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Magnetic phase diagram of the ferromagnetically stacked triangular XY
antiferromagnet: A finite-size scaling study
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Histogram Monte Carlo simulation results are presented for the magnetic-6eld —temperature phase
diagram of the XY model on a stacked triangular lattice with antiferromagnetic intraplane and ferro-
magnetic interplane interactions. Finite-size scaling results at the various transition boundaries are
consistent with expectations based on symmetry arguments. Although a molecular-6eld treatment
of the Hamiltonian fails to reproduce the correct structure for the phase diagram, it is demonstrated
that a phenomenological Landau-type free-energy model contains all the essential features. These
results serve to complement and extend our earlier work [Phys. Rev. B 48, 3840 (1993)j.

I. INTRODUCTION

Although finite-size scaling studies of critical phenom-
ena based on Monte Carlo histogram (MCH) data~ for
unfrustrated systems have proven highly effective in the
estimation of critical exponents2 and in the determi-
nation of weakly first-order transitions, corresponding
studies of possibly more interesting frustrated lattices
have proven more demanding. The utility of this ap-
proach in examining the critical properties of the va-
riety of phase transitions which occur under the influ-
ence of an applied magnetic Geld in the ferromagnetically
stacked triangular XY antiferromagnet is demonstrated
here. The Hamiltonian is written as

'8 =
J~~ ) S, S~+ J~) Sb. St —II) S;, (1)

(ij) (kl)

where the spins lie in the basal plane, J~~ & 0 is the fer-
romagnetic interplane interaction, J~ ) 0 indicates the
antiferromagnetic coupling which is &ustrated for the tri-
angular geometry, (i, j) and (k, t) represent near-neighbor
sums along the hexagonal c axis and in the basal plane,
respectively, and the field is applied in the basal-plane
direction z. The general structure of the phase diagram
is shown in Fig. 1 of our earlier work (hereafter referred
to as I). Phases are labeled by the nonzero components
of the (complex) spin polarization vector S = S + iSg.
The Neel transition at zero Geld is to the well-known
helically polarized 120' spin structure (S = Ss„). Indi-
cated in the Ggure are the elliptically polarized phase 7,
linear phases 6 and 9, as well as the paramagnetic state
1. Phase 6 is of particular interest as it has the symme-
try of the three-state Potts model and should exhibit a
Grst-order transition to the paramagnetic state. This was
confirmed by extensive finite-size scaling of the extrema
in various thermodynamic functions -which occur at the
1-6 phase boundary for magnetic Geld strengths H = 0.7
and H = 1.5. Data for H = 0.7 can be found in I. In

addition to presenting the corresponding MCH data at
H = 1.5, finite-size scaling results are given here for the
other three transition lines.

It is of interest to note that Lee et at. examined the
XY antiferromagnet on a triangular lattice (unstacked)
in an applied magnetic field. At H=O, the transition
shows Kosterlitz-Thouless (KT) behavior but the field
breaks rotational symmetry and transitions involving
true long-range spin order can occur. The resulting phase
diagram in this two-dimensional (2D) case is very similar
to that of the present model. Using traditional finite-size
scaling of their MC data, these authors reported that the
1-6 transition belongs to the 2D three-state Potts univer-
sality class, but that the other transition lines exhibited
nonuniversal critical behavior; different exponents were
found for different points on a transition line. We find
that this latter conclusion is somewhat surprising but
may be due to KT-like excitations in some cases. The
possibility always exists that the MC data were not suK-
ciently accurate to distinguish among the variety of pos-
sibilities.

Before discussing our own MCH data for the 3D model,
it is useful to examine the results of a mean-field analysis
based on the Landau theory of phase transitions.

II. MEAN-FIELD THEORY

Mean-field analyses of magnetic phase diagrams based
on Landau-type f'ree energies for frustrated spin systems
have proven to be quite successful in reproducing the es-
sential features of both MC and experimental results. (A
notable exception is the XY model on a stacked triangu-
lar lattice, with both J~~, J~ ) 0, in the quasi-2D case
where J~~ (( J&.) It was previously demonstrated for the
2D version of the present model that a molecular-Geld
treatment of the Hamiltonian (1) yields a phase diagram
with phase 6 absent. Identical results are expected for
the 3D model under consideration here. It is shown
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where Aq = a(T —T~) and Ao ——a(T —To). This ex-
pression is identical to that used in our analysis of the
magnetic phase diagram for the case of antiferromagnetic
interplane coupling except for the additional term B6.
As emphasized in I, this term cubic in S occurs since
the ordering wave vector satisfies the relation 3Q = G,
where G is a reciprocal lattice vector. The cubic term
is responsible for the stability of the three-state Potts
phase 6. It is important to note that from symmetry ar-
guments alone, each of the fourth-order coefBcients B, in

(3) is independent since each corresponding term is an
independent invariant with respect to the relevant sym-
metry operations.

A free energy identical in structure to (3) may also be
derived from a molecular-Beld treatment of the Hamilto-
nian (1). In this case, all the fourth-order coefficients
are the same and given by B; = bT, where for classical
spins 6 =

5 . Since the Landau expansion is applica-
ble only in regions where S is small, the approximation
B; bTN is usually made. In addition, the molecular-
field treatment yields a = 3, as well as

(c) Tq = 2(—
J~) + 3J~)/a, To ———2(J~( + 3J~)/a. (4)
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FIG. 1. Mean-field results for the phase diagram, where (a)
is based on a free energy derived from molecular-6eld theory,
(b) is from the phenomenological Landau free energy (3) with
all parameters as in (a) except B4 ——1, and (c) is from the
same model as (b) but with B4 ——0.1.

below, however, that the phenomenological Landau ap-
proach can capture all of the essential features of the
phase diagram. Such a treatment is also useful in under-
standing analytically the interactions which are respon-
sible for stabilizing each phase. In addition, an exami-
nation of such a &ee energy (which has the same struc-
ture as an appropriate Landau-Ginzburg-Wilson Hamil-
tonian), together with symmetry arguments, is useful in
determining expectations regarding the critical behavior
of the various transition lines.

Following the method outlined in Ref. 12, the free en-
ergy is expanded to fourth order in the spin density

s(r) = in+ Se*~' + S*e (2)

where xn is the uniform component induced by the mag-
netic field and Q is the wave vector. The result can be
written as

F = AqS + 2Aom + BiS + Bq j S ~ S ~—
+4Bsm + 2B4

~

m. S
~

+Bsm S
+Bs[(m S)(S . S) + c.c.j
+. - - —m-H )

Thus, the exchange constants are the only parameters
which appear in this theory.

Figure 1(a) shows the resulting phase diagram from
an analysis of the &ee energy &om molecular-Geld the-
ory expanded to sixth order in s using J~I ———1, J~ ——1
and H~~x. It is seen to have the same structure as the
mean-Beld result in Ref. 11. The three-state Potts phase
6 does not appear. An analysis of the free energy reveals
that this state is somewhat accidentally excluded. This
conclusion is demonstrated by results from the more gen-
eral phenomenological model. Analysis was made using
the same parameter values as in the molecular-Beld the-
ory, except that one of the fourth-order coeKcients B,
was made to be different from bT. Results for the cases
84 = 1 and 0.1 are shown in Figs. 1(b) and 1(c), re-
spectively. Phase 6 now appears. The correct structure
of the true phase diagram (Fig. 1 of I) is reproduced by
the smaller value of B4. Similar results occur if only B2
or B3 is set to be diferent from the other B;. It seems
that some efkcts of critical Huctuations not accounted
for within mean-field theory can be mimicked (by renor-
malization of the coefficients) in the more general phe-
nomenological model in this case.

The stability of each state in the phase diagram can
be understood by examining the terms in (3) with the
assumption B, ) 0. At zero applied field (m = 0), the
B2 term is minimized with S S = 0. This is achieved
by a helical polarization S = Sg„. At low temperatures
and low values of the applied field, the B4 term, which
favors a configuration SJ rn, distorts the helix into an
ellipse (phase 7), S g Ss„. At higher temperatures and
low field values, the B6-term dominates and favors phase
6 with a configuration S~~m. The high-field phase 9 is a
result of both B4- and B6-type interactions which favor
a linear polarization.

This analysis allows some predictions to be made re-
garding the nature of the various phase transition lines.
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The 1-6 line should be first order due to the relevance of
the cubic term Bs, as confirmed in I. (We note, however,
that mean-Geld theory would also suggest the same be-
havior in 2D. In fact, this transition belongs to the 2D
three-state Potts universality class. ) A continuous 1-9
transition is the result of the mean-Geld analysis despite
the nonzero value of the Potts variable S . A first-order
transition does not occur in this case because, as dis-
cussed in I, the B6 term effectively disappears at the
paramagnetic boundary line at some power of S greater
than 3. It is not clear what the effects of critical fluctua-
tions will be regarding this scenario. If the transition is
continuous, it should belong to the Xt universality class
since both S and S „are involved. The remaining two
transition lines, 6-7 and 6-9, should both belong to the
Ising universality class as only a single component of S is
involved in each case. A purpose of the finite-size scaling
analysis described below is to test these predictions.
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III. FINITE-SIZE SCALING

The analysis of MC-generated histograms used here
to determine finite-size scaling behavior is described in
I. In most cases, scaling was performed on the ex-
trema of a variety of thermodynamic functions, includ-

ing the specific heat C, susceptibility y, energy cumu-
lant U(T) = 1 —s(E )/(E ), and the logarithmic
derivative of the order parameter M, which is equivalent
to V(T) = (ME)/(M) —(E). The energy cumulant
exhibits a minimum near T~, which achieves the value
U* = 3 in the limit I -+ oo for a continuous transition,
whereas U* ( 3 is expected in the case of a first-order
transition. The thermodynamic quantities should display
volume-dependent scaling, L, in the case of a first-order
transition (except for M), or scaling as L*, where z is
a ratio of critical exponents, in the case of a continuous
transition. Finite-size scaling results for the order param-
eter, evaluated at the estimated critical temperature, are
presented only for the 1-9 transition. For reasons un-
known to us, it appeared that the values of I used here
were to small to obtain reliable results for this quantity
in the other cases where a continuous transition was ex-
pected. Partly due to the relatively large fluctuations in
the MGH data, a general feature of &ustrated systems,
the approach taken in this work is to simply determine if
the results are consistent with the expectations and pos-
sibilities outlined above: Scaling was performed with as-
sumed exponent values. This method of presenting data
was also used in I, as well as in Refs. 5 and 6, and is
useful in cases where the true critical behavior may be
revealed only at larger lattice sizes. The alternate ap-
proach of presenting data in the form of log-log plots is
more appropriate in cases where very reliable statistics
are available and finite-size correction terms to simple I
behavior should be negligible.

Simulations were performed on the Hamiltonian (1)
with J~)

———1 and J~ ——1 using periodic boundary condi-
tions on I x I x I lattices. In most cases, a random initial
spin configuration was used and thermodynamic aver-
ages were estimated after discarding the first 2 x 10 MC
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FIG. 2. Finite-size scaling of extrema for the 1-6 transition
at H = 1.5 near T 1.522 with the assumption of volume
dependence. (a) shows the energy cumulant, where values for
I = 12 and 15 have been omitted to allow for an expanded
scale. All results for L=12—33 are shown in (b) and (c) for
the specific heat, susceptibihty, and logarithmic derivative of
the order parameter.
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steps for thermalization. In other cases, the final, well-

thermalized, configuration of a previous run was used for
the initial spin directions. Further details are given in the
following sections which describe the results of finite-size
scaling at each phase-boundary line.

A. H=1.5: 1-6 transition

Results of the histogram analysis at H = 1.5 for the
1-6 phase boundary are also discussed briefly in I. Sim-
ulations were performed on lattices L = 12—33 with 1—
2.6 x 106 MC steps used for thermal averaging. The in-
creased number of MC steps for larger lattices was used
in an effort to account for an expected increase in the
correlation time. Histograms were made at T = 1.52 and
T = 1.523 and the critical temperature was estimated
to be T, = 1.522(2) from the finite-size dependence of
the various thermodynamic extrema. The results shown
in Fig. 2 demonstrate that the expected volume depen-
dence of a first-order transition may not be evident at
smaller values of L. This aspect of MC simulations has
only recently been emphasized. ' The extrapolated value
of the energy cumulant [Fig. 2(a)] is close to the value
expected of a continuous transition, 3, indicating that it
is only weakly first order. This conclusion is corroborated
by the estimated latent heat given in I.

MC histograms were made for L=12—30 at several tern-
peratures between T = 1.40 and T = 1.45 using 1—3x10
steps for averaging. The transition temperature was es-
timated to be T, = 1.425(4). Much difficulty was expe-
rienced in locating extrema in the thermodynamic quan-
tities for L = 12 and these data were not used in the
finite-size scaling analysis. Several runs using the larger
lattices exhibited widely varying results, indicating that
critical fiuctuations are significant at this transition (pos-
sibly due to the proximity of the paramagnetic state).
For example, it was not possible to obtain reliable re-
sults for the order parameter. Figure 3(a) shows a log-
arithmic plot of the energy cumulant. The extrapolated
value U* = 0.666665(4) suggests that the transition is
indeed continuous. The slope —2.9(1) is close to —3, as
expected for continuous transitions if the exponent ra-
tio n/v is small, as in the present case. Finite-size
scaling of the other thermodynamic quantities shown in
Fig. 3 was made with the assumption of Ising critical
exponents. As in the case of Fig. 2, these results sug-
gest that the true critical behavior is revealed only at
larger lattice sizes (especially the data for V „).Scaling
with the assumption of volume dependence gave results
which could not be Bt to a straight line.

C. H=2.7: 6-9 transition

B. H=0.7: 6-7 transition

The 6-7 boundary is expected to be a line of continu-
ous transitions belonging to the Ising universality class.

The anticipated diKculty in obtaining reliable esti-
mates for the location of extrema in the thermodynamic
quantities as a function of temperature at the 6-9 transi-
tion was realized. This was due to the near zero slope of
this boundary line in the H-T plane so that large fluctu-
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FIG. 3. Finite-size scaling of extrema for
the 6-7 transition at 0 = 0.7 near T 1.425
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data from lattices L = 15—30.
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that the scale of Fig. 4(a) for the specific heat is ap-
proximately the same as used in Fig. 3(b) and reflects
the very small slope of the fitted line. Our MCH results
for the order parameter were again found not to be re-
liable for this transition. The extrapolated value of the
energy cumulant, U* = 0.6666668(8), clearly indicates
that the transition is continuous. As in the previous case,
the slope —2.99(5) of Fig. 4(b) is consistent with a small
value for n/v

D. H=4.0: 1-9 transition

Although the 1-9 transition is expected to belong to
the XY universality class within mean-Beld theory, the
not unlikely possibility exists that the cubic term in the
free energy becomes relevant when critical fluctuations
are included. Histogram data were taken at T = 1.42 and
T = 1.44 on lattice sizes L = 12—33 with 1—3x10 steps
for averaging. Volume-dependent scaling was not ob-
served in the extrema of thermodynamic functions. Fur-
ther support for the continuous nature of this transition
comes from the extrapolated value U* = 0.6666664(8),
where the energy-cumulant scaling exponent was found
to be —2.8(2). Finite-size scaling consistent with XY
universality is shown in Fig. 5, including the order pa-
rameter evaluated at the estimated critical temperature
T, = 1.423(4).

IV. CONCLUSIONS

two results of importance. The first is that although
molecular-Beld theory fails, a more general phenomeno-
logical model is capable of capturing all the essential fea-
tures. This mean-field model also allows specific predic-
tions to be made regarding the expected critical behav-
ior. Second, the histogram Monte Carlo method has been
demonstrated to be useful in verifying this anticipated
criticality through finite-size scaling of thermodynamic
functions. Relatively large fluctuations observed in the
MC data are attributed to the frustration inherent in the
triangular geometry. These results serve to complement
and extend. our earlier work, as well as that of Lee et al.
who studied the corresponding two-dimensional system.
Although these authors suggest nonuniversal critical be-
havior on all transition lines, except the 1-6 boundary, in
the 2D case, our analysis suggests that only the 1-9 tran-
sition should exhibit XY symmetry and the consequent
KT-like excitations associated with such nonuniversality.
It is of interest to perform histogram MC simulations on
the 2D system to examine these issues further. As men-
tioned in I, a good experimental candidate for the present
3D model is La2Coi 7.
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