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Experimental observation of solitons in a 1D nonlinear lattice
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The experimental observations for the nonpropagation solitons with both spatial phase match and
mismatch have been reported in a one-dimensional nonlinear lattice that is damped and vertically
driven. Theoretically, using the method of multiple-scale solution, we develop a nonlinear Schrodinger
equation for the experimental results including the kinks found by Denardo et al. Furthermore, under
our order estimation the generating conditions for soliton and kink have been discussed. According to
the generating conditions, the modes of the self-localized structures are determined closely by the intrin-
sic properties of the lattice rather than the driven parameters of the shake table.

During the last ten years there has been much interest
in experimental observations and in theoretical investiga-
tions of nonlinear phenomena in the continuum media.
Both propagating and nonpropagating solitons and kinks
have been studied. On the other hand, the theoretical
studies for the localized structure in discrete system have
also been interesting many physicsts ' because of its im-
portance to both solid-state physics and materials sci-
ence. However, very little experimental work had been
done. Fortunately, Denardo et al. have carried out on
the observations of two kinds of nonpropagating self-
localized structures, domain walls which connect
standing-wave regions of two different wave numbers and
kinks which connect standing-wave regions of the same
wave numbers, in a one-dimensional nonlinear coupled
lattice. They have a common characteristic in the spatial
phase, say, the spatial phases are mismatched, in which
every oscillator is a nonzero angle out of phase with its
immediate neighbors. The experimental apparatus is
quite simple, though the results of the experiment are ex-
citing. They used a discrete lattice of 35 nonlinear cou-
pled pendulums with mass 13.6 g supported by a horizon-
tal rod, and put it on the vertical shake table. Theoreti-
cally, a nonlinear Schrodinger equation (NLSE) had been
employed to explain the phenomena of kinks in upper
cutoff mode in which each oscillator is m out of phase
with its immediate neighbors. Although Ref. 5 is devoted
only to the two kinds of self-localized structures, the soli-
ton mode one with spatial phase match in which each lat-
tice is no spatial phase difference from its immediate
neighbors has been also mentioned by Denardo.

Here we will report our experimental observations
which show there exists not only a soliton mode self-
localized structure with spatial phase match, but also one
with spatial phase mismatch in a nonlinear coupled lat-
tice with lower mass. Figure 1 shows us the steady-state
nonpropagating soliton with spatial phase match, while
the spatial-phase-mismatched soliton (a typical mode is
the upper cutoff mode) is shown in Fig. 2. The data plot-
ted in Fig. 3 are absolute angular displacements of the
lattices without considering the spatial phase differences
in the mode of mismatch.

The apparatus is quite simple as well as described in
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FIG. 1. (a) Experimental data, maximum angular displace-
ments, of the soliton in space phase match mode. The curve is a
hyperbolic secant best fit, say, 8(x)=8 sech[k(x —xo)], with
8 =0.551 rad, k =0.65 cm ', and x0=25 cm: (b) Diagram-
matic representation of highly localized symmetric soliton in a
uniform lattice. The vertical exciting parameters in this mode
are that the driven wave mode is sine; the amplitude A, is 1.35
mm and the frequency 2f, is 3.5 Hz.

Refs. 5 and 6. It is a lattice of 100 pendulums with a
sphere in shape and 3.6 g in mass, fixed on the shelf
which is attached to the shake table (loudspeaker). Each
ball can only move in one degree of freedom and there is
no motion of the direction of the array because it is fixed

by two strings in a shape similar to the letter V. Further-
more, these balls are coupled nonlinearly by tying the
overlapping points between two V strings (Fig. 4). The
geometric parameters of the lattice are that the length of
each string I. is 8.5 cm and the distance between two
neighbor balls, a, is 2.5 cm as same as the ones in Ref. 5.
For these parameters the free frequency of the uncoupled
pendulum fo is about 1.7 Hz. To obtain the self-

localized structure, the driven frequency of the vertical
shake table is adjusted to near twice the free one of the
uncoupled pendulum, that is, about 3.4 Hz. At the be-
ginning of the experiment, initial motion is necessary, but
there is no requirement for the form of the motion. After
about 30 sec of irregular swing, the self-localized struc-
ture in embryonic form will appear. For the sake of get-
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FIG. 4. Schematic drawing of apparatus of nonlinearly cou-
pled lattice. The values of the geometrical parameters are
a =2.5 cm, I =8.3 cm, b =3.2 cm, and m =3.6 g.
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FIG. 2. {a) Experimental data, maximum angular displace-
ments, of the soliton in space phase mismatch mode. (b) Di-
agrammatic representation of highly localized symmetric soli-
ton in a uniform lattice. The vertical exciting parameters in this
mode are that the driven wave mode is sine; the amplitude A, is
2.55 mm and the frequency 2f, is 4.0 Hz.

ting a clear and robust one, we use the stick to stop a few
small irregular motions. The self-localized structure will
then develop and eventually reach a steady state.

The experimental data of the steady state are obtained
by three steps. Before the experiment, two orthogonal
scales in centimeters have been attached to the shake
table along the array direction and swing one, respective-
ly. When a steady state is formed, we turn on the telev-
ision camera just right over the center of the lattice and
record completely the pendulum motions by videotape.
Finally, we restore the data by a program in which the
optical correction has been considered.

In fact, the experimental results do not closely relate to
the exciting amplitude of the shake table in our experi-
ments, especially after forming a strong one. However,
there is a certain requirement for the driven frequency of
the shake table for a special wave model. The driven pa-
rameters listed in the following are only two sets of typi-
cal values of ones with which the self-localized structure

+—K4l (0)+,—0J ) +m(g ic)(1 c—os0))—

with

zc = A, cos(2', t ), (2)

can be obtained.
(i) For the soliton with match model in space phase

plotted in Fig. 1, the driven wave model is a sine wave,
the driven amplitude A, is 1.53 mm, and the driven fre-

quency 2f, is 3.5 Hz.
(ii) For the soliton with mismatch model in space

phase plotted in Fig. 2, the driven wave model is a sine
wave, the driven amplitude A, is 2.50 mm, and the
driven frequency 2f, is 4.0 Hz.

The best fits of the hyperbolic secant curves have been
plotted in Figs. 1 and 3 for solitons with spatial phase
match and mismatch models, respectively. Although
there is a slight lack of smoothness of the data in Figs.
1-3 due to the nonuniformities of the pendulums, espe-
cially the difference in the pendulum lengths, it is obvious
that the distributions of the maximum angular displace-
ments of the lattices are both solitary models.

To explain the experimental phenomena with both
match and mismatch modes in theory, we write the Ham-
iltian for an ideal lattice in one dimension,

N
H= g p + K2l (0&+, ——8))

j=1
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FIG. 3. Experimental data without regard to the difference of
spatial phase and the hyperbolic secant curve in the best fit, say,
0(x)=0 sech[k(x —xo)], with 0 =0.355 rad, k =0.27 cm
and xo =20. 1, for the soliton in spatial phase mismatch mode.

where I and I are the common length and mass of the
lattice, A, and 2', are the driven amplitude and angular
frequency, K2 and E4 are the coupled coefficients of
linear and cubic nonlinear interactions, p. is the conjugat-
ing moment of the angular coordination 0. of the jth pen-
dulum, g is the acceleration of gravity, and X is the total
number of the pendulums, respectively.

The dynamic equation related to Eq. (1) is that

0, +p0) —c2(0, +,+0, ,
—20, )

—c4[(0,+,—0, )
—(0, —0, , ) ]

+[roc2+rlcos(2', t)]sin0. =0 (j =1,2, . . . , &),
(3)
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with

C2 =%2/m

ca=E41 /rn,

q=4co, A, /1,

co0=g /1

(4)

(5)

(6)

where f(x, t) satisfies the NLSE

—2& co,„—c 2ct i—co,„pf —r—ip'
c}t

+ —~', —48'', iyi'y=o (19)
1

and

where the dot denotes time differentiation and the
dumped term —P8i has been inserted into Eq. (3}. Based
on the calculations for the values of function and parame-
ters in Eq. (3) under the experimental conditions of ours
and Ref. 5, it is suitable to take the following order es-
timation:

8 -o(e) (j=1,2, . . . , N),
g-o(e ),
p-o(e ),
coe co0 o(e )

(for spatial phase match mode), or

coe (co0+4C2) o(E )

(8)

(10)

(1 la)

(1 lb)

(for spatial phase mismatch mode), where e is a small pa-
rameter.

Using the method of the multiple-scale solution, the
following solutions for Eq. (3) can be obtained.

(i) For the soliton with space phase match mode,

COm&x Q COP+ 4C 2
J' 2 2 (20)

mg —98K l )0, (21)

the self-localized structure should be in the kink model,

8J(x, t)=( —)J—,'8 2expi(co, „t+52)

X tanh[k2(x —
xa )]+c.c. ,

with

(22)

It is interesting that the coefficient of the nonlinear term
in Eq. (19) is a difference between two positive parts, say,
—,'cop —48c4. The former, —,'cop, comes from the nonlinear

relation between the radian displacement and the hor-
izontal one, that is, between 8 and sin8, as well as in the
mode of case (i}. The latter, 48c4, however, originates
from the cubic nonlinear interactions between immediate
neighbors, which has the same order as the former in this
case, but is one order higher than the former in the case
(i). So in space phase mismatch mode, when the sign of
the coefficient of the nonlinear term is opposite to the one
of the dispersion term, that is,

81(x,t)=P(x, t)e '+c.c. +o(e ), (12)

(13)

where P(x, t) is a continuous differentiable complex func-
tion of its arguments and satisfies the NLSE

2i coo — +c2ct
2 icoapg —rid + —coai—gi $=0—.2 254 ~ 1 a 1 2 2

2 2 28 2
— rt —4PCO,„,

96c4 cop

1
k2 2 2+} 4&~max ~

2c 2Q

m 152= ———arcsin(2Pcoma„/q) .

(23)

(24)

(25)

Obviously, the solutions of Eq. (13}possess only the soli-
ton mode, but not the kink mode, because the sign of the
coefficient of the nonlinear term is the same as the one of
dispersion term. The solution with spatial phase match
mode in first-order approximation is

mg —98K4l &0, (26)

the self-localized structure should be in the soliton model,

And when the sign of the coefficient of the nonlinear
term is the same as the one of the dispersion term, that is,

8 (x, t)= ,'8 &
expi(co—0t+5&)sech[k&(x —xa)]+c.c. ,

with

(14)

8 (x, t)=( —)J—,'8 3expi(co,„t+53)

X sech[ k3(x —x0 )]+c.c. ,

with

(27)

1
, +rt2 4&~o-

2cop
(15) 2 2

8m 3—, , n
—4&~ma.

a)p —96c4
(28)

k f = Qg —4PCO0,
1

2C2Q

5, =—,
' arcsin(2Pcoa/q ),

(16)

(17)

and xp is an arbitrary constant.
(ii). For the soliton with space phase mismatch mode,

k3=k2,
53=—,'arcsin(2Pcom, „/g) .

(29)

(30)

Furthermore, from Eqs. (15), (16), (28), and (29), ca c»
be determined by

(31)
8J(x, t)=( —)Jf(x, t)e ™x~+cc +o(e ), . . (18)
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where

k30r=
k)0

So the cubic nonlinear coupled constant

E4= —,', coo(1+y ) .

(32)

(33)

The value of I( 4 roughly equals 8.8X10 N/m in this
experimental lattice.

Another interesting thing is the soliton-kink mode
translation. If the critical condition

mg —98K4I =0 (34)

is held, in other words, for a given I and E4 if the mass of
pendulum reaches the critical value

m, =98K~1 /g, (35)

then the nonlinear term disappears in Eq. (19) and be-
comes a linear Schrodinger equation for which it is
known that there is a plane-wave solution only. Thus, ac-
cording to Eq. (35) or Eqs. (21), (26), and the fact that the
main difference in experimental conditions between Ref.
5 and here is in the mass of the pendulum, 13 and 3.6 g,
respectively, we find a satisfying and explicit answer for
why there is only a kink mode self-localized structure
rather than a soliton mode in Ref. 5 and there is only a
soliton mode rather than a kink mode in this paper.
Also, the experimental value of critical mass m,'" ' should
be larger than 3.5 g and smaller than 13.6 g. Indeed, it is
easy to obtain the theoretically estimating one
m,'"' '=5.0 g by substituting the values of E4, l into Eq.
(35)

Therefore, when the order estimations, Eqs. (8)—(11),
are satisfied well enough, the wave mode of the self-
localized structure which can be observed in an experi-
ment is determined by the intrinsic parameters of the lat-
tice, for example, the length of the pendulum I and posi-
tions of the coupled points, and the mass of the pendulum
rather than the vibrating parameters such as the driven
amplitude A, and the driven frequency 2f, . But the
effect of driven parameters, frequency especially, on the

results of experiments determines whether there is suc-
cess in the order estimation which determines whether
there is success in perturbation technique. In our experi-
ments the driven frequency can be a variable within a
small range for each kind of solitary self-localized struc-
ture and there is no self-localized structure beyond these
ranges. It is, however, far less sensitive for changing the
driven amplitude than doing the driven frequency espe-
cially as it becomes a strong and robust one. Also, com-
paring k, with k2 in Eqs. (16) and (24), respectively, we
can easily answer why the soliton in space phase match
mode is thinner than the one in space phase mismatch
mode in our experiments.

In summary, we have reported two experimental phe-
nomena of self-localized structures, spatial match and
mismatch mode solitons, in a one-dimensional nonlinear
lattice. Theoretically, if our order estimations, Eqs.
(8)—( 1 1), are satisfied well enough, then observations of
both space phase mismatch kinks in Ref. 5 and space
phase match and mismatch solitons reported in this pa-
per can be explained well by the solutions of two
multiple-scale reductions of Eqs. (3), (13), and (19). Based
on the theoretical frame of the NLSE under order estima-
tion, one could predict that the forms of the self-localized
structures are determined closely by the intrinsic proper-
ties of the lattice rather than the driven parameters of the
shake table, and there is no kink mode self-localized
structure with spatial phase match mode in this lattice
under vertical vibration. Of course, the correctness of
the self-localized structure mode conditions [Eqs. (21),
(26), and (34)] as well as the above predictions need fur-
ther to be confirmed by experiments. We are now in the
process of several experiments for these purposes which
are very encouraging, and the results will be reported
elsewhere.
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