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We present an extensive investigation of the normal modes of vibration of a prototype hierarchical
continuous system, consisting of a Cantor-like sequence of piezoelectric and resin elements. From a
detailed analysis of the density of states, displacement profiles, and eigenvalue-spacing distributions,
evidence is found for the existence of multiple fracton and phonon regimes. The role of resonant
modes and the e6'ect of disorder, which may be of primary importance in real systems, are also
discussed in detail.

I. INTRODUCTION

The dynamical behavior of self-similar and hierarchi-
cal structures has been the subject of extensive study
in the last decade, as these can be rather handy models
for pointing out the relevant properties of systems lack-
ing translational invariance. Investigations were further
expanded on model &actal structures once it was recog-
nized that self-similarity is much more common in nature
than previously believed.

An interesting question concerns the vibrational prop-
erties of these structures. Work on the spatial behavior
and the &equency spectrum of localized modes, usually
called fractons, ~' show a power law behaviour in the
density of states (DOS). Moreover, strictly self-similar
(deterministic) fractals and hierarchical models exhibit
some features somewhere in between those of transla-
tionally invariant systems and of disordered systems; e.g. ,
they possess eigenmodes that are neither extended in the
usual sense nor exponentially localized, thus giving rise
to anomalous transport properties.

Despite the existing results, a more detailed picture of
these systems is desirable. Experimental investigations
on silica aerogels, which have statistically self-similar
structure, have been performed using various comple-
mentary scattering techniques, showing evidence for the
power law behavior of the low &equency DOS, and for
the existence of localized modes. However, with such
techniques the localization of modes is only indirectly
deduced &om the scaling of the DOS.

In order to directly observe the vibrational spectrum of
self-similar systems, we have constructed layered macro-
scopic heterostructures, based on piezoelectric and poly-
meric materials (composites), with a geometry inspired
by that of a Cantor set. We have measured the vibra-
tional frequency spectrum and displacement profiles in

the range 10 kHz —5 MHz, and compared the results
with numerical predictions and with existing theories on
self-similar structures. Our main findings were summa-
rized in a previous work. Our observations confirmed
the anomalous behavior of the density of states, and the
existence of localized states, whereas the self-similarity of
mode patterns was directly observed by means of a laser
probing technique.

The purpose of the present paper is twofold. On the
one hand, we shall discuss more extensively some aspects
of the theoretical model, with special emphasis on the
continuous character of the medium, while on the other
hand we shall present some new insights and conclusions
obtained &om a comparison of the model, the numerical
simulations, and the experimental results. We shall see
that by considering a continuous medium the model leads
to novel results not shared by the more common discrete
or lattice models, as for instance the presence (due to
higher harmonics) of multiple regions with anomalous
DOS. These results are not only interesting on their
own, in connection with the problem of propagation and
localization of classical waves in random media, but they
may also be relevant to electronic transport problems.

In Sec. II we present a short introductory overview of
the scaling concepts generally useful for describing &ac-
tons. In Sec. III we introduce our model structure and
discuss the general behavior of the &equency spectrum
for this continuous hierarchical system on a theoretical
basis. This turns out to be a rather complex issue, in
which both geometry and coupling between the diferent
media play a crucial role. Section IV describes the nu-
merical techniques used for computing eigen&equencies
and eigenmodes of our structure. We discuss the prop-
erties of localization and self-similarity, and compare re-
sults with the findings of the previous section. With the
help of computer simulations we also analyze the eKect of
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geometrical disorder. Finally, in Sec. V, we discuss our
conclusions and some general implications of our results.

II. PROPERTIES OF FRACTONS

and

f (r/t) (r/I) when I (( r,

g(R/t) (R/t) when / )) R.

Thus the characteristic exponent o. also determines the
properties of the system in the homogeneous regime as a
function of the crossover length.

Harmonic excitations of &actals have been widely in-
vestigated during the past few years, both theoretically
and experimentally. ' They have been shown to exhibit
essentially localized states, termed &actons. 2 It is as-
sumed that the &equency ~ of &actons behaves as

(2)

where L is a characteristic length of the excitations, and
d is the corresponding scaling exponent (with the minus
sign for later convenience). An implication of Eq. (2) is
that the modes become those of the normal regime when
~ falls outside the interval [u;„r, &u,„~], with u; f N p
given by

—d
co~~f oc R )

d~
sup OC

and in this case the characteristic length L assumes the
usual meaning of a wavelength. Harmonic excitations
can be mathematically related to a random walk on the
structure, and this allows us to express d as a function
of the random walk dimension d~. '

As a direct consequence of Eq. (2) and of the self-
similarity of the structures, it can be shown that the
DOS can a,iso be expressed as a power law:

Scale invariance of fractal structures implies the ab-
sence of any characteristic length. It is therefore as-
sumed that on a &actal all the physical quantities behave
as powers of the relevant length scale for the considered
quantity:

Q(t) =1

Actually, real systems are fractal only within a certain
range of lengths. The bounds of this range, say r and R,
are therefore the lengths at which the physical properties
of the system cross over to a non&actal regime. Since r
and R are now the only characteristic lengths, they will

appear in the expression of Q through their ratio to t:

Q(l) = t f(l/r) g(l, /R)

In the fractal regime f and g are slowly varying functions
of L, so that the power term becomes the leading one.
On the other hand, when L lies outside these bounds, the
properties of the system become weakly dependent on L,

Q(t) =const, implying

g((d) Cd

d is called spectral dimension, and can be less than or
equal to the Euclidean dimension. This dimension d has
also been shown to be related to d and the &actal di-
mension D of the structure through the expression2

—
~

D
d

Actually the density of states is a highly singular func-
tion of &equency and d only describes its smooth behav-
ior, and is therefore a useful approximation for comput-
ing integral quantities such as specific heat and thermal
conductivity. 2 Equation (4) has been verified by exper-
iments on solids that are thought to possess a &actal
structure, 4 and by numerical simulations on both ran-
dom and deterministic structures, but the values found
for d do not always satisfy Eq. (5) which seems to work
only for relatively simple models.

Investigations of the spatial behavior of .modes have
not yet yielded a coherent picture of their properties.
Experimental and numerical work has confirmed that
d actually controls the scaling of the crossover &equen-
cies [Eq. (3)] and in this respect I can be thought of
as a sort of correlation length for &actons. But its def-
inition [Eq. (2)] in the fractal regime is far &om clear.
Numerical simulations have shown that &actons usually
exhibit highly irregular shapes, and procedures aimed at
extracting their significant parameters must be carefully
defined, in order to avoid contradictory results. A typi-
cal example concerns their localization properties. It has
been suggested that &actons are superlocalized, i.e., that
their decay is faster than exponential. Much theoretical
work has been done in order to clarify this point, but
results are still controversial (see, e.g. , Refs. 8—10), de-
pending on the way computations have been performed.

The natural interpretation of L as a localization
length, suggested since its introduction, has been con-
firmed by numerical work, but at the same time L has
been shown to be a highly Buctuating quantity, being
therefore meaningful only in a statistical sense and not
for individual &actons. Indeed it has been proposed
that, due to the peculiarity of &actals, L represents at
the same time three fundamental lengths typical of the
dynamics of &actons, namely the localization length,
the scattering length, and the dominant wavelength, but
this hypothesis is still the subject of much discussion.

Studies on deterministic &actals have shown a richer
spectrum of modes. In particular, aside &om localized
modes, a family of hierarchicaL modes also exist. These
are extended modes supported by a Cantor set spectrum,
which possess a whole hierarchy of localization lengths
(related to the fact that they are expressed by means of
families of polynomials). Similar spectra have also been
found in hierarchical systems, with modes having pow-
erlike autocorrelation functions, sometimes called critical
modes. This emphasizes some common features in the
dynamics of self-similar systems (irrespective of the way
in which this self-similarity is realized, in number or in
strength of the interactions).
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III. MODEL AND DOS

A. The model

The one-dimensional model structure is based on the
construction of a triadic Cantor set. By alternating ele-
ments of two different media, A and B, the sequence:

ABA
ABA BBBABA

ABA BBBABA BBBBBBBBBABA BBBABA

can be constructed. A self-similar structure is then gener-
ated, with lower and upper crossover lengths determined
by the size of the smallest elements and of the whole
structure, respectively (for a sketch of the sample see
Fig. 1 of Ref. 5). In the rest of the article we shall be
concerned with scalar bulk excitations of this structure,
propagating perpendicularly to the interfaces. It might
seem natural to choose the same size, a and b, for the
smallest elements of both media. However, as our aim is
the study of the vibrational properties of the structure,
it is much better to fix a and b in such a way that the
two kinds of elements, when taken separately, resonate at
the same characteristic &equency, ~0. Denoting v and
vs the (constant) sound velocity in the respective media,
this choice sets the value of the ratio of the smallest sizes
to

consecutive elements of length 6, where k is an integer
that ranges from 1 to N —1. Such sequences possess Mo

as one of their higher harmonics. Before proceeding, it is
useful to notice that the whole structure may be regarded
as a periodic sequence of A and B elements, where a suit-
able number of A elements have been substituted by B
elements that play the role of "defects" in an otherwise
regular lattice. This point of view makes it easier to de-
rive an analytical expression for the spectral exponent of
the system in the limit of high acoustic mismatch, and
we shall see that it will allow for a natural interpretation
of the different spectral regions.

In this model the coupled oscillators are expected to
give rise to n„exte nded modes (phonons) resulting from
the splitting of the degenerate starting frequencies, ~ =
0 and ~ = ~o. Since the total number of elementary
resonators in the system is n = 3N, we expect to have

ny =n —np=3 —2 +1
"impurity" modes, which actually are the fractons of our
model. These arise from modes belonging to sequences
composed of multiple B's. In an Nth generation set,
there are 2 ~"+ ~ sequences composed of 3~ consecutive
B's, with 3"—1 modes of frequency lower than up. Thus
the total number of these modes is

N —1

) 2N (@+1) (3k 1—
) 3N 2N+1 +

I =z

which is, as expected, equal to ny.
At this stage, the system has therefore two distinct

kinds of spectra of relative weights
a v

b vg
(6)

A different choice of these parameters has the effect of
introducing more than one characteristic frequency in
the system. This fact, besides making things more com-
plex, can also suppress evidence of self-similarity in the
spectrum.

Another important factor is the acoustic mismatch be-
tween the two media. It is clear that in the limiting
case of two media with the same acoustic characteris-
tics the whole structure becomes homogeneous, with ex-
tended states and constant DOS. In the opposite case of
complete decoupling, each element vibrates on its own,
giving rise to a set of trivially localized degenerate modes
at uo.

Wf = 1 — ~(2 + —1),

and we see that in the limit N ~ oo the phonon spectrum
has vanishing weight.

Having determined the total number of &acton and
phonon states, let us now proceed to see how they are
distributed in the frequency domain (Fig. 1). Imposing
the condition expressed by Eq. (6), the periodic system
without "defects" would present only one phononic gap

B. Main properties of the frequency spectrum

In order to derive the density of states and the spectral
dimension, let us consider our model at a given genera-
tion N. It is made by

2~+~
p

coupled resonators having coo as a common eigen&e-
quency, constituted by alternating homogeneous se-
quences of type A or B. Sequences of type A are made
of elements of length a and therefore resonate at uo and
higher harmonics. Sequences of type B are made of 3"

N 2

N I

CD

C3

Frequency

FIG. 1. Schematic integrated DOS showing the relevant
frequencies ~L, , uz, urz, ufo (see text).
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at the center of the spectrum, with band edges given by

4Jp
col ——uo ——arccos M,

7r

o
~2 ———arccos M,

7r

where

(7)

z —zb

z~ + zb

with z; = p;e; the elastic impedance of the medium, and
p; its density (i = a, b). Fracton modes are mainly dis-
tributed in this gap but 2n„of these fall in the phonon
bands. We shaB call them resonances. Their number can
be approximately evaluated and is a function of M and
N.

For the more interesting case of a large mismatching
(z /zs « 1), Eqs. (7) and (8) become (see Appendix A):

max((di, (dI, )

(1 —a)
max(cx, 3 ~)

In fact only at finite generations is d different from unity
unless o. = 0. If evaluated using the same physical pa-
rameters for A and B as those used in the experiment5

(N = 4, z 2 x 10s kg/m s, zs 23 x 10s kg/m s, that
is a 0.19), the above expression yields d 0.6 which

is in good agreement with numerical and experimental
findings (see Sec. IV below, and Ref. 5).

For N large enough we can retain only the largest terms,
obtaining

(&—~)+(2i&)
+(2i3)d=

max(cx, 3 ~
)

4) y 0.'(dO
~

ld2 (1 —CK)idp,

with

(9)
(10)

IV. NUMERICAL RESULTS

A. Computational methods

We can thus distinguish three zones in the spectrum be-
low ~p (see Fig. 1). Letting uL, be the lowest nonzero
frequency allowed for a system of a particular size, we

have

and

n~/2+ n, modes for ~L, & ~ & ~i,
ng ——nf —2n„modes for u)g

n„/2 + n, = Ni modes for ~2

The total number of modes having frequency lower than
~2 is N2 Nq + n~, and assuming a power law behavior
for the density of states in all these three ranges, the
value of the spectral exponent in the fracton region is

given by

and the number of resonating fractons is (see Appendix
B)

n„= 3n (3"-' —2~-') .

The same number of &actons have &equencies between
and uo, while the number of fractons ng in the

phononic gap is

We set up suitable numerical procedures which yield
not only the eigenfrequencies but also the displacement
patterns of modes. We made use of two equivalent tech-
niques. The first technique is the most common and is
based on the transmission and reBection coefBcients at
each interface between different media and allows us to
obtain the transmittivity T of the system as a function of
frequency u. For waves propagating along the direction
perpendicular to the interfaces, the calculation requires
imposing the boundary condition relating the two incom-
ing and outgoing waves at each interface. One can, in
principle, write down 2 + equations in 2 + unknown
amplitudes, but a much simpler approach consists of set-
ting to zero the amplitude of the wave entering the last
interface from outside and treating the outgoing one as
given datum. Thus one must recursively solve a sequence
of 2 + independent equations:

u+ =M u++N u

u +, ——Pu++Qu

with m = 1, 2, ..., 2 +l —2 the interface label, u+ the
amplitudes of the outgoing and incoming waves at the
corresponding interface, and the coefficients M, N, P, Q
are functions of parameters of the medium, including
reBection coeKcients, lengths, etc. The transmittivity
function of the system is equal to the square of the ratio
between the last outgoing wave and the first incoming
one:

2

T(~) =
I

where max denotes the highest of the values in parenthe-
sis and depends on the generation and on the parameters
of the system. According to the above expression:

3 (] —o) (3
—' —2~—') + 2 —]/2

go, (8N —i 2N —i) + 2N 1/2

and

This method was applied to compute the integrated
density of states and the displacement patterns of the
modes.

The second technique is derived from dynamical trans-
fer matrix techniques used in linear system theory. For
each sequence of elements, one builds a matrix of the
form
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cos(y d )
y sin(";";l )

g
—uz; sin(k;d;) cos(k;d, ) )

'

where i = a, 6; k; is the wave number; z; is the acoustic
impedance and d; the length of each sequence. This ma-
trix operates on the two-component vector u; = (u;, r;),
where u; and w, are the values of wave amplitude and
stress at one side of the ith element, yielding as output
the value of u; at the other side. This value is the input
value for the matrix S;+q, and so on. Thus, the product
of the matrices for the sequences A and B in the correct
order yields the value of u at one end of the system as a
function of its value at the other end. One can choose the
desired initial conditions as a starting value for u and ver-

ify for which value of u the correct boundary conditions
are obtained. This technique is not substantially difI'erent

&om the first one, but allows a more direct computation
of the wave number Q of the infinite periodic structure
having the system as unitary cell. With S the matrix for
a cell of this kind of length L, it can be shown that

cos(QL) = —Tr(S),
1

2

where Tr is the trace operator, and therefore the al-
lowed frequencies must meet the condition

~
Tr(S) ~( 2.

The knowledge of such dispersion curves is useful in
identifying localized states, which correspond to the Hat

branches.

B. Frequency spectra

Figure 2 shows a log-log plot of cumulated DOS for the
second to fifth generation of our Cantor-like structure.
It has been computed using the dynamical matrix tech-
nique, with the same parameters for A and B as those
used in the experiment, s that is z 2 x 10s kg/m s,
v = 1700 m/s, a 0.45 mm, and zs 23x10s kg/m s,
vb = 3000 m/s, b = 0.8 mm. Each plot has been obtained
&om the dispersion curve of an infinitely replicated Can-
tor unit cell. We have associated a single state of the sin-

gle isolated Cantor cell to each band of the infinite struc-

ture (for this reason each state in the graph is represented
by a segment of a curve instead of a point). For compari-
son, we also show the cumulated DOS of a periodic struc-
ture, made by alternating 46 A and 45 B layers with the
same parameters. As expected, it can be seen that there
is a change in the slope of the curve in the &equency range
corresponding to the gap interval of the periodic struc-
ture, delimited by the frequencies id' /2z = fq 330 kHz
and urz/2z = f2 1600 kHz. This is the range in which
only &acton modes are expected. For the fourth gen-
eration, a best fit yields d = 0.63 as spectral exponent
within this range, while in the ranges corresponding to
the bands of the periodic structure the slope is always
very close to one. The higher the generation, the more
states one finds in the &acton range. They cluster into
quasidegenerate groups, corresponding to modes mainly
localized in portions of the structure of similar geometry,
with the exception of those isolated states not belonging
to the previous generations.

Owing to the continuity of the media, there is no up-
per &equency limit as in discrete systems; on the con-
trary, the &equency spectrum exhibits bands of modes
at high frequencies which have similar characteristics to
the bands at low frequency. For example, with fp
idp/2m = 1875 kHz the resonance frequency of the single
basic element, the DOS between f = fp and f = 2fp is
the same as between f = 0 and f = fp, with the fracton
gap starting at f = fp + fq and ending at f = fp + f2,
and so on. This remarkable feature of continuous sys-
tems shows that there can exist multiple crossovers from
localized to extended states whenever the continuum ap-
proximation holds. The possible consequences would be
worth investigating. Indeed, the same behavior can be
expected to hold for electrons in suitable heterostruc-
tures, with consequences for their conductance and other
relevent properties. Another important feature of these
kinds of systems is that, as discussed in the previous sec-
tion, many &acton modes fall in the bands of extended
modes. These resonant modes allow transitions &om lo-
calized to extended states with energetic costs close to
zero, possibly modifying the transport properties. Ex-
perimental evidence for these resonant modes has been
presented elsewhere.

C. Displacement patterns of modes
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FIG. 2. Integrated DOS of the Cantor-like structure, for
generations 2 —5. The continuous lines marked "p" corre-
spond to a periodic structure formed by alternating elements
with the same size as the smallest elements of the Cantor-like
structure.

Numerical simulations allow us to make evident some
properties of the displacement patterns of normal modes.
We are mainly concerned here with properties of local-
ization and self-similarity.

The patterns in Fig. 3(a) (as well as in Figs. 4 and
5 of Ref. 5) belong to some modes of the fracton range.
They look like localized modes, at least locally, but it can
be observed that they are actually extended. In fact, if
an excitation can survive at a certain frequency in some
portion of the structure, it will also be present in other
places owing to the fact that, if the number of gener-
ations is large enough, it is always possible to find a
portion exactly similar to the given one. This mecha-
nism gives origin to modes of hierarchical nature, with
properties that are different &om those characteristic of
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other systems lacking translational invariance. Never-
theless, this peculiar kind of extended mode is based on
the rigorous similarity and hierarchy of the different por-
tions of the structure, with a mechanism of tunneling for
the wavelike excitations, a mechanism which is known to
be highly unstable. This means that hierarchical states
can be destroyed by small perturbations. Therefore they
are not likely to survive in real systems which are only
self-similar in a statistical sense, and we can think of
them as eH'ectively localized modes. Hierarchical states

r wayare supposed to scale with frequency in a self-similar wa
and our model satisfies this requirement (see Fig. 5 in
Ref. 5 where three modes display self-similar patterns,
and their &equencies are in a ratio of = 1/3 &om one
another) .

Figure 4(a) shows the computed dispersion curve of
the fourth generation in the &equency range 1900—
—2200 kHz which is interesting because both localized
and extended modes are present. Q represents the lat-
tice wave vector of the structure, in the sense that it is
the wave vector of the system obtained by periodically re-
peating the whole structure with period L (Q = 2nvr/L)
Some branches, like those labeled with 2 and 4, look
nearly Hat, and are therefore expected to exhibit (hier-

archically) localized modes. On the contrary, branches
like those labeled 1 and 3 have a signi6cant dispersion
characteristic of extended modes. The mode patterns
corresponding to the labeled branches are shown in Fig.
3(a). We see that nonextended modes do indeed belong
to the Hat branches. We also computed ur(Q) in the frac-
ton zone, obtaining similar results [Figs. 3(b) and 4(b)].

Finally we tried to verify if the interpretation of l as
a sort of wavelength in the &acton dispersion law, Eq.
(2), holds in our case. For modes in the fracton regime
we now define an efFective wavelength as the ratio of the
length in which the mode is locally localized, to half the
number of its nodes. The dispersion law constructed in
this way follows a linear behavior on a log-log scale, with
slope d close to one. From Eq. (5) we then obtain
d —D as the spectral exponent for these regions, which
agrees numerically with the one directly derived from the
slope of the DOS in Fig. 2.

D. Ferne structure of the spectrum and in8uence
of disorder

The properties of the spectrum derived in Sec. III are
valid for a much larger class of systems than the one dis-
cussed so far. In fact, the order of the 8-type sequences
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FIG . 3. (a) Some displacement patterns of localized hi-

erarchical modes marked in Fig. 4(a); (b) displaceinent pat-
terns for modes in the branches marked in Fig. 4(b), showing
localized and nonlocalized modes.

FIG. 4. Dispersion in the fracton region (a) and in a
frequency range showing both dispersive and nondispersive
branches. The displacement profiles associated to the num-
bered modes are shown in Fig. 3.
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in the discussion is not important, as long as the acoustic
mismatch between A and B is sufBciently large. In this
case we may thus change the order of these sequences
with no relevant changes in the DOS. We have verified
this statement by n»merically computing the spectrum of
a number of systems in which the 2 sequences of B-type
alternate randomly with the A-type elements. Figure 5
shows the results of one such computation for a case with
the same number of elements as that of the fourth gen-
eration but randomly distributed. The mode &equencies
of the ordered Cantor structure are represented versus
those of the disordered structure. The linear behavior
shows that no substantial differences exist between them
with the exception of the extended mode regions where
indeed the randomization is expected to inHuence the in-
teraction among modes. Similar results were obtained in
the other cases.

Actually, the order of the sequences only affects the
"fine structure" of the spectrum, this latter being essen-
tially determined by the coupling among those sequences
of B which would possess the same resonant &equencies,
if taken as isolated resonators. Coupling removes degen-
eracies with a splitting dependent on its strength. In
ordered structures we expect to have a hierarchy of cou-

plings, and therefore a hierarchical distribution of split-
tings, whereas disorder produces a rather Bat distribu-
tion. Figures 6 and 7 show these distributions for the
spectra of Fig. 5. The splittings of the ordered sys-
tem (Fig. 6) group around very few values, while they
distribute much more uniformly in the disordered case
(Fig. 7). It also can be seen that each distribution con-
sists of two main parts. One of them, with a maximum
close to zero, is due to the small splitting values and is
asymmetric, with a long tail towards the positive abscis-
sas; thus it pertains to quasidegenerate modes possessing
very weak couplings, and must therefore be attributed to
localized modes. The other part of the distribution is
bell-shaped, centered around higher values of the split-
tings, and comes &om stronger couplings among different
regions of the system, which give rise to extended modes.
Quite noticeably, the two different shapes resemble very
much the ones related to the statistics of eigenvalue spac-
ing of random matrices. In this case the small splitting
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the elements.
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statistics are described by a Poisson distribution of level

spacings, corresponding to uncorrelated eigenvalues with
localized eigenvectors. On the contrary, the other distri-
bution is characteristic of strongly correlated eigenvalues,
which possess extended eigenstates. Along with the slope
change in the DOS, this provides strong evidence for the
simultaneous presence of both kinds of states in these
systems. Investigation of the spatial behavior of normal
modes of such disordered structures is the subject of a
forthcoming publication.

V. CONCLUSIONS

We have studied the properties of the vibrational
spectrum for hierarchical systems with large acoustic
mismatch between the constituent homogeneous mate-
rials. We have shown that in such continuous structures
the spectral dimension can be analytically predicted by
means of "mode counting" arguments, provided that res-
onant modes are carefully taken into account. The re-
sults are in excellent agreement with previous experimen-
tal observations as well as with new numerical calcula-
tions, and together with the analysis of the eigenvalue
spacings and of the dispersion curves of finite size sys-
tems they provide new evidence for the existence and
understanding of multiple phonon and &acton regimes in
these structures. 5 Indeed, successive phonon and fracton
regimes are shown to derive &om higher harmonics asso-
ciated with individual components of the structures. On
the basis of this understanding, it was quite natural to
expect that many properties of our hierarchical structure
should be preserved when the sequence of the elements
was modified while keeping their size and number un-
changed. We have therefore undertaken a detailed anal-
ysis of the density of states, displacement patterns, and
eigenvalue spacing distribution of new structures with a
random distribution of the elements. The results demon-
strate that the choice of the sequence does introduce in-
teresting modifications in the "fine structure" of the spec-
trum, but it does not alter significantly the main picture.
This allows us to extend our previous conclusions to a
larger class of structures, possibly closer to "real" com-
plex materials. Moreover, we have recently found that
enhanced nonlinear effects result &om the interaction
among localized and extended modes which is typical of
the Cantor-like structures as compared to periodical and
homogeneous systems of the same nature. The present
paper supports the idea that also these nonlinear effects
may be of more general relevance.
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APPENDIX A

The phononic zone center gap in binary periodic sys-
tems having g = —" [see Eq. (6)j, is bounded by the

frequencies

Mp
arccos (kM),

7r
(Al)

vrith M = &, R = z~/z, and uo —7rv /a = 7rvs/6 I.n
this case there are no zone boundary gaps. When B )& 1,
M = 1 —2/R, and expanding Eq. (Al) to first order in

1/~R yields

2
(do )

vr A

(
Cd& Cd

Rj

(A2)

(A3)

APPENDIX B

The last frequency (jl"l = 3") pertains to the phononic
band, as it is shared by all the sequences, while the others
represent fractonic modes. Among the latter, the ones
falling in the phononic gap of the periodic structure are
only those for which

(k)( j
g ~o ~~2.

3
(Bl)

Their total number can be evaluated within the assumed
approximation. From Eqs. (A2) and (A3), condition
(Bl) becomes

.(k) &
.(&) &

.(k)& j
-(a) ~ 3k -(k)with j& the lower closest integer to o. " and j2 the

lovrer closest integer to (1 —o)3". It is seen that only
-(k} -(k)about j2 —jz modes of the considered sequence have

frequencies in the gap region. At the Nth generation
there are 2 sequences made of 3 consecutive B
elements, and k ranges from 1 to N —1. Thus the total
number of modes in the gap is

= ) 2~—"—'( l"l 'l"
) = (] 2 )(3~ 3.2~ —')

As suggested at the beginning of Sec. IIIB, the hier-
archical structure described can be considered as a peri-
odic system made by alternating single elements of types
A and B, in which a certain number of B elements have
been substituted by longer B sequences, made of 3" con-
secutive elements (k = 1, 2, . . . , N —1, for a given gener-
ation N). In order to obtain the spectrum of this system
let us look at the B sequences as isolated resonators, and
assume the corresponding frequencies to be good esti-
mates of the real ones. This can seem a rather rough
approximation, but experiments and numerical simula-
tions have shown it to work quite well in the case of high
elastic mismatching (zs )) z ). Within this approxima-
tion, a sequence of 3" consecutive elements possesses the
eigenfrequencies:

(k)

(
.(ki 1 2 3k)
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In the same way we get the number of fracton modes
having frequency less than urq (i.e. , those having j(") &

(A, )
)

N —1

2N le —1—(&) (3N 3 2N —1)
k=1

The remaining &acton modes (still n„) have frequencies
in the range between u2 and ~o. The total number of

modes (phonons and &actons) with &equency less than
uq is therefore

Ng ———+n„3o(3 —2 ) +2 +1/2,
2

whereas the total number of modes up to ~2 is

N, = —"+n„+n, =3(1—a)(3 ' —2 ')
2

+2 +1j2.
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