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The Anderson model of local state —conduction electron mixing is applied to the problem of
interlayer magnetic coupling in metallic multilayered structures. Two types of coupling, Ruderman-
Kittel-Kasuya-Yosida (RKKY) and superexchange arise from this interaction. The RKKY coupling
comes only from intermediate states which correspond to spin excitations of the Fermi sea, that
is, states corresponding to electron-hole pair production in the Fermi sea with an attendant spin
Sip. The superexchange coupling arises from virtual-charge excitations in which electrons from local
states are promoted above the Fermi sea (one from each layer); this provides a second contribution
to the coupling, that is in addition to the RKKY coupling. Moreover, the RKKY coupling is largely
inQuenced by the topology of the Fermi surface and contains oscillatory modes of the coupling while

superexchange coupling does not contain much Fermi-surface information. The RKKY coupling
is ferromagnetically biased, while the superexchange coupling is antiferromagnetically biased. The
total interlayer coupling (RKKY plus superexchange) resembles the oscillatory coupling of magnetic
impurities in a free electron gas (the conventional RKKY coupling or Lindhard range function),
but is antiferromagnetically biased if the density of states has a relatively large peak just above
the Fermi energy. These characteristics are visible in two ways in experimental data: (i) the spin
polarization pattern in the spacer layer between magnetic ones can be different from that of the
interlayer magnetic coupling, and (ii) some metallic multilayered structures could have relatively
large antiferromagnetic biases in their interlayer magnetic coupling; for example, Fe/Cr systems.

I. INTRODUCTION

In metallic systems, magnetic interactions are propa-
gated by itinerant electrons and thus can be transmitted
over relatively long distances. It follows that these inter-
actions can couple magnetic layers through nonmagnetic
metallic layers. Magnetic layers are usually Fe, Co, and
Ni, but Ni is seldom picked up by experimentalists be-
cause of its small magnetic moment. Nonmagnetic spac-
ers are either transition metals or noble metals. Interest
in the interlayer magnetic coupling has been increased by
the discovery of unexpected long-range oscillations in the
variation of the coupling constant with the thickness of
the spacer layers, and a large number of systems have
been investigated during the last years. Among the most
striking results is the reporting of a multiperiodic oscil-
latory coupling for the Fe/Cr/Fe(001) system: The
superposition of short-period 2 ML (ML denotes mono-
layer) and long-period 10—12 ML oscillations is observed.
Similar results were also reported in Fe/Mn/Fe(001),
Fe/Mo/Fe(001), s and Co/Cu/Co(001). ' The expla-
nation of this phenomenon is a challenge to the the-
ory. The coupling interactions (order of strength 10
eV/magnetic moment pair) that are observed in the ex-
periments are too large to be ascribed to magnetic dipolar
interactions (order of strength 10 s—10 s eV/magnetic
moment pair); thus one has to consider some indirect
coupling mechanisms. There are basically two strategies

that have been used theoretically to study the interlayer
magnetic coupling: (i) total energy calculations and (ii)
perturbative models.

The magnetic coupling could be determined by calcu-
lating the energy difference between corresponding mul-
tilayers having successive magnetic slabs ferromagnet-
ically or antiferromagnetically aligned, all as a func-
tion of spacer thickness. There are three types of to-
tal energy calculations: (i) ab initio calculations, @ ~o

(ii) tight-binding calculations, ~~ ~s and (iii) a quantum
well approach. 8 The first two are quite difBcult be-
cause the energy difference is several orders of magnitude
smaller than the total energy itself. To obtain the numer-
ical accuracy necessary to discern the small differences in
energy, total energy calculations have been restricted to
relatively small spacer layer thicknesses, and appear not
well suited for investigating long-period oscillatory cou-
pling. From these calculations, it seems diKcult to gain
a simple intuitive picture of the physical mechanism in-
volved in the coupling phenomenon. A one-dimensional
quantum well may be the simplest model to illustrate
the interlayer magnetic coupling. The specific calcula-
tion in terms of matching free electron wave functions in
a quantum well is exhibited by Barnas and by Erickson,
Hathaway, and Cullen for the cases of ferromagnetic
and antiferromagnetic alignments. In the latter calcula-
tion the coupling is determined &om the torque acting on
the spin current as a function of energy. This is in appar-
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ent contrast with the calculation performed by Stiles,
which is done in terms of a change in density of states as a
function of energy. In fact, their calculations are formally
identical, and give the same result. In these calculations,
the band structures of the magnetic and spacer layers are
treated in a free electron gas approximation (an isotropic
s band), and the reflection probabilities are determined
by matching free electron wave functions at the interfaces
between the materials. Calculated transition-metal band
structures indicate that the d band is narrower and has a
higher density of states than the free-electron-like contri-
bution of the s band alone. 9 It seems that this quantum
well model, i.e., a Kronig-Penney potential for metallic
superlattices, is an oversimplified band structure model
to mimic a situation of magnetic multilayered structures
with transition-metal spacers because one is ignoring fea-
tures of the d bands.

In view of the difBculties with total energy calculations,
it is tempting to attack the problem of interlayer mag-
netic coupling in a different way, and to attempt to obtain
the coupling directly, without having to compute the to-
tal energy. Even though total energy calculations are in-
dubitably needed to obtain the strength of the interlayer
magnetic coupling, perturbative methods provide greater
insight into the origin of this coupling. Invariably, in a
perturbative approach, one has to make approximations
that are usually suggested a priori by physical intuition.

The oscillatory behavior of interlayer coupling in
noble-metal systems bears much resemblence to the
one observed for the Ruderman-Kit tel-Kasuya- Yosida
(RKKY) interaction between magnetic impurities. 2o 22

Thus the RKKY interaction appears a good candidate
for the mechanism of oscillatory interlayer magnetic cou-
pling. Bruno and Chappert have extended the analysis
of Roth, Zeiger, and Kaplan on the RKKY coupling be-
tween spins for nonspherical Fermi surfaces to the cou-
pling between two sheets of spins. They focus on the
topology of the Fermi surfaces, e.g. , nesting features, to
successfully predict periods of the oscillations observed in
the interlayer magnetic coupling in noble-metal systems.

The RKKY theory of interlayer magnetic coupling re-
lies on the assumption that the ferromagnetic layers can
be described as two-dimensional arrays of localized spins,
which interact with the conduction electrons of the spacer
material via a structureless contact potential. In the
case of ferromagnetic-nonmagnetic transition-metal lay-
ered structures this approximation is very crude and can-
not correctly predict either the strength of the coupling
or the phase of the oscillations. In order to be able to
improve upon this one needs a better description of the
interaction between the ferromagnetic layer and the con-
duction electrons of the spacer.

Wang, Levy, and Fry used the s-d mixing interaction
and paramagnetic band structure for chromium to calcu-
late the interlayer magnetic coupling in an Fe/Cr/Fe(001)
multilayered structure. They obtained a 10 ML long-
range oscillation, in agreement with experimental results
known at that time, and predicted a 2 ML rapid oscil-
lation. They showed that the 2 ML oscillation is read-
ily suppressed by interfacial roughness, explaining why
it had not been seen. Using superlatticies with sharper

interface this theoretical prediction 2 ML oscillation was
verified experimentally by Unguris et al. and Demokri-
tov et al.

In spite of the success of these perturbative meth-
ods in explaining the coupling between magnetic impu-
rities in transition-metal alloys, one might be skeptical
about the results of a perturbative calculation of the cou-
pling between two sheets of spins, especially when the
spacer layer has a propensity to be magnetic. Deaven
et al. considered a tight-binding model of a quasi-one-
dimensional magnetic multilayer with one orbital per
site and with hopping and exchange interactions between
sites. They solved for the spin configurations by iterating
their solutions until they were self-consistent. The energy
difference between the ferro- and antiferromagnetic con-
figurations yields the interlayer magnetic coupling. In
their model, this coupling comes from the hybridization
(mixing) of magnetic and nonmagnetic states at inter-
faces. They compared their solution with RKKY theory
and concluded that perturbation theory is sufBcient to
understand the qualitative features of this fully interact-
ing model system, e.g. , of the coupling in the asymptotic
limit of large spacer layer thickness.

Recently, we applied the Anderson model of the
local-state —conduction-electron mixing interaction to
the problem of interlayer magnetic coupling again and
presented two types of excitation mechanisms: low-

energy spin excitations, which give rise to RKKY cou-
pling [JnKK~(z)j, and high-energy charge excitations,
which produce superexchange coupling [Jg(z)]. We in-

terpreted successfully the coupling in Fe/Cr/Fe multi-
layered structures, and expect that this model may also
work for noble-metal spacer layers.

In this paper we focus on perturbative methods, and
consider the interlayer magnetic coupling coming from
spin scattering of itinerant electrons. We will consider
two sources of scattering: the Coulomb exchange interac-
tion and the mixing interaction, and in following sections
we will develop the spin polarization and interlayer mag-
netic coupling coming from these two distinct sources.
The organization of the paper is the following: In Sec. II
we discuss spin polarization and RKKY coupling. We
present two types of excitations based on the Ander-
son model to discuss the RKKY coupling and an addi-
tional purely antiferromagnetic coupling (superexchange)
in Sec. III. In Sec. IV we derive the interlayer magnetic
coupling in the free electron gas approximation, which
may be suitable for noble metals. Interlayer magnetic
coupling in transition-metal systems is studied in Sec. V,
and in Sec. VI we summarize our results.

II. SPIN POLARIZATION
AND RKKY COUPLING

Many of the models proposed for interlayer magnetic
coupling between two ferromagnetic layers through a
paramagnetic layer follow from earlier work on the cou-
pling between magnetic impurities in a host metal. This
is the Ruderman-Kittel-Kasuya- Yosida (RKKY) cou-

pling, first proposed for nuclear spins, but later applied
to both transition metals with magnetic impurities and
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to the localized f-electron coupling in rare earth metals.
The RKKY interaction was derived by Ruderman and

Kittel for the indirect coupling of two nuclear spins via
their hyperfine contact interaction with the conduction
electrons. They proposed a contact potential of the form

V(r, s) = Ah(r —R) s. S (~)

for the interaction between the spin S at site R and the
spin of a conduction electron s at position r. This form
was extended later by Kasuya and Yosida who pro-
posed a similar coupling between localized d or f elec-
trons and the conduction electrons.

The essence of this interaction is that one magnetic im-
purity interacts with the conduction electrons of a host
metal and induces a spin polarization in the electron gas.
This spin polarization extends throughout the host metal
and eventually reaches a second magnetic impurity, thus
giving rise to an effective interaction between the two
given magnetic impurities. In the limit of large sepa-
ration (r) between these two impurities, when the host
metal is treated as an uniform electron gas, the coupling
oscillates periodically with an oscillation period (x/k~)
related to the diameter of the spherical Fermi surface
with an amplitude decaying like 1/rs. For a nonspheri-
cal Fermi surface in a real metal the oscillation periods
are determined by the topology of the Fermi surface, i.e.,
extremal wave vectors spanning the Fermi surface.

The first extension of the RKKY model to the case
of two interacting magnetic layers was done by Yafet,
to explain the coherence of magnetization of Gd layers
separated by nonmagnetic Y layers in Gd/Y superlat-
tices. He treated the Gd layers as localized spins and
used the computed wave-vector-dependent susceptibili-
ties of Gd and Y (Ref. 29) to obtain an effective Gd-
Y q-dependent exchange interaction. The resulting in-
terlayer magnetic coupling, J(z), is obtained by taking
the one-dimensional Fourier transform of the effective
q-dependent exchange interaction. The resulting J(z)
shows a well-defined oscillation for Y thickness z be-
tween 4 and 11 ML. For large z, irregular oscillations
reHect the structure of the susceptibility y(q), with in-
terference occurring between many wave vectors with
roughly equal contributions to the susceptibility. Yafet
pointed out that the RKKY range function of a single
ferromagnetic layer in three-dimensional space (a pseudo-
one-dimensional system) falls off asymptotically as 1/z,
where z is a distance away from the layer. Baltensperger
and Helman also calculated the coupling of ferromag-
nets separated by a nonmagnetic layer; they found the
RKKY theory gives an expression in which the coupling
oscillates as a function of the thickness of the nonmag-
netic layer, and asymptotically decreases as the recipro-
cal square of the thickness. Their expressions indicate
that the coupling also depends on thickness of the mag-
netic layer, but recent experimental data show that the

coupling does not strongly depend on the thickness of
the magnetic layer. Magnetic ordering in rare earth su-

perlattices was also considered by Fairbairn and Yip
who calculated the RKKY coupling using wave functions
computed for a superlattice of square well potentials.

Oscillations in the interlayer magnetic coupling ob-
served for magnetic-nonmagnetic transition-metal metal-
lic multilayered structures suggested that the RKKY
model might be applied to those materials as well.
For magnetic multilayers with noble-metal spacer layers,
Bruno and Chappert took the RKKY range function to
describe the interaction between every pair of spins in a
layered structure, and calculated an interlayer magnetic
coupling energy by simply summing these interactions.
They focused on the Fermi surface and predicted all pos-
sible oscillations for noble-metal spacer layers; their re-
sults are in excellent agreement with experimental data.

In this section the application of RKKY coupling to
magnetic multilayers with transition-metal spacers, es-
pecially Cr, is discussed. We find in this case that the
RKKY coupling alone is not enough to interpret the ex-
perimental data.

A. Spin polarisation

We consider a system of conduction electrons in a
metal that is spin polarized by the presence of a local
magnetic moment at site R. This polarization effect is
attributed to a coupling between the local moment and
conduction electron Bloch states nqk and n2k' of the
for m34

II = — ) I„,i, „,i, (R) (@„' „s@„,i,.)(%t„SIR)
ngk, ngk'

(2)

where I„,k „,k is a slowly varying well-behaved function
of k and k', whose specifications depend upon the partic-
ular mechanism which produces the scattering. The first-
order correction to the Bloch functions due to a magnetic
ion is given as

go ~ S ~ I„,I, „,i (R) ~ok+ k'+ 2 n~k', +
ngk'

where vP & + ——P„i,(r)yy, P g(r) is the unperturbed spa-
tial wave function and y~ are the eigenstates of spin
parallel and antiparallel to the local magnetic moment
S(R), e.g. , the magnitude is S = 2.2@~ for iron (p~ de-
notes Bohr magneton). With this, one finds that the spin
polarization induced at a point r by an impurity at the
origin R = 0 is

=s )
ngk, n2k'

(4)
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where f„k is the Fermi distribution function. In reciprocal space and at zero temperature, this can be written as

m(q) =S )
n1,n2, k

I„,k „,k (0) M„,k „,k (q)
"' "' + c.c.0(EF —En~'k) 0(En2k —eF)

(5)

where 0 is a step function, c~ is the Fermi energy,
k' = k+q+G, G is a vector of the reciprocal lattice, and
M„,k „,k (q) = (nzk'

~

e *&'
~
n)k) is an atomic form

factor matrix element. This spin polarization can also
be derived from a one-impurity Anderson model.

As the interaction strength between a local moment
and conduction electrons is determined by the Bloch

I

states nqk, n2k', one expects I,k, k to contain the form
factor matrix element. Therefore if we write I„,k „,k (0)
= A(q) M„* k k, (q) for all k, then Eq. (5) reduces to

m(q) = S A(q) y(q) (6)

where y(q) is the random phase approximation (RPA)
susceptibility written as

( )
- IM-, k,-,k (q) I' ~(e~ —s-,k)~(e.,k

—~F)
xjqj =

kn1 )n2

When one makes the free electron gas approximation
M„,k „,k (q) = 1 the susceptibility reduces to

- ~(sz —s~) 0(s~p, —~z)xq )

where a is the repeat distance in the z direction, and

f(q, ) represents the roughness of the interface between
the ferromagnetic substrate and the nonmagnetic over-
layer. Here we approximate f(q, ) by

which yields the Lindhard function. In linear response
theory, m(q) = g(q) h(q); therefore from Eq. (6) one
sees that h(q) = A(q) S, i.e. , that the interaction with
the local moment is equivalent to an external field acting
on the conduction electrons.

Until now we have considered one local moment in a sea
of conduction electrons. We model a magnetic layer as
a sheet of spins which represent the interface immersed
in the electron sea. For a sheet of local moments one
must add the individual contributions &om each moment,
Eq. (4). Equivalently Yafet has shown that the spin
polarization induced at a distance z normal to a sheet
of spins is the one-dimensional Fourier transform of Eq.
(5), i.e. ,

(m(z))z ——— f (q, )m(q, )cos(q, z)dq,2' 0

a)
f(q, ) = (1 —2p) + 2p cos

~
q, —~,2)

(1O)

B. RKKY coupling

The RKKY coupling between a spin polarization in-
duced by one magnetic ion at origin 0 and another one
at site r is found by applying Eq. (2) and Eq. (3) to
different sites of magnetic ions; the ensuing coupling is

where p is an interface roughness parameter, and the
brackets around m(z) denote the average taken by the
roughness factor Eq. (10). In Sec. V [see Eqs. (36) and

(37)], we discuss why it is appropriate to use the bracket
notation.

JRKKY(r) = )
n1k, n2k'

I„,k„,k (0) I„' k „k,(r) "' "' + c.c.f...(1 —f...)
~n, kt —~n, k

where I*
k k, (r) = e'~ l I'

k k, (0). Equation (11)can also be expressed in reciprocal space at zero temperature
as

jRKKY(q) = )
n1,n2, k

~
I„„„,„.(0) ~' e(« —s„,„)e(e„,„—e, )

According to Yafet's argument the RKKY coupling between two sheets of spins can be obtained directly by
Fourier transforming Eq. (12), and is given as

a
(JRKKY(z))„= — dq. f) (q, ) fz(q~) jRKKY(q ) cos(q, z),

0
(13)
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where fz(q, ) represents the roughness of the interface be-
tween the ferromagnetic substrate and the nonmagnetic
layer, and f2(q, ) represents the interface roughness be-

tween the magnetic overlayer and the nonmagnetic layer.
The roughness at the interfaces we have considered is
that part which represents uncorrelated fluctuations of
the interfaces. zs In Sec. V [see Eqs. (36) and (37)], we

discuss the notation (J(z))z.
If I~,s, s~(O) = A(q)M„* & &, (q) for all k, then the

RKKY coupling, Eq. (12), is proportional to the suscep-
tibility, i.e. ,

JRKKY(q) =I ~(q) I' x(q) (14)

The layer-by-layer spin polarization in epitaxial Cr on
Fe(001) substrates has been observed below4~ and well

Yafet used this form to study the interlayer magnetic
coupling in Gd-Y superlattices and obtained results in
agreement with experiments. A constant A(q) in Eq.
(14) has been employed by Bruno and Chappert2s to
study magnetic layers interacting through noble-metal
spacers. They explained both the long-period oscillatory
coupling and the multiperiodic oscillations in multilay-
ered structures with noble-metal spacer layers, in terms
of the topological properties of the spacer layer's Fermi
surface.

The RKKY interlayer magnetic coupling can then be
understood as occurring in three stages: the spin polar-
ization of the conduction electrons of the host materials
induced by one magnetic layer, the subsequent propaga-
tion of this spin polarization across the spacer layer, and
finally the interaction of the spin-polarized electron gas
with another magnetic layer.

Generally, the spin-dependent scattering of conduc-
tion electrons by the magnetic moments at the interfaces
comes from two sources: the Coulomb exchange interac-
tion and the mixing interaction. When the Coulomb ex-
change interaction dominates, the phenomenological in-
teraction of conduction electrons with a magnetic mo-
ment can be described by Eq. (2), and I„,s „,s is often
taken as a constant. On the other hand, for 3d tran-
sition metals the mixing interaction is much larger and
dominates the Coulomb exchange interaction. For the
magnetic multilayered structures with transition-metal
spacer layers, we specifically considered that it is the
s-d mixing interaction rather than the local-electron-
—conduction-electron exchange interaction that gives the
main contribution to I„,g „,I, . For the mixing interac-
tion at the site 0, this coupling is given by the one-site
Schrieffer-Wolff transformation as follows:

I,~, ,I. (O) = (15)
&n, I" —&+

where e+ is the energy of the local impurity state relative
to the bottom of conduction electron bands and V„I, rep-
resents the strength of the mixing interaction. The
mixing interaction leads to a broadening or virtual
bound state (VBS) description of local impurity levels
in metals; this introduces complex energy levels c+ in
Eq. (15).

C. Spin polarization in Fe/Cr bilayers

above the bulk Cr Neel temperature T~. These direct
observations are notable achievements; the existence of
polarization of the form of a spin density wave (SDW)
in Cr for temperatures up to 1.8T~ deserves special at-
tention. Below T~ it might be assumed that the SDW is
spontaneous, with its wave vector possibly modified by
epitaxial strain, and its amplitude a function of ternpera-
ture (as it is in the bulk). The appearance of a SDW-like
polarization above TN may be explained as an enhanced
T~ due to the presence of the Fe substrate, or it may be
simply a polarization wave induced by the Fe substrate.
Since experiments suggest that the SDW has a decay-
ing amplitude as a function of the distance from the Fe
substrate, 2 we adopt the latter point of view here and
present a calculation of the magnetization of paramag-
netic Cr layers on an Fe(001) substrate. M

To calculate the spin polarization in a Cr layer induced
by an Fe substrate, we specifically use the paramagnetic
chromium band structure. In Eq. (15), we set Re[a+] =
e~ —Eh, where Eh, is the energy required to promote an
electron from an occupied local magnetic impurity level
to the Fermi level. Away from the interface, the induced
spin polarization is essentially given by the susceptibility

y(q), i.e., m(q) y(q). Therefore, for small q, it is
possible to make the ansatz V„,sV„' &,

——V M„'
& „,&, (q)

in Eq .(15), which will be discussed in the Appendix. The
d parts of the atomic form factors decrease rapidly with
q. Therefore in our calculations, the s and p parts of the
atomic form factors are taken to be constants27 M (being
equivalent to an ansatz V„,g V„* &, ——const for large q)
so as to reflect the local or point-contact-like property of
the 8-d mixing.

With these approximations, we have calculated the
spin polarization m(q, ), Eq. (9), with Eh, = 0.08 Ry
and Im[c~] = 6 = 0, 0.04, 0.08, 0.16 Ry. By taking
Eh ——0.08 Ry we find the best fit to the experimental
data on Fe/Cr/Fe(001) systems. zs We plot only data for
6 = 0 in Fig. I. We have used the band structure that
has been found to reproduce the incommensurate SDW
instability occurring at qsD~ 0.958I'H in Cr.

In bulk chromium the moment of the SDW varies as

I I I I

[
I I I I

]
I I I I

(

I I I I

j
I I I I

=0.958 27r a

100

C

50

0 I I I I I I I I I I I I I I I I I I I I I I I I

0 1 2 3 4
0 (zvr/a)

FIG. 1. The spin polarization na(q) in Cr on Fe(001)
calculated with E& = 0.08 Ry. The twin peaks repre-
sent spin density wave ordering at qswo = 0.958(2m/a) and
1.042(27t/a). V is expressed in rydbergs.
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p = pb cos(qsDw z), where at zero temperature pb
0.62@hi. The period is given by 27r/qsDw, where qsDiv =
(vr/d)(1 —h), d is the layer spacing, which is a/2 for the
bcc lattice in the (001) direction, and h is a measure of the
incommensurability. Here, the spin polarization m(z)
in a chromium overlayer is obtained by using the Fourier
transform m(z) [Eq. (9)] of m(q) [Eq. (5)]. We find that
a decaying SDW induced by the mixing interaction at an
Fe/Cr interface gives rise to 2 ML oscillations with an
envelope of 24 ML wavelength (being equivalent to 1/8
with b = 0.042) and a long 10 ML period spin polariza-
tion which exist even for a rough interface (p = 0.25). In
Fig. 2, we show our results for a smooth (p = 0), an ir-
regular (not very rough, p = 1/8), and a rough (p = 1/4)
interface for Eh ——0.08 Ry and 6 = 0, i.e. , for a nar-

41,42row VBS. On comparing these with the recent data
we find a reasonable resemblance. As the present cal-
culation has not introduced the exchange enhancement
in paramagnetic chromium, it is not realistic to compare
the magnitude of this predicted induced spin polarization
with the experimental data.

The main differences between our results and the data
are that (1) nodes (phase slips in the language of Ref. 42)
occur at nip/2 (n = 1, 3, 5, . . .), where ls is the distance
between nodes; we Gnd that lg ——24 ML, whereas experi-
mentally it has been found that ls = 20 ML (Ref. 42); (2)
we find that the first node occurs in the region around 11-
—12 ML; this is consistent with the apparent phase slip
at 10—11 ML observed by Walker et al. , but it does
not agree with the first phase slip observed at 4—5 ML
by Unguris et al.

The discrepancy in lg probably comes &om the
s rain int '

in the chromium overlayer. 44 The virtual bound
45,46state may generate an additional phase ' so that

the induced SDW would have the form psD~
po(z)cos(qsDwz + po), with a nonzero initial phase po,
and po(z) is a slowly decaying function. If one chooses

yo(qsDw) = vr/3 the phase slip regions are shifted and oc-
cur around 4, 24, 44, and 64 ML, etc. , for qsD~ ——0.95I H
(being equivalent of /s = 20 ML); this is exactly what
has been experimentally observed in one of the two
experiments. However, the m(q) we find for a paramag-
netic chromium layer is not simply m(qsDw) h(q —qsDiv);
rather it contains a spectrum of q vectors, as shown in
Fig. 1. To allow for the complex energy entering m(q),
m(q, ) is complex and expressed as

I m(q, ) I

e'v'('i*), and
then we generalize Eq. (9) as follows:

I I I

I

I I I

I

I I I

I

I I I

dotted line: 6=0
solid line: b, =0.04 Ry

—5
0

I I I I I I I I I I I

20 40 60
z(Mr. )

BO

(m(z)) = — f(q. ) I m(q. ) I
cos[q.z+v(q. )] dq.

270 0

(16)

where
I m(q, ) I=/(Re[m(q, )])2 + (1m[m(q, )]j2, and

p(q, ) = tan i(1m[m(q, )]/ Re[m(q, )]l. In Fig. 3, we

plot the spin polarization m(z) with b, = 0.04, 0.08, 0.16
Ry, and do not find much shifting in the nodes or phase
slip regions. Rather we find that the main effects of the
finite width of the VBS are (1) an attenuation of the am-
plitude of the induced oscillation of the spin density and

(2) a decrease in the ferromagnetic bias in the induced
magnetization for z less than 15 ML. Therefore we con-
clude that for chromium the finite width of the iron VBS
does not produce discernible effects such as phase shifts
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FIG. 2. The spin polarization (m(z))~ in Cr on Fe(001)
calculated with Ep, = 0.08 Ry. The dotted line is for a
smooth (p = 0) interface, the dashed line for an irregular
one (p = 1/8), and solid line for rough interface (p = 1/4). V
is expressed in rydbergs.
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Ry for Eh, = 0.08 Ry and a smooth interface (p = 0).



49 INTERLAYER MAGNETIC COUPLING IN METALLIC. . . 15 165

in the asymptotic region (large z); rather its effects are
limited to the preasymptotic region.

In summary, we have derived the spin polarization in
a paramagnetic layer induced by the mixing interaction
between local and conduction electrons at the interface
of a magnetic-paramagnetic bilayer system. We have in-
cluded the effects of the imaginary part of the self-energy
of the local state on the induced spin polarization. Based
on the band structure of bulk paramagnetic chromium,
our theoretical spin polarization pattern resembles the
experimental data. The effects of the 6nite width of
the VBS are seen at short distances (small thicknesses of
chromium layer), but do not show up in the asymptotic
region. When one puts another magnetic layer over the
chromium, one picks up the interaction between this in-
duced spin polarization and the magnetic overlayer, and
it gives an RKKY-like interlayer magnetic coupling.

0.04 Ry; the broadened VBS reduces the ferro-
magnetic bias for small z, but this coupling cannot pro-
duce the strongly antiferromagnetic interlayer magnetic
coupling seen in data at small chromium layer thickness
(4—10 ML).z 4 Thus we can conclude that the modified
RKKY coupling by itself cannot explain the interlayer
magnetic coupling in Fe/Cr multilayered structures

However, Wang, Levy, and Fry used the two-

impurity Anderson model, and obtained the correct be-
havior for the Fe/Cr interlayer magnetic coupling. The
salient contribution that enters the coupling when us-

ing this model comes &om considering a slowly decaying
nonoscillatory superexchange coupling. In the next sec-
tion we will present two types of excitation mechanisms
that appear in the Anderson model and we interpret in-
terlayer magnetic coupling in metallic multilayered struc-
tures in terms of these processes.

D. RKKY coupling in Fe/Cr multilayered structures

We have calculated the JRKKY(z) coupling by using
the same parameters as for the induced spin polariza-
tion; our results are shown in Fig. 4(a) for pi ——p2 ——0,
1/8, and 1/4, where we have assumed, lacking more pre-
cise information, that both interfaces are equally rough
(smooth). This coupling with a strong ferromagnetic
bias does not resemble the interlayer magnetic coupling
in Fe/Cr multilayered structures observed by Unguris et
al.2 or by Demokritov et al.4 When we consider effects
of finite width of the VBS it does not help the JRKKY(z)
coupling look like the experimental data. ' At best,
the width of the VBS can make the coupling oscillate
about zero [see Fig. 4(b)], with a realistic finite width
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FIG. 4. (a) The RKKY-like interlayer magnetic coupling
(JaKKv(z))~ of Fe/Cr(001) multilayered structures calculated
with Ei, = 0.08 Ry, and p = 0 (dotted line) for smooth in-
terfaces and p = 1/8 (solid line) for slightly roughened in-
terfaces. The units of coupling J are rydbergs where V is
expressed in rydbergs. (b) Comparison of RKKY interlayer
magnetic coupling for local state with no broadening and a
VBS with A = 0.04 Ry for E& = 0.08 Ry, and a smooth
interface (p = 0). Here positive and negative 1 represent
ferromagnetic and antiferromagnetic coupling, respectively.

III. INTERLAYER MAGNETIC COUPLING:
RKKY AND SUPEREXCHANGE

We turn now to the possibility that interlayer magnetic
coupling contains not only an oscillatory term but also
a slowly decaying, nonoscillatory contribution. We will
show that both types of coupling can be derived naturally
in the two-impurity Anderson model.

In 1972, Goncalves da Silva and Falicov used the
Anderson model to calculate the magnetic coupling in
rare earth metals of localized f electrons via the itiner-
ant sp electrons. In fourth-order perturbation theory,
their model gave both superexchange and an oscillat-
ing RKKY coupling for metallic itinerant bands. Wang,
Levy, and Fry have proposed that interface states as-
sociated with Fe atoms at the interfaces of Fe/Cr rnulti-
layered structures produce the magnetic perturbation of
the Cr layer that couples the Fe layers. In this calcula-
tion, the paramagnetic Cr layer has been modeled by the
bulk band structure which has provided a reliable RPA
susceptibility.

In this section we use the two-impurity Anderson
model and derive the interlayer magnetic coupling in two
ways. First we calculate the interlayer magnetic cou-
pling by applying the Hartree-Fock approximation and
by using Green's functions. In a second approach, we
follow fourth-order perturbation theory to calculate the
interlayer magnetic coupling. Then, we point out the
equivalence between Caroli's Green's function method
and fourth-order perturbation theory of the two-impurity
Anderson model. Finally, we demonstrate that there are
two essentially different types of excitation mechanism
needed to interpret interlayer magnetic coupling in the
two-impurity Anderson model: low-energy spin excita-
tions, which give rise to the RKKY coupling previously
found from the one-site Schrieffer-Wolff transformation,
Eq. (12) and Eq. (15), and high-energy virtual charge ex-
citations, which produce a superexchange coupling that
cannot be derived by the method used in Sec. II.

A. Interlayer magnetic coupling in the Anderson
model: Green's function method

The interaction between two magnetic ions in a non-
magnetic metal can be represented by the two-impurity
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+ )
i=1,2,nk, cr

(V„i,c„l C,g + V„*„c,~ C„g ),

Anderson Hamiltonian

II= ) .„,c„'„.c„.. + ) ~;,.c,',.C...
i=i, 2

(17)

energy for spin direction o. By using the Hartree-Fock
approximation and assuming that ion-ion interactions
have negligible effects on the occupation of local levels
of the magnetic ions Caroli showed the magnetic inter-
action between two impurities separated by a distance r
is given by

E;„,= $ f dp (e —ep) Ep (e) (Is)

where bp is the total density of electron states per unit
I

where e„k is the energy level for the conduction electrons,
is the energy level for the impurity states, C„k

Cnk are the creation and annihilation operators for the
conduction electrons with spin direction ~, C&, Cg are
those for the d electrons of the magnetic ions, and Vnk
is the strength of mixing interaction between localized
and conduction electrons. Generally, there are three ap-
proaches to solve this Hamiltonian: (i) a Green's function
method, (ii) perturbation theory, and (iii) a canonical
transformation like the Schrieffer-Wolff transformation.

In the Green's function approach the interaction be-
tween the magnetic impurities is given by the change in
the total (Hartree-Fock) energy of the system due to mix-
ing interaction, 4 i.e.,

Here

@On (2O)

is the Green's function of the local impurity state at site
is the energy of the local state, and

- Vi,~, ~&n, 1,2 )-EI'c, rj =
~ —~nk k,

—~nk'n, kt

(21)

represents the coupling between two impurity states
through the electron gas, where Vn, k i ——e '""'

Vn, k ~,
and 0 represents the origin. Then the coupling energy
(the energy diff'erence between ferro- and antiferromag-
netic configurations) is

(22)

and is equal to Iep S . The energy difFerence between e, and e,. is the order of the intra-atomic Coulomb interaction
U; as discussed in the following paragraph we take the large U limit. The lower energies for local states of two
impurities are set to be equal to e~. The integration that picks up poles related to the conduction band at e = e„,k
or e = c„,k gives the RKKY-like coupling whose form in reciprocal space is

jRKKY(g) = )
ng, np, k

I V-.~ I'I V-.I I' ~(&x —&-.1)fl(&-.1
—&f) +, ,(s,a —«)' (23)

where k' = k+ q+ G and G is a vector of the reciprocal lattice. One sees that this reproduces the RKKY interaction
Eq. (12) when one relates V&2/(sg —«) to II, . The additional contribution from the poles related to local states at
e = r~ gives an antiferromagnetic coupling whose Fourier transform is

js(q) = — ):
ng, n2, k

I V-, I I'I V-.l I' ~(& .~
—&f)~(&-.1 —&t)

(24)

This is a new term called superexchange coupling, and
is not within the paradigm of the RKKY interaction dis-
cussed in Sec. II.

The local states e~ of a magnetic impurity lying be-
low and above the Fernii level e~ correspond to occupied
and unoccupied states, respectively. Suppose one elec-
tron, say, with spin down, occupies the local state cg
which lies below the Fermi surface. The presence of a
spin-down electron in an orbitally nondegenerate local
state excludes another spin-down electron, and there is
also a repulsive field for spin up due to the intra-atomic
Coulomb interaction U. Therefore, the energy level for
the spin-up state will lie at eg + U. That state is above
the Fermi level if U is large enough. We set e+ ——c&&+Kg

to represent the local state below the Fermi level c~, and
= e&&+ Zg for a local state above e~. Eg is a self-

energy correction and at the level of our approximation
has no 0 dependence. Anderson pointed out that it
is the ratio of the intra-atomic Coulomb interaction U
to the mixing interaction V k that determines whether a
local magnetic moment in a metallic host can be formed
or not. For rare earth metallic compounds, the on-site
Coulomb interaction U is very strong, so that they al-

ways exhibit magnetic moments. Similarly, we will use a
large U limit in case of magnetic multilayered structures,
because the magnetic moments in the magnetic layers
are quite large, e.g. , iron. From electronic structure cal-
culations of magnetic impurities in nonmagnetic metals,
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it is reasonable in a first approximation to focus on lo-
cal states e+ below and closer to e~, and to neglect the
process of absorbing an electron &om the Fermi sea in
an unoccupied local level e which is above but farther
away &om c~. The contribution to the coupling from
unoccupied local states above c~ is small, especially in
the large U limit; therefore we set e~ ——e+ in the nu-
merical calculations in following sections. When these
unoccupied local states above c~ are included in our cal-
culations they do not change any of our results.

The merit of the Green's function method is that it can
1

j~(q) = jRKKY(q) +is(q) (25)

Its form in real space is obtained in a way similar to that
used for Eq. (16),

pick up all eigenstates of the system, which are related to
poles in the integration. The local states and conduction
electron states together form a complete set of eigenstates
of the two-impurity Anderson Hamiltonian. One sees
that the total coupling in reciprocal space can be written
down as

(~&(z))p = f&(q~) f2(q~) I j&(q~) I
cos[q z+ y(q ) ] "q

2K p

(26)

~h~~~
) j~(q, ) )=g(Re[j~(q, )])' p (Im[j&(q, )]j', and

p(q, ) = tan (Im[jq(q, )]/ Re[jq(q, )]).

I

order. ' The idea is to perform successive canonical
transformations aimed at eliminating odd powers of the
mixing parameter V„g. The transformed Hamiltonian
has the formB. Canonical transformation and fourth-order

perturbation theory for two-impurity Anderson
model

es es Hes es (27)

A two-site canonical transformation which obtains the
same result is related to the Schrieffer-Wolff canon-
ical transformation which converts the Anderson
Hamiltonian into an effective spin Hamiltonian in the
limit where one conserves the number of local electrons.
In this limit, known as the Kondo limit, the local rno-
ment is well defined. The basic idea of the Schrieffer-
Wolff transformation is to remove the mixing interaction
to first order. Then, the first nonzero contribution &om
the interaction between conduction and localized elec-
trons is proportional to square of mixing strength V„I,.
To couple two impurities at difFerent sites, one has to
calculate the effects of the mixing interaction to fourth

I

H =H +H +H + (28)

The matrix elements of H( ) and H( ) between eigen-
states of H( ) are

where H = Ho + V, and the superscript (2m+ 1) on S
indicates the order in V I, of each successive term. To
eliminate V„p to first order in H, S~ must satisfy the
relation [Ho, S ] = V, as in the Schrieffer-Wolff case.
The next higher-order terms generated by S describe
third-order hybridization effects. To eliminate them, one
chooses S such that [Ho, Ss] = &~[S~, [S,V]]. Then the
transformed Hamiltonian, containing only second- and
fourth-order terms in V„A, , is

(a
~

H~ l
~

b) = —) V,V,s (D, —D,s),

(a
~

H~ l
~

b) = ) Vo~VceVzeV~s (DacDcaDz~ DcaDzeDes + 3DacDa~Des 3DaeDcaDes)
cde

(29)

where D;~ = (E; —E~) and V s = (a
~

V
~

b). Then,
the coupling is written down as

= ) .H;~ Hgg D'~+ H;y
(4) - (2) (2) (4) (3o)

where
~

i) and
] f) are degenerate ground states of Ht l

for the two sites. By inserting Eq. (29) into Eq. (30) one
obtains

E = ) V;,V~gVg, V,yD;,D;gD;,
cde

(31)

This resembles the conventional fourth-order perturba-
tion theory result. However, the denominators contain
the mixing parameter V„&, therefore Eq. (31) is not sim-
ply fourth order in the mixing interaction. It is worth

pointing out that Eq. (31) contains contributions from
all possible intermediate states. It is not difficult to sort
out the coupling strengths jRKKY (q) and jg (q), which
are discussed in Refs. 46 and 49.

In conclusion, we point out that results found for the s-
d model by using Caroli's Green's function method can be
reproduced with this two-site canonical transformation.

C. Spin and virtual charge excitations

The physical picture of the RKKY (jRKK~) and su-
perexchange (jg) couplings is related to two basic exci-
tations in the two-impurity Anderson Hamiltonian. The
coupling jRKKY(q) comes only from intermediate states
which correspond to spin excitations, as shown in Fig. 5,
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spin excitations

haI. ge excitatio

not contain much Fermi-surface (oscillatory) information.
For narrow virtual bound states, there are no peaks and
structure in js(q) because both states, nqk and n2k', are
above the Fermi. surface; that is, they have no chance of
touching the Fermi surface. When one considers efI'ects
of finite widths of the VBS, there will be a small oscilla-
tion along with the strongly antiferromagnetic coupling
J~(z), because the tail of the virtual bound state touches
(crosses) the Fermi surface. In the following two sections,
we will further investigate these two types of couplings.

FIG. 5. Schematic diagram for spin and charge excitations
in two-impurity Anderson model. I and C represent local
impurity and conduction electron states, respectively.

IV. INTERLAYER MAC NETIC COUPLING
IN THE FREE ELECTRON

GAS APPROXIMATION

of the Fermi sea, i.e., states which correspond to electron-
hole pair production in the Fermi sea with attendant spin
flip. ' This coupling is largely influenced by the Fermi
surface through the denominator (s„,I, —s„,s) in Eq.
(23), which is singular when both states (nqk and n2k')
are in6nitesimally close to the Fermi surface. Thus, the
topology of the Fermi surface generates peaks and struc-
ture in jRKKY(q), which come from stationary wave vec-
tors which span the Fermi surface. These stationary wave
vectors translate into oscillations of the interlayer mag-
netic coupling in real space, JRKKv(z).

The coupling js(q) arises from vir tuat ch,arge-
excitations, as shown in Fig. 5, which have electrons
from local states above the Fermi sea (one from each
layer); it provides a second contribution to the coupling,
that is, in addition to the RKKY coupling. 2~ js (q) does

Before attempting to calculate the coupling for a par-
ticular band structure, it is of pedagogical value to study
it within the free electron gas approximation. Since this
approximation may be suitable for noble-metal spacer
layers, we consider a fcc host material with one con-
duction electron per atom. Then the Fermi vector is

k~ = (12vr ) 3/a, where a is the lattice constant, e.g. ,

kF = 0.78(2~/a).

A. RKKY and superexchange couplings
in the free electron gas approximation

First we discuss the narrow virtual bound state limit,
i.e., 6 = 0, and consider one local level below cF for
simplicity. Then jnKKv(q) in Eq. (23) and js(q) in Eq.
(24) can be evaluated analytically without any approxi-
mation,

vV4 1 (kp + q)2 —kp
jRKKY(q) —

k2 k2
ln

k2 k216' q F p F p

kF+q+ kp+ ln
kp(q + 2kp) k/ + kp

1 kF+q —kp
ln

ko(q —2ko) kF —ko

1 q+ 2kF
n

1 q —2kF
+ ln

ko(q+ 2kp) q+ 2k+

1 q —2kF
ln

kp(q —2kp) q+ 2kF
(32)

and

v& 1 (kF+q) —kp 1 kF+q+ko
16vr2q k2 —kp2 k+~ —ko2 ko (q + 2ko) kF —ko

1 kF +q —kp
ln

ko(q —2ko) kF + ko

(33)

where v is volume of a primitive cell of the lattice, kp ——/2m(s~ —Eg) is a momentum of local impurity states, and

kF = /2m'~ is the Fermi momentum of the electron gas. The total coupling j& is easily obtained as

~V4 2 kF + k, q' —4kF q+ 2kF
j~(q) =- —ln

16m (q —4kp2) ko ks —ko q(k~2 kp2) q 2k+
(34)

and agrees with the coupling derived by Proetto and
Lopez.

In Fig. 6, we plot jRKKv(q) and js (q) for Eh ——O. le~.
In the previous section we pointed out that jRKKv(q)
contains structures which come from the extremal wave

I

vectors across the Fermi surface. One notices that
jRKKv(q) has a dip at q = 2k' = 1.56(2'/a), while

js(q) is a smooth curve. Figure 7 shows their Fourier
transforms, namely, JRKKv(z) and Jz(z). One can see
that the JRKKv(z) oscillates with a short period A = 1.3
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The eKect of the broadening of a VBS on Js(z) is to
add small oscillations to the antiferromagnetic coupling
Js(z), as shown in Fig. 10, because the tail of the VBS
crosses the Fermi surface. We have varied Eh and found
that it does not alter the conclusions discussed in this
section.

D. Bias of the interlayer magnetic coupling

The RKKY coupling, an indirect coupling between two
magnetic ions or magnetic layers embedded in a non-
magnetic metal, is found in a second-order perturbation
treatment with respect to I„,i, „,i, (fourth order in V„i,),
of the free electron gas, and it exhibits oscillatory fea-
tures. When they restricted themselves to evanescent
states Dreyfus et al. demonstrated that it is possible
for an induced spin density with a bias to exist in a non-
magnetic layer. They suggested that the difference be-
tween their conclusion and RKKY coupling resulted &om
the nonperturbative nature of the problem which they
treated. Bardasis et al. and Yosida and Okiji reex-
amined the calculation of Dreyfus et al. by evaluating
an additional contribution from noneecne8cent states to
the spin density. They found that the nonevanescent
states contribute a nonoscillatory spin polarization which
exactly cancels that coming &om the evanescent states,
thereby leaving the expected RKKY oscillatory spatial
dependence without any bias.

Recently, Erickson, Hathaway, and Cullen studied
the cancellation of the nonoscillatory terms to the cou-
pling by calculating the torque acting on the spin-Hip
current in a inagnetic/nonmagnetic/magnetic sandwich.
They also employed a free electron gas for the magnetic
and nonmagnetic layers, and in magnetic layers they con-
sidered the conduction band split by an exchange inter-
action into spin-up and spin-down subbands as did Drey-
fus et al. , Bardasis et al. , and Yosida-Okiji. We use
the s-d mixing interaction at the interfaces to study the
interlayer magnetic coupling. This is a different mecha-
nism to induce the spin polarization and we model the
magnetic ion or layer as a local level, and the nonmag-
netic metal as an electron gas. In Sec. IV A we saw that
the ferromagnetic bias of JRKKv (z) is exactly canceled by
antiferromagnetic Js (z) and gives a conventional RKKY-
like coupling Ji(z) as shown in Fig. 7. Therefore, it seems
that the cancellation property may be universal, i.e., irre-
spective of whether it is treated by perturbative or non-
perturbative methods, and results from considering the
complete set of the eigenstates of a system.

For the spin-dependent scattering at the interface when
one considers I,i, ,&I in Eq. (2) to be a constant, the
complete set of eigenstates of the system consists only of
the conduction bands of the nonmagnetic spacer. The
coupling (RKKY) &om it is a conventional oscillatory
coupling without bias. When I,g, y comes from the 8-
d mixing interaction it has the form of Eq. (15); therefore
it is not a constant; also the complete set of eigenstates
is a combination of local states &om the magnetic lay-
ers and the conduction bands of the nonmagnetic spacer.
Then it is not too surprising that the RKKY-like coupling
JRKKv(z) in Sec. II is biased. From the Green's function

method in Sec. III one realizes that it results &om a sub-
set (conduction bands) of the complete set of the eigen-
states. The other part of the coupling Js(z), coming
from another subset (local levels), is antiferromagnetic
and, as we showed in Sec. IVA cancels the ferromag-
netic bias, at least for a free electron gas. One could
posit that this cancellation property comes &om the ex-
istence of a parabolic band, the use of constant matrix
elements, or both, but what happens for realistic non-
parabolic band structures' Wang, Levy, and Fry stud-
ied the interlayer magnetic coupling in Fe/Cr/Fe multi-
layered structures based on the paramagnetic Cr band
structure. They found Jg(z) does not completely cancel
the ferromagnetic bias JRKKv(z), but leaves some anti-
ferromagnetic bias. The violation of the complete can-
cellation may come from the nonparabolicity of the band
structure, &om the behavior of the matrix elements, or
yet for some other reasons. This point will be clarified in
the next section.

V. INTERLAYER MAGNETIC COUPLING
IN IRON/CHROMIUM MULTILAYERED

STRUCTURES

Several experiments have demonstrated that spin po-
larization is induced in Cr by a magnetic Fe layer
and that the magnetic layers are coupled in Fe/Cr/Fe
multilayered structures. ' On the other hand, addi-
tional experimental data have shown that spin polariza-
tion and interlayer magnetic coupling patterns are not
identical, a finding that can be construed to imply that
the RKKY-like coupling alone is not enough to account
for the observed interlayer magnetic coupling. In this
section we discuss whether the superexchange coupling is
sufBcient, in addition to the RKKY coupling, to explain
experimental data on the coupling of Fe/Cr multilayered
structures.

A. Matrix elements

At the large distance, the coupling j(q) should be
proportional to y(q) because the details of the local-
moment —conduction-electron interaction do not matter;
i.e., for large R~~ (distance between two impurities A
and B), the only contribution to the indirect coupling
comes from low-energy spin excitations of the Fermi
sea. Due to Fermi factors these occur for q —+ 0 at
k = k~. Thus, for the large R~~ behavior of the inter-
layer magnetic coupling one can write

~
V, i,

~ ~

V*
&,

~

V
~

M~, & ~,& (q) ~

for small q so that jnKK&(q) [see Eq.
(23)] is proportional to y(q). However, for the short-
range behavior (large q), there is no reason to keep this
identification; for large q, the V„A. 's should be chosen to
re6ect the fact that they represent the 8-d mixing interac-
tion whose range is quite short (local) within one unit cell
(the one the impurity occupies). For large q, the choice
~
V, g ( ~

V'
&,

~

= const makes sense, because upon tak-
ing its Fourier transform, it represents the coupling of a
pointlike interaction.

In summary, for small q, one can make the identifica-
tion of the U I, 's with the form factor matrix elements,
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FIG. 11. RKKY-like jaKKv(q) and su-
perexchange coupling Js (q) for Cr(001) in re-
ciprocal space calculated with E& ——0.08 Ry
and A = 0. V is expressed in rydbergs.
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whereas for large q one should take them to be constants
to reproduce a pointlike excitation; of course, in between
one must interpolate. One approximation is to choose the
s and p form factors as constant throughout the whole

q space —far past the region where the true form factor
M„,s „,I, (q) exists for s and p electrons.

B. Coupling in Fe/Cr multilayered structures

With these approximations, and based on the band
structure of bulk paramagnetic Cr, we have calculated
the couplings jRKKY(q, ) and js(q, ) (q, is along the
I'II direction in reciprocal space for the bcc lattice),
[see Eqs. (23) and (24)] with Eh = 0.08 Ry (the cou-
pling calculated &om this value resembles the experi-
mental data2 '2r) as shown in Fig. 11. The twin peaks
in jRKKY(q) reproduce the incommensurate SDW insta-
bility occurring at qsD~ 0.958I'H and 1.042I'H in
Cr. The dip in jRKKY(q) for qi 0.2(2x/a) corre-
sponds to the wave vector across the Fermi surface shown
in Fig. 12.

When we take into account the roughness of interfaces,

where n is a label for the lattice site. In Fig. 13, we show
results on (J,)„(the total coupling) for smooth (p = 0),
irregular (not very rough, p = 1/8), and rough (p = 1/4)
interfaces. One sees that there is a 2 ML rapid oscillation
for smooth interfaces which corresponds to the peak at
qsDw in jRKKY(q). The coupling for rough interfaces
(p = 0.25) is

1(Jt(n)), „=—[Jt(n+ 1) + Jt(n —1) + 2'(n)]

'I I I
I

I

I

I—I

I

I

I

I

J

I

E&=0.08 Ry
dotted line: P=O

dashed line: p=0.225
solid line: p=0.85

the interlayer magnetic coupling Eq. (26) has the follow-
ing form:

(J,(n))„= (1—2p) J,(n) + p [J,(n+1)+ J, (n —1)]

(»)

Q .*.»-
V

IIIII'It II ~ v V V V V V V+

N
5

V

—10

I I I I I I I I I I I I I I I

0 20 40 60 80
z(Mx.)

FIG. 12. The Fermi cross section for Cr(001) (Ref. 43).
Five extremal wave vectors are indicated.

FIG. 13. The total interlayer magnetic coupling (Jz(z))~
of Fe/Cr(001) multilayered structures calculated with Eg =
0.08 Ry, 4 = 0, and p = 0 (dotted line) for smooth inter-
faces and p = 1/8 (dashed line) for slight rough interfaces,
and p = 0.25 for rough interfaces. Here positive and negative
J represent ferromagnetic and antiferromagnetic coupling, re-
spectively.
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This expression attenuates short-period oscillations while

it retains those with longer periods. The 10 ML long-
range oscillation for (Jq(n))&—p 2s (see Fig. 13) corre-
sponds to the long-wavelength oscillation observed in
Fe/Cr multilayered structures2 4 and is related to the
dip at qq 0.2(27r/a) in jRKKY(q) (see Fig. 11).

C. Remark on interfacial roughness

Adding roughness at the interface can have dramatic
effects on the calculated interlayer magnetic coupling.
Wang, Levy, and Fry 6rst introduced the concept of in-
terface roughness in conjuction with interlayer magnetic
coupling when they studied the coupling in Fe/Cr(001)
multilayered structures. They predicted that the rough-
ness of the interface attenuated the rapid oscillations in-
duced by the SDW ordering wave vector. The recent
observations2' of both short- and long-period oscilla-
tions in Fe/Cr/Fe systems prepared to reduce interfa-
cial roughness show that roughness may indeed mask
short-period oscillations. It implies that one effect of in-
terface roughness on the interlayer magnetic coupling is
the attenuation of rapidly oscillating waves, thus making
the longer-period oscillations more apparent. Another
application for which roughness may play an essential
role is the theory of biquadratic coupling proposed by
Slonczewski to explain the preferred 90' alignment of
the magnetizations in adjacent ferromagnetic layers ob-
served in several systems. '

D. Comment on enhancement

The mixing strength V„I, in the Anderson model is a
parameter. In order to calculate the correct strength of
the interlayer magnetic coupling Rom Eqs. (23)—(25) that
can be compared with experimental data, one should in-
clude the enhancement factor of the susceptibility due to
the interactions between conduction electrons. Within
the generalized random phase approximation, Wolff s in-
vestigated the effects of electron-electron interactions on
the spin susceptibility of an electron gas in the para-
magnetic state, and concluded that in an electron gas of
density comparable to that found in nonmagnetic met-
als, the enhancement of the RKKY susceptibility by ex-
change scattering is not particularly large. Typically, one
may expect enhancement factors in the range 1.25—2.0.
However a many-body (exchange) enhancement is really
needed to discuss magnetic metals such as Cr. Its ef-
fect on the susceptibility y(q) has been worked out by
Schwartzman et al. , and can eventually be incorporated
into calculation for jRKKv(q); however, the many-body
effects on jg(q) has not yet been worked out. Callaway
and Chatterjee argued that spin and charge response
functions have the same form of enhancement factors as
in the case of a paramagnetic material. Here jRKKv(q) is
referred to as spin ezcitations and js(q) is referred to as
charge excitations in the two-impurity Anderson model.
Thus, one can expect that the enhancement for the su-
perexchange coupling is the same as for the RKKY cou-
pling. In fact, a countervailing effect is that interfacial
roughness attenuates the strength of the interlayer mag-

netic coupling. Due to lack of more detailed information
on roughness, it is not realistic to make a comparison of
the magnitude of the coupling we predict with experi-
mental results.

E. Oscillatory modes
in Fe/Cr/Fe(001) multilayered structures

For Cr the structure of jRKKv(q, ) contains a dip and
twin peaks, as shown in Fig. 11. The dip comes from the
extremal wave vector qq ——0.2(2vr/a) of I'II with opposite
z components of the velocity on the Fermi surface, and
the twin peaks come from the strong nesting feature of
Cr which gives a SDW wave vector qsDw = 0.958. 27r/a
or G —qsDw = 1.042(2x/a) (G = 4'/a) with the same
sign of the z components of velocities on the Fermi sur-
face. These short- and long-range oscillations have been
found in experiments. 2 4 However, there are other ex-
tremal wave vectors across the Fermi surface with oppo-
site velocities one could indentify in Fig. 12 and which
are not apparent in jRKKY(q, ), e.g. , q2 ——0.8(2m/a) (in-
side H) which corresponds to a 2.5 ML oscillation, and

qs ——0.75(2z /a) (inside I') which corresponds to a 2.7 ML
oscillation. The nesting features for q2 and q3 appear
to be the same as q~. The obvious difference between
them is that q~ is interband contribution, but the ex-
tremal wave vectors q2 and q3 are related to an intr aband
contribution. The intraband contributions may be much
smaller than interband ones for relatively large scanning
wave vector q, because of the atomic form factor matrix
elements, as discussed by Gupta and Sinha. Therefore,
the putative structure due to q2 and q3 in jRKKY might
be lost because of their small contributions.

F. Bias of the interlayer magnetic coupling

In the previous section, we mentioned that from con-
siderations of the completeness of eigenstates of a sys-
tem one concludes that the oscillatory interlayer mag-
netic coupling does not have a bias. However, when we
take a small Eh & 0.08 Ry, the interlayer magnetic cou-
pling Eq. (36) for Fe/Cr is strongly antiferromagnetic
biased, as shown in Fig. 14. The closer the local state
is to the Fermi surface, the larger is the antiferromag-
netic bias. However, when we change the Eg in the free
electron approximation, it does not give any bias of the
total coupling, as shown in Fig. 15. Thus, an interesting
question arises: What are the reasons for the antiferro-
magnetic bias in realistic Fe/Cr/Fe(001) calculations?

Watson and Preeman studied exchange coupling and
conduction electron polarization in metals with and with-
out an exchange enhancement, and showed that the en-
hancement produces a large bias. Giovannini et al. ar-
gued that the exchange interaction between the itinerant
d electrons produces long-range polarization in metals
and large susceptibilities. They considered the exchange
correction to the RKKY potential, and conveyed the im-
pression that the enhancement factor induces a bias. We
have considered the enhancement factor in the Anderson
model and And it does not produce a bias.
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where D(e~) is the density of states at the Fermi level.
The superexchange term js(0) does not have such a sim-

ple limit. For q = 0 it becomes

js(0) = V ) [sz —s„I, —Ei, ]
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z(ML)

I

80

FIG. 14. The total interlayer magnetic coupling (J&(z))~
of Fe/Cr(001) multilayered structures calculated with p =
0.25. The solid line is for Eh, ——0.08 Ry while the dashed
line with the large antiferromagnetic bias is for Eh, —— . y= 0.04 R
(which is relatively close to the Fermi surface).

where the sum is over unoccupied states. The terms in
this sum drop off quickly as e„A, increases; unless the
density of unoccupied states is highLy peaked near to the
Fermi level, it mill be small. For a given number N of
unoccupied orbitals per atom,

~
js(0)

~

is bounded from
above by the quantity

js „=V' X/E„' (39)

One apparent difference between the free electron
gas and realistic bands is that the former is parabolic,
whereas a realistic band structure is not. To clarify this
dea we consider a nonparabolic band E = k +a +

2instead of a parabolic one E = k (in the free electron
gas approximation). When we vary the coefficients a and
b, we still find no bias.

The choice of matrix elements M„,i, „,I, (q) has a-
ready been discussed in the calculation of the interlayer
magnetic coupling. Generally, one takes a complicated
matrix element for a realistic coupling calculation. Could
this be the origin of the bias in the coupling? When we
use constant matrix elements in our Fe/Cr/Fe coupling
calculation we still find an antiferromagnetic bias for rel-
atively small Eh, .

The dominance of antiferromagnetic coupling is a con-
sequence of the size of the average value of the RKKY
coupling [JRKKY(z)] relative to that of the superexchange
coupling [Js(z)]. These, in turn, are related to the rel-
ative sizes of jRKKY(q) and js(q) at q = 0 [f J(z) dz =
j(q = 0)]. Thus one may get a hint about the bias in the

This simple analysis gives us a clue that the structure
of the density of states, with a peak above but near to
the Fermi level c~, is a key factor in getting the antifer-

,0 E.romagnetic bias, because this could increase jp q.
(»)].

To confirm this, we added a Lorentzian-shaped peaeak
to the free electron gas density of states (DOS),

gsF
(s/s —b)' + (40)

where the position of the peak is at e = bc~, and c ad-
justs height of the peak (small c correspond to a large
peak). By fixing the position, e.g. , b = 1.1, and increas-
ing the height of the peak &om c = 0 9 to 0 3, we are able
to increase the antiferromagnetic bias in the coupling, as
shown in Fig. 16(a). For fixed position and height of the

k, , b = 1.1 and c = 0.3 the smaller Eh is cho-
sen the larger is the antiferromagnetic bias, as shown in
Fig. 16(b). This situation reproduces the results we find
from calculations of the interlayer magnetic coupling in
Fe/Cr/Fe(001) multilayered structures by using realistic
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TABLE I. Band parameter for possible metals.

Metal

hcp
Tl
Zr
Ru
Hf
Re
Os

bcc
Cr
Mo
W

fcc
Ir

Rh

a (a.u. )

5.58
6.11
5.11
6.04
5.22
5.17

5.45
5.95
5.98

7.26
7.18

c (a.u. )

8.85
9.73
8.09
9.56
8.42
8.16

D(EF )
(Ry/atom)

8.1
7.9

11.5
6.7

11.0
9.5

9.6
8.1
5.7

12.7
18.7

Probability

High
High
High
High

Medium
High

High
High
High

Medium
Low

J. L. Fry et aL, 3. Appl. Phys. B9, 4780 (1991).

criterion (ii) and the Fe/Cr surface magnetic state with
Et, = 0.08 Ry satisfies criterion (iii).

Table I gives a listing of the elements, lattice structure,
and density of states D(e~) for spacer materials that are
likely to display antiferromagnetic coupling. The col-
umn labeled "probability" is an estimate of how likely
the elements are to satisfy the criteria of the previous
subsection.

VI. DISCUSSION OF RESULTS

We have presented two types of mechanisms which ex-
cite a nominally nonmagnetic spacer layer sandwiched
between magnetic layers to interpret the interlayer mag-
netic coupling in metallic multilayered structures: spin
and virtual charge excitations. Spin excitations give
rise to an RKKY-like coupling [JRKKY(z)], while vir-

tual charge excitations produce superexchange coupling

[Js(z)]. This theoretical model implies that the spin
polarization pattern in the spacer layer could be difer-
ent from that of the interlayer magnetic coupling, a re-
sult which has some experimental support. Another
characteristic of this model is that it predicts that some
metallic multilayered structures can have relatively large
antiferromagnetic biases of the interlayer magnetic cou-

pling in the preasymptotic region, a result which is also
in agreement with some recent experiments. ' ' Thus,
the combination of both couplings gives a more com-
plete understanding of the interlayer magnetic coupling
in metallic multilayered structures.

As a first step, we have shown how the RKKY-like
coupling alone cannot explain interlayer magnetic cou-
pling in Fe/Cr/Fe(001) systems. In this context, we have
calculated the spin polarization in a Cr layer deposited
on an Fe substrate, and find it agrees reasonably well
with experimental data. This spin polarization is picked
up by an Fe overlayer to form an RKKY-like interlayer

magnetic coupling [JRKKY(z)]; this coupling which has a
ferromagnetic bias does not resemble experimental data
which has an antiferromagnetic bias in Fe/Cr/Fe(001).
Then we have demonstrated that the RKKY-like and su-
perexchange couplings together give the antiferromagnet-
ically biased coupling observed in Fe/Cr/Fe(001) systems
[taken together they are equivalent to a conventional
RKKY coupling in the free electron approximation that
is produced by a structureless point contact potential,
i.e. , Eq. (1)]. The JRKKY(z) contains information of the
Fermi surface of the spacer layers, e.g. , the extremal wave
vectors that span the Fermi surface which correspond to
the short- and long-range oscillations. Therefore those
calculations which limit themselves to JRKKY miss the
bias in the coupling, if there is one. In addition those
calculation which do not include the correlations implied
by our use of the Anderson s-d mixing interaction [see
Eq. (17)], will also miss the superexchange contribution
to the interlayer magnetic coupling.

The local levels of the transition-metal ions at the in-
terface are not constants as we have initially assumed.
The mixing interaction leads to a broadening or virtual
bound state description of these levels; this introduces
complex energy levels which we have been taken into ac-
count in our calculations. However, when considering a
sheet of magnetic impurities, Eh (local states) represents
a two-dimensional band of states. The dispersion of these
states should be incorporated in future evaluations of the
coupling by summing over Ep, , we have modeled this case
by considering several values for Ep, and find that this
dispersion in Eh does not alter the principal conclusions
arrived at in this paper.
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APPENDIX: SUSCEPTIBILITY
AND INTERLAYER MAGNETIC COUPLING

In this appendix, we relate the susceptibility function
of a spacer layer with the interlayer magnetic coupling in
metallic multilayered structures.

The susceptibility function of a system is defined by
its linear response to an external magnetic field:

or

rn[r) = f y(r, r )H)r'') dr'

mq: gqq hq
qt

(Al)

(A2)

S~= ) e'~ "S„1

N
(A4)

Here S„ is an impurity spin on a lattice site R„, and N
is the total number of impurities. Then the interaction
energy between the induced magnetization and field, in
the case of a homogeneous system, can be easily written
down as

Eini = ).x~ h~ . (A5)
q

By placing Eq. (A4) in Eq. (A5) we find

E;„,= ) A (q) y(q) ) e'~'( " -') S„S„
(A6)

This contains self-energy corrections (n = n'); but the
coupling energy comes froxn terxns with n g n' and is
written as

E, „p ——) A (q) y(q) ) e' ' " -') S„.S„
ngn'

(A7)

When A(q) is taken as a constant then each mode is
proportional to the susceptibility y(q).

In deriving q-dependent susceptibilities y(q) one usu-
ally models the local-moment —conduction-electron spin

where mq and yqq are the spatial Fourier transforms of
m(r) and y(r, r'), respectively. If the system is homoge-
neous, one has a reduced version, yqq = yqbqq .

If we assume that the perturbation of the conduction
electron gas is produced by magnetic impurities in a host
metal, we can represent it by a field acting on the spin
of the conduction electrons,

h~ = A(q) S~ (AS)

where A(q) represents an interaction between the spins
of the local and conduction electrons as discussed in Sec.
II, and

interaction by a Zeeman Hamiltonian

Hzeeman = ) si hi (A8)

where s; is a spin density of the conduction electrons in
a host, and h; is the magnetic field associated with the
magnetic impurities. Then the interaction energy can be
expressed as

I„,x, „,x, =( iko
I ) s;.h;

I
n2k'o. ')

=) (nike Is; h; In, k'o') .

If one takes an extended source, e.g. , a one-mode source

(A9)

h =h e'q"i — q

the interaction energy, Eq. (A9), becomes

I„,x, „,x = hz ) (niko
I

s;e'~ "I'n2k'cr')

= h~ . (o I
s

I
o')(nik

I

e' '
I

n2k')

(A10)

(A11)

The matrix element (nik
I

e'x'
I

n2k') in the above
equation is defined as M„'

& „&,(q) in Sec. II, and then
one obtains the relationship

- M.* x .,s (q). (A12)

Equation (A12) gives a physical reason for making the
ansatz V„,x, V„' &, ——V2 M„'

& „&,(q) we used in our cal-
culations; see Secs. IIC and IV A. To mimic local inter-
actions this can only make sense if one does a sum over

q, because M„,s „,x, i (q) is definitively nonlocal.
If one takes a local source, e.g. ,

h; = hb(r; —R) (A13)

which means that hq ——he'q'R for all q, the interaction
energy, Eq. (A9), reduces to

) (niko'
I
s;b(r; —R) I

n2k'o')

= h (O'
I

s
I

tr')(nxk
I
b(r —R) I

n2k')

(A14)
Generally, the state

I
nk) is a Bloch wave and has a form

I nk) = e'"' ug(r) (A15)
where ux, (r) is a periodic function. Then the matrix ele-
ments in Eq. (A14) reduce to

(nik
I
b(r —R) I

n2k') = e' " " '
ux, (R)ux, (R)

i(xr.
' —k) R u*(0)u (0)

(A16)
where R is supposed to be a lattice site. Then for a local
source we have

(0) I'
I
u„.(0) I' . (A17)

As
I

ux, (0) I
is a slowly varying function of k, one can

take
I I,), ,),~ I2 = const, which corresponds to the

ansatz
I V„,x, I2

I V, x, I2= const we made for large q; see
Secs. IIC and IVA.
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