The transition temperature
TKT is the point at which fitting error is minimum. The
fitted parameter TK» at TKT, times & gives the jump
size in the helicity modulus T.

III. NUMERICAL RESULTS

We first consider the charge-lattice melting transition.
In Fig. 1, we plot X "(L), the maximal value of the
magnetic susceptibility, on a log-log scale for lattice sizes
from L = 12 to L = 48. We have performed six inde-
pendent runs to obtain x "(L) and M(L, T). The data
points of x "(L) have good statistics as if they were on
a straight line. From the slope of the data points and
Eq. (7), we find p/v = 1.781(18). The hyperscaling re-
lation, dv = p + 2P, gives P/v = 0.110(9). To determine
T„where this hyperscaling relation is satisfied, we calcu-
late P/v at various assumed transition temperatures by
fitting MC data to Eq. (6) with t = 0. In Table I, we
find T, = 0.453(1)J/k~, where P/v is consistent with the
above value. In Fig. 2, we show the data for the specific
heat peaks on a log-log scale for lattice sizes from L = 12
to L = 64. The average has been performed over 18 in-
dependent runs. The slope a/v = 0.459(16) for lattice
sizes L & 16. From the hyperscaling relation dv = 2 —o.,

1000

10
10 70

FIG. 1. Maximum values of magnetic susceptibility for lat-
tice sizes L = 12, 16, 20, 24, 32, 40, and 48. The fitted value
of p/v is 1.781(18). The solid line is a least X fit.

From MC data of xxv (L, T) for several lattice sizes we
determine the exponent rl(T). We regard the tempera-
ture at which g is — as another KT bound for TKT. As
a more accurate method to estimate both TKT and the
jump size in the helicity modulus, we use Weber and
Minnhagen's finite-size-scaling equations. Introducing
logarithmic corrections to the Kosterlitz recursion equa-
tions, they find
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TABLE I. Estixnation of exponents Pjv and 1/v at several assumed T, 's.

T, (units of J/kxx)
(Assumed)

0.451
0.452
0.453
0.454
0.455
0.456

P/v
(Magnetization)

0.092(6)
0.102(6)
0.113(7)
0.125(7)
0.138(8)
0.152(8)

1/v
(Specific heat)

0.886(25)
0.95?(28)
1.043(34)
1.150(45)
1.289(63)
1.4?4(87)

1/v
(Susceptibility)

1.062(26)
1.119(30)
1.183(35)
1.256(43)
1.342(54)
1.443(69)

we find 1/v = 1.230(8). We also investigate the data on
a semilog scale. However, the data points have a weak
curvature and thus the possibility of an Ising transition
with cr = 0 is ruled out. Applying Eq. (8), we calculate
1/v at various assumed transition temperatures in Table
I. The transition temperature at which the value of 1/v is
consistent with 1.230(8) obtained from the specific heat
peak scaling is 0.455(1)J/kxx in the case of the specific
heat and 0.454(1)J/kxx in the case of the susceptibility.
As a direct method to estimate T„we plot Px, (T) versus
T for various lattice sizes L =16—48 (see Fig. 3). For
each lattice size we have performed six independent runs
to obtain Px, (T). From the common intersection of the
curves, we find T, = 0.454(2) J/kxx, which is consistent
with the previous results.

In order to determine the KT transition temperature,
we measure a KT bound of TKT from the helicity mod-
ulus. We obtain the helicity modulus for lattice sizes
L =12—128 [see Fig. 4(a)j. Averaging has been per-
formed over ten independent runs. In Fig. 4(b), we plot
the intersection temperatures between the universal jump
line —T and the helicity modulus for lattice sizes L =20—
128. Each intersection temperature is an upper bound of
TKT with given lattice size L. The intersection for the
largest lattice size L = 128 is 0.449(1)J/kxx. The rough
estixnate for the upper bound of TKT is 0.447(1)J/kxx in
the large L limit. In order to find another KT bound of
TKT, we calculate the temperature-dependent exponent g

of the spin-spin correlation function by fitting y~x (L, T)
data to Eq. (11) (see Fig. 5). Following Minnhagen's ar-
gument, we can regard the temperature where g is 4 as
another KT bound, which we find is 0.444(1)J/kxx. The
error of the y 6t becomes large as temperature increases.
Especially, we 6nd that the 6tting error becomes notice-
ably large from T 0.444J/kxx, which means that Eq.
(11) does not hold above this temperature. Therefore
we can regard 0.444 J/kxx as a rough estimate of the KT
transition temperature.

To determine both TKT and the jump in the helicity
modulus T, we apply Weber and Minnhagen's 6nite-size-
scaling analysis. In Fig. 4(c), we plot the gz-fit errors,
relative to the statistical uncertainties in the MC data,
of the helicity modulus to the scaling form Eq. (12) for
lattice sizes L =12—40. We find TKT = 0.440(2) J/kxx, at
which the y2 error is minimum, TKT ——0.504(12)J/king,
and c = —0.818(70). The jump size in T(TKT)/TKT is
1.15(3) times larger than the universal value of —.This
value is coxnpared with the results of Grest, s 1.22(8),
and that of Lee, 1.34. The jump size is sensitive to
TKT and increases rapidly as TKT decreases. Weber and
Minnhagen s finite-size-scaling equation is correct in the
large L limit. However, the data Huctuation of the he-
licity modulus in a large system becomes so large that
Weber and Minnhagen s scaling equation is not appli-
cable. We thus use helicity modulus data up to lattice
size L = 40, where MC data of the helicity modulus
still have good statistics. In Fig. 4(d), we plot Weber

0.3

L =48

Cpeak

P&(T, O)

0.2

O. l

40

24

16

1
10 100 0.0

0.450 0.452
I I

0.454 0.456

T (units of J/k~)
0.458

FIG. 2. Log-log plot of specific heat peak for lattice sizes
L = 12, 16, 20, 24, 32, 40, 48, and 64. The fitted value of o./v
is 0.459(16) for lattice sizes L & 16. The solid line is a least

fit toL&16.

FIG. 3. Normalized probability distribution function
Px, (T, M = 0) for lattice sizes L = 16, 24, 32, 40, and 48.
The common crossing point is about 0.454(2) J/kxx.



4915 188 SOOYEUL LEE AND KOO-CHUL LEE

0.6 0.470

0.5

0.4 0.460

T(Jjkg ) 0.455

0.2 0.450

.35 040 045 05035 . . . . 0 55 0 600.30 0.35

T (unit, s of .j/kg)

0.440
0.00

I

0.01 0 02

I

0.03

1/L

I

0.04

I

0.05 0.06

4.0 0.44

0.42

0.40

2.0

1.5

1.0

T(L)
0.36

0.34

0.5 0.32

0.0
0.434

! II I

0.442 0.444 0.4460.436 0.438 0.440

T (units of J/kgy)

0.3
10

I

100 200

th the line —T gives128. Each intersection with

(b) KT bo d fo 1 ttiTh o b hidd
f T is 0.44?J/k~. The linis . . 'ne is

F . . a
b nd of the KT transitio p

' '
n tern erature. e e

the estimate for the upp er bound o KT is
f h licit modulus data to

nd 128. In the large I limit, e es
tainties in the MC data, o e ici ye e es &c y - ' to the statistical uncertainties in

The temperature of minimum= 12 16, 20, 24, 28, 32, and 40. e emW ltt Ig
error is

= 0 0 445 from top to bottom The es is= 0.437, 0.439, 0.441, 0.443,We use temperatures T = 0.

0,45

0.'35—

0.25

0.15
0.430 0.435

FIG. 5. Exponent g
as a function of T.
'g =

4 q is4, is 0.444(l) J/ke.
T 0.444 J/ke.

0.440 0.445

T (units of J/kg)
0.450 0.455

f in-s in correlation uaction
whereThe KT upper bound, w ere

The fit error becomes la glar e from

together with the MC
s L = 12—128eratures for lattice sizesp

e the scaling equa ion is
b lfit. As the system size ecg o X

e t when T =
Th' l fie uation. is rethe corresponding sca ing q

' . '
e

h 1 tti e melting tranits for the charge- a ic
'n lots of several t ermosition, we do sea ingp o s

erivatives of the freetions, which arere calculable &om enva ive
5 . Following t e sc emenergy density

of with respect tothe nth-order derivative o w'

h„, w ereeisbp

ling field defined by e = Ksca ing
e x can be written as x = escaled temperature x can e

of an analyticalF is written as a sum oeach derivatrve „ is
part F an ga sin ular par „w er

t f the scaling func-to the nth derivative oshould collapse i.n o
density cannot~ & f ll I. As the free energytion Y or a



49 PHASE TRANSITIONS IN THE FULLY FRUSTRATED XY. . . 15 189

2.0—

—1.0793(3),0.027(8), 0.168(56) for a„(n = 0, 1, 2) and
—0.170(3),0.092(2), 0.008(l) for c„(n = 0, 1,2).

1.5—

1.0—

0.5—

0,0

-1.0
-15 -10 -5 0

S

I

10 15

FIG. 6. L I'„,(z) vs z for lattice
sizes L = 12, 16, 20, 24, 32, 40, 48, and 64. (yq, yz) are (—1.0,
2.5) and (—0.05, 0.125) for n = 1, and 2, respectively. The
curve tangent to Y "= is the Taylor series approximation
obtained in Sec. III.

IV. CONCLUSION

We have studied the phase transitions in the fully &us-
trated XY model on a square lattice via a high-precision
MC technique. It is found that the model has two sep-
arate transitions. The KT transition, at 0.440(2) J/k~,
has a nonuniversal jump in the T(TKT)/TKT, 1.15(3)—.
The exponent g(TKT) of the spin-spin correlation func-
tion is Q.220(2), less than the universal value of
At higher temperature, T, = 0.454(2) J/k~, we find a
second-order charge-lattice melting transition with ex-
ponents o. = Q.363(10),P = Q.Q89(8), p = 1.448(24), and
v = 0.813(5), respectively. It is apparent that the latter
transition belongs to a diferent universality class &om
the Ising transition.
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