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Polariton trapping by a soliton near an excitonic resonance
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The nonlinear dynamics of optical pulse propagation is considered in the spectral region above the

resonance frequency of a longitudinal exciton (coL ) where two different polaritons, UP and LP, propa-

gate through a crystal at the same frequency. The Kerr nonlinearity leads to interaction between UP
and LP. It is shown that a UP wave packet can propagate through the crystal as a soliton and provide a
"potential" within which the LP is trapped. Numerical calculations for CuCl crystal, in the spectral re-

gion of the lowest exciton resonance, have been performed to examine the conditions under which this

trapping effect can take place.

The concept of polariton solitons has been developed
some years ago. ' Since then, a great deal of theoretical
work has been done focusing on the formation and propa-
gation of polariton solitons in different physical settings
including bulk crystals, nonlinear waveguided structures,
and crystal surfaces. However, only a little attention
has been paid to the impact of other possible types of in-
trinsic excitations in solids on the formation of polariton
solitons. This problem is particularly important in the
spectral regions near exciton resonances where spatial
dispersion in crystals leads to the existence of additional
light waves. '

In this paper, we discuss optical pulse propagation in
the spectral region above the frequency of a longitudinal
exciton coL, where two different polaritons —the upper
branch polariton (UP) and the lower branch polariton
(LP} propagate through a crystal at the same frequency
(see Fig. 1). Both types of polaritons have been observed
in many crystals. "

In the nonlinear regime, the interaction between UP
and LP, which are generated simultaneously by an initial
laser pulse, can lead to a coupled propagation of the UP
and LP wave packets through a crystal. As shown below,
when third-order nonlinearity is included, the UP wave
packet can form a soliton and provide a "potential"
within which the LP is trapped.

To describe optical pulse propagation in the spectral
region of an exciton resonance, we adopt a semiclassical
approach. In this approach, a nonlinear material equa-
tion which relates the induced excitonic polarization
P(z, t) and the electric field E(z, t) (propagating along the
z axis) in a nongyrotropic cubic Kerr-type crystal can be
written as

+y —+coz.— P(z, t)
p Bz'

+ypIP(z, t) I'P(z, t) =aE(z, t),
where a=ep(coL toy')i4rr ep is the background dielec-
tric constant of the medium, coT and coL are the frequen-

cies of transverse and longitudinal excitons, respectively,

p is the exciton effective mass, y is the damping constant,
and yp is a nonlinear coeScient (yp) 0).

Note that Eq. (1) determines only that part of the po-
larization which is due to the exciton transition of in-
terest.

For simplicity, we neglect any damping processes in
our system and suppress the dissipation term
y(r}P(z, t)/t}t) in the following discussion.

Equation (1} together with the wave equation for the
propagation of a plane wave packet in an isotropic
dispersive medium

t} E(z, t)
t}z

ep t}'E(z,t) 4m t}'P(z, t)
Bt2 z Bt2

gives the complete system of equations describing the
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FIG. l. Qualitative depiction of the exciton-polariton disper-
sion relation, Q(Q) from Eq. (5), in the presence of spatial
dispersion. Shown is the upper transverse polariton branch UP
and the lower transverse polariton branch LP. coT and coL are
the transverse and longitudinal exciton frequencies, respective-
ly. The straight and curved dashed lines indicate the photonlike
and excitonlike asymptotes.
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dispersive and nonlinear properties of a solid in the fre-
quency range investigated.

To solve the system of Eqs. (1) and (2) for the polariza-
tion, we take Fourier transforms in space and time to ob-
tain

F(k, co)P(k, co) = —yoP (k, cg),

where

A'coTk 4~F(k, co) =coT a)~—+ —,(4a)
p c (k —coco /c )

P(k, co)=
2 f f P(z, t)

(2n. )

&& exp[ i(—kz cot)—]dz dr,
(4b)

, f f P(z, t)~P(z, t)~'
(2n. )

Xexp[ i(kz —cot)—]dz dt .

F(k =Q, co=A) =0 . (5)

F(k, )=(N —n) „„+(k—
Q/)

BF
a~ . k=g.

+—(co —0)1 2
O'F
Bco

J

BF
aI . k=Q,

BF
+(co—Q)(k —Q )

. k=Q.

Equation (5) determines the dispersion relations for
both polariton branches UP and LP in the linear crystal
(see Fig. 1): Q, =Q, (Q) and Q2=Qz(Q). Note that
below the subscript 1 refers to UP and the subscript 2
refers to LP.

In the vicinity of 0 and Q (j=1,2), the function
F(k, co) can be explained in a Taylor series up to the
second-order terms (the second-order approximation of
dispersion theory):

(4c)

We assume that the nonlinearity is weak, so that the
values of k and co at which Eq. (3) must be solved are
close to those in the linear case:
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J

We introduce the designations

(6)

U =—
J

BF
aI . k=g.

BF
N —0

. k=g.
(7a)
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(7b)

where U and k". characterize the group velocity and the
group dispersion of a polariton, respectively.

We seek a solution of Eq. (3) in the form

P(z, t) =P&(z, t)exp[i(Q, z —Qt)]

+P2(z, t)exp[i ( Q2z —Qt) ], (8)

aP, l aP,
I +

Bz U, Bt

k", BP
+O, (z, t)

2 Qt2

+y, ~ P, + P~~ P, =0, (9a)

where Q is a carrier frequency, Q&(Q) and Q2(Q) are
determined by Eq. (5), and the complex amplitudes
P &(z, t ) and P2(z, t ) are slowly varying functions.

Using Eqs. (6)—(8) and the same technique as in Ref. 9
to solve Eq. (3), we obtain the following system of cou-
pled equations:
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where
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O, (z, r)= W,

Bz U Bt

a'P l a'P
+V +

az ar U, qr2
(loa)

(lob)

aP l aP
+

Bz U Bt

I," a'P,
, +O,(z, r)

2

+/2(P, +P~[ P2=0, (9b)

To solve the system (9) we assume that one of the
fields, namely, P, (z, t), is strong and the other field,
Pz(z, t), is weak. This is the generally observed case in
the transmitted light pulse experiments in the spectral re-



49 POLARITON TRAPPING BY A SOLITON NEAR AN. . . 1519

gion above col. ' Then, we can put IPi+Pzl —= IPil in

Eqs. (9a) and (9b). In the moving coordinate system
(g=z, ri= t —z/U, ), the system (9) becomes

aP, lk I
a'P,'+ ','+O, (g, &}+q,lf, l'P, =o,

i}g' 2

(1 la)

(lk; I+2~25)E„=— [—(I+2n )+V'I+8G ]2,
8H

where

n=0, 1, . . . &S,
S=—,'[—I+V 1+8G ],

(18)

(19a)

(19b)

af, lk,"I a'P, af,
i + +i5 +Oz((, 21)+gzlPil Pz=0,
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5F
(lk,"I+2~,5)

dF
ak
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(19c)

(1 lb)

where

a'f, a'Pi
Oi($, 2))=WI 2 +Ri

8 Pz 8 Pz i} Pz
Oz(g, ri)=W2

2 +Rz 5
2

+

(12a)

(12b)

5= Uz
' —U, ' is the group velocity mismatch,

RJ =
VJ 2WJ—/UJ, and we take into account that in the

spectral region of interest k&' &0, k2' &0 and y, &0,
y, &0.

Equation (1 la) has a soliton solution in the form (see
Ref. 9) v &v2&v+, (20}

The discrete energy levels of Eq. (18) can be considered
as the localized states of the LP in the potential well
created by the UP soliton. It is interesting that the num-
ber of discrete energy levels, S, is independent from the
parameters of the UP soliton; in fact, S is determined
only by the dispersive characteristics of the medium. The
values of S(Q) have been calculated numerically for
CuC1 crystal, in the spectral region of the lowest exciton
resonance. The material parameters required for calcula-
tions were taken from Ref. 12. Results are presented in
Fig. 2.

A restriction on v2 follows from the condition E &0
[see Eqs. (17a}and (17b)]:

Pi(g, ri) =tposech(rile)exp[i(vig+PI2))], (13)

Iks'I/~=ximo . (14)

The expressions for v, and P, are given in Ref. 9, Eqs.
(18a}and (18b).

Seeking a solution of Eq. (11b}in the form

where the soliton duration ~, and its amplitude y0 are re-
lated as

10
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Pz(g, ri) = tpz(ri)exp i (vzg+Pzri) (15)
22-

and substituting Eq. (13) into Eq. (11b), we finally obtain
the linear Schrodinger equation for qrz(ri):

( )tz 2i 2 Xz 0'o
( )
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20
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3208.00 3208.02 3208.04
I

3208.06

(5+Rzvz)

lk I+2~25
(17b}

The spectrum of solutions of Eq. (16) is continuous at
positive E values and discrete at negative E values. We
are interested in bound solutions of Eqs. (1 la) and (1 lb),
as these represent a LP polariton "captured" by an UP
polariton, therefore we consider the discrete spectrum
which has the form'

PHOTON ENERGY (meV)

FIG. 2. The spectral region above the lowest exciton reso-
nance in CuC1: AcoT=3. 2025 eV, AcoL =3.2080 eV, p=2m„
Gp=5 (Ref. 12). As the functions of photon energy we show: (a)
the group velocity of UP () and LP (A) normalized by c. The
dashed line corresponds to the case U& = U&', (b) The number of
discrete energy levels, S; (c) The values of log&p(v ) (circles) and
log ~p( v+ ) (squares). The region where the inequalities
v & vz & v+ [see Eq. {21)]are fulfilled is shaded.
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where

(21)

Existence of the bound solutions of Eqs. (1 la) and (1 lb)
is most probable in the case when the group velocities of
the UP and LP become equal, Ui(Q)= U2(Q), and, as a
consequence, 5=0. If Ui AU&, the conditiion (20) must
be satisfied for the discrete spectrum of Eq. (18) to ap-
pear. Beyond the region defined by the inequalities (20),
E values of Eq. (17a) are positive and the spectrum of
solutions of Eq. (16) is continuous. ' This corresponds to
independent propagation of the UP and LP wave packets
through a crystal. The spectral range where formation of
the UP-LP bound states can take place in CuC1 is illus-
trated in Fig. 2.

It is interesting to note that the possibility of coupled
propagation of two optical pulses with different polariza-
tions has been recently predicted for birefringent optical
fibers. ' While linear birefringence leads to splitting of a
single injected soliton into two separating solitons with
different polarizations and group velocities, this splitting
could be eliminated by the Kerr nonlinearity. This
phenomenon is called "soliton trapping" and discussed in
several papers. ' ' The influence of one wave on anoth-
er in the presence of nonlinearity has also been discussed
in related contexts. ' '

Although the physical situation considered in the

present paper is different from the soliton trapping effect
in birefringent optical fibers, both our model [see Eqs.
(lla) and (lib)] and the soliton trapping problem (see
Ref. 17) are related to the Manakov model.

The effect of polariton trapping by a soliton should be
observed in time-resolved transmission experiments simi-
lar to those which have been reported, for example, in
Ref. 12 or, more recently, in Ref. 21. At photon energies
just above AcuL, a laser pulse excites two different polari-
ton wave packets corresponding to UP and LP which
propagate through the crysal at slightly different group
velocities (see Fig. 4 in Ref. 12). The time delay between
the transmitted UP and LP signals has been measured
and the corresponding group velocities have been calcu-
lated. As the input laser power is increased, the non-
linear propagation regime described above will lead to a
decrease in the time delay between the two transmitted
pulses. It is possible that at sufficiently high power, only
one output signal (with some amplitude modulation)
would be observed instead of the two signals observed in
the linear regime.

In conclusion, in the frequency region above the fre-
quency coL, the UP wave packet can propagate through
the crystal as a soliton and provide a "potential" within
which the lower branch polariton is trapped. The energy
spectrum of the "captured" LP is characterized by
discrete energy levels [see Eq. (18)]; these levels corre-
spond to localized states of the LP in the potential well
created by the UP soliton.
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